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Abstract: This paper introduces a conferencing server design based on an innovative configurable
computing architecture to support the information transmission and distributed processing associated
with creating and maintaining simultaneous disjoint conferences among sets of N conferees, where r-
dimensional meshes can be used as the conferencing components. An r-dimensional conferencing mesh
network is strictly nonblocking if, regardless of the existing conferences implemented, a new conference
among any subset of the idle conferees can be implemented using a connected set of idle processing
elements without any disturbance to the existing conferences. Using arguments employing the isoperimet-
ric ratios of the sizes of edge and node sets in a graph, we give necessary and sufficient conditions such
that an r-dimensional conferencing mesh of M nodes provides strictly nonblocking conferencing to N
conferees. We show that a necessary and sufficient condition for r-dimensional meshes to be strictly
nonblocking, when dimension r is fixed, is that M Å O (N ( r/1)/ r ) . For general r-dimensional meshes,
M Å O ( r ( r01)/ rN ( r/1)/ r ) nodes are sufficient to support strictly nonblocking capabilities. A fundamental
relationship is established between the requirements on M for strictly nonblocking conferencing among
N conferees using certain graph structures and the isoperimetric ratios for those structures. q 1999
John Wiley & Sons, Inc. Networks 33: 293–308, 1999

1. INTRODUCTION The configurable conference servers that we will con-
sider consist of two components: a bidirectional N 1 M
switching network used for routing information to/fromIn this paper, we study constructions of a novel architec-
an M node conferencing network comprising processingture for a configurable conferencing server which supports
elements which perform the actual signal processing ofthe simultaneous transmission of processed messages
the information associated with the conference. Figure 1among conference participants, referred to as conferees.
illustrates the general structure of the configurable confer-Each conferee uses a generic send/receive device as a
encing servers that we are studying. As shown, a confer-conferencing instrument providing access to/from the
ence among a specified set of conferees is implementedserver. Depending on the application, the messages ex-
on the conferencing network by the processing of infor-changed by the conferees can involve audio, video, graph-
mation exchanged among a set of directly connected pro-ics, data, or essentially any such information type, includ-
cessing elements, each of which is linked to exactly oneing combinations thereof.
of the send/receive devices associated with the conferees
using the switching network.

We are interested in conferencing applications inCorrespondence to: Y. Du
Contract grant sponsor: Compunetix Inc. and DARPA which upon setting up a requested conference among a

q 1999 John Wiley & Sons, Inc. CCC 0028-3045/99/040293-16
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294 DU AND MASSON

Fig. 1. A general structure of a configurable conferencing server.

group of conferees each conferee will remain in the con- the processing and exchange of information associated
with the conference, the figure shows, for example, thatference until the entire conference is terminated. This is

a reasonable assumption as often the conference message conferee (user) C provides an input stream, denoted as
‘‘C ,’’ to the allocated processing elements for the confer-streams being exchanged, such as video and audio streams

for so-called video-conference application or data and ence and receives the output stream denoted as ‘‘A / B .’’
Also shown is conference #2 comprising the conferees B ,graphics information for distributed simulation environ-

ments, will demand a specified upper bound on the delays D , and F being supported by the connected component
of processing elements 6, 7, and 8, respectively. The con-for acceptable message delivery, together possibly with

certain communication bandwidth requirements. In con- figurations of the processing elements supporting each of
the shown conferences is in each case a connected seriesferencing application demanding a high quality of service,

these message streams can be quite sensitive to rearrange- of three processing elements in this ring network.
In this paper, we will consider r-dimensional confer-ments and/or transmission disturbances resulting from

reconfigurations of existing conferences. Thus, disrup- encing meshes as the conference network component of
our server architecture for providing strictly nonblockingtions of these message streams resulting from additions

or deletions of conferees within an established conference conferencing capability. Clearly, the N 1 M switching
network component of our architecture must be strictlycannot always be tolerated.

Similarly, to supporting a conference of, say, k confer- nonblocking. However, this can be provided in numerous
ways [3] , employing, for example, the well-known Can-ees, we assume that a connected component of k pro-

cessing elements are allocated which are not involved in tor network construction [5] . Hence, we give this issue
no particular attention in our discussions.any way with other existing conferences being supported

in the server. Thus, these k processing elements associated Our main focus will be the strictly nonblocking capa-
bility of the conference network component of our serverwith the k conference form a connected component of

nodes in the conference component of the server. This which realizes the conferencing applications. An r-di-
mensional conferencing mesh is strictly nonblocking if,means that the bandwidth of the links connecting pro-

cessing elements as well as the processing power of the regardless of the existing conferences implemented on
the r-dimensional mesh, a new conference among anyelements allocated are entirely available to supporting a

given conference. subset of the idle conferees can be implemented using a
connected set of idle processing elements without anyFigure 2 illustrates an implementation of two confer-

ences in this conferencing server architecture. In this sce- disturbance (rearrangement) to the existing conferences
and without any information being passed-through pro-nario, conference #1 comprises three conferees, namely

A , C , and E , supported by the connected component of cessing elements allocated to other conferences. Using
arguments employing the so-called isoperimetric ratios ofprocessing elements 2, 3, and 4, respectively. To illustrate
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STRICTLY NONBLOCKING CONFERENCE NETWORKS 295

Fig. 2. Assignment of conferees in a conference network.

the sizes of edge and node sets in an r-dimensional mesh, of Woodall [12] show that M Å O(N 2) processing ele-
ment nodes are necessary and sufficient to support strictlywe will show that a necessary and sufficient condition

such that an r-dimensional conferencing mesh of M pro- nonblocking conferencing. Hypercube constructions for
the conferencing network component have also been stud-cessing elements provides strictly nonblocking conferenc-

ing for a set of N conferees is that M Å O(N (r/1) /r) ied [9, 10] as conferencing networks, and it has been
processing elements, for fixed dimension r . For general shown that M Å O(N

√
log N) nodes are sufficient for a

r-dimensional meshes, M Å O(r (r01) /rN (r/1) /r nodes are hypercube to support a strictly nonblocking conferencing
sufficient to support strictly nonblocking conferencing for N conferees. The study in [11] considers the special
among N conferees. Our analyses will be seen to give case of a 2-D mesh design and shows that O(N 3/2 ) is
further insight into related results relative to the use of r- necessary and sufficient for strictly nonblocking confer-
dimensional meshes in configurable conferencing server encing.
architectures. Finally, we will consider algorithms for the
allocation of processing elements to satisfy conference
requests in our configurable conferencing server design.

3. CONDITIONS FOR A STRICTLY
NONBLOCKING r-DIMENSIONAL MESH

2. PREVIOUS RESEARCH ON
CONFERENCING SERVER ARCHITECTURES In this section, we will determine the necessary and suffi-

cient conditions on the number of processing elements
(nodes) required for a strictly nonblocking conferencingConfigurable conferencing server architectures similar to

the general structure being considered in this paper have network. In particular, we are interested in the number,
M , of nodes in an r-dimensional mesh which can supportbeen previously explored. Yang and Masson [13] consid-

ered the use of a sequential ring of M Å O(N) processing conferences comprising subsets of N conferees when a
single link between any two nodes has the capacity toelements for a multicast conference network in which

rearrangements of existing conferencing configurations accommodate at most one conference. Our proof will be
based on a general technique that can be used to obtainare permitted to satisfy a request to provide for the addi-

tion of a new conferee to a conference. Also relative to upper and lower bounds on M for general conferencing
network structures with certain properties.the use of a series of processing elements in the shape of

a ring as the conferencing network component, the results We begin by giving the necessary condition on M for
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Fig. 3. Node coordinates in 3-D mesh with 125 nodes with length L Å 5.

r-dimensional meshes for a strictly nonblocking confer- identified by a triple » i £1 , i £2 , i £3 … , where 1 ° i £1 , i £2 , i £3 ° 5.
encing capability. For this 3-D case, we can also use the X-, Y- and Z-

coordinates in 3-D Euclidean space in the identification
of nodes. Each node £ is labeled as »x

£
, y

£
, z

£
… . As an3.1. Necessary Condition on M for a Strictly

example of the node ordering in this 3-D mesh, the small-Nonblocking r-Dimensional Mesh Serving
est node is labeled »1, 1, 1… , the largest node is labeledN Conferees
as »5, 5, 5… , and the center node is labeled »3, 3, 3… .

Consider an r-dimensional ( i.e., an r-D) mesh with M A hyperplane in the r-D mesh consists of a set of
nodes. Let L be the length of any side of the r-D mesh. nodes with a coordinate of one dimension having the
This length is measured in terms of the number of nodes same value. For example, all the nodes with coordinates
in a specific dimension of the mesh; it follows that L having the same value x (1° x ° L) in dimension j ( i.e.,
Å M 1/r . It should also be noted that, depending on its all nodes such that ij Å x) are contained in a hyperplane in
location in an r-D mesh, every node has an edge (or link) dimension j . We will denote as Hj( x) the hyperplane of
degree between r and 2r . nodes each with coordinate x in dimension j . In Figure

The location of each node £ in the r-D mesh can be 3, each of the three shown surfaces with darkened links
specified using a vector listing its coordinates in each are hyperplanes, denoted as HX (3) , HY (3) , and HZ(3) ,
dimension: £ Å » i £1 , i £2 , . . . , i £j , . . . , i £r … , where 1 ° i £1 , since each corresponds to a set of nodes which all have
i £2 , . . . , i £r ° L . Thus, i £j indicates the coordinate of node the same value (namely, 3) as one of its X , Y , or Z
£ in the j dimension. Two nodes £ Å » i £1 , i £2 , . . . , i £r … and coordinates.
w Å » iw

1 , iw
2 , . . . , iw

r … are connected by a link in an r-D It is obvious that nodes in a hyperplane compose a
mesh if there exists a k , where 1 ° k ° r , such that connected graph. Thus, in satisfying a conference, as-
for all j x k we have i £j Å iw

j and i £k Å iw
k / 1 or i £k signing conferees in a conference to all the nodes in the

Å iw
k 0 1. same hyperplane is an acceptable node allocation. How-

An ordering of nodes in the r-D mesh can be deter- ever, it should be noted that doing so partitions the re-
mined as follows: Node £ Å » i £1 , i £2 , . . . , i £r … is said to be maining nodes in the r-D mesh so that the size of future

conferences is limited. This is a key observation to estab-smaller than w Å » iw
1 , iw

2 , . . . , iw
r … if there exists k where

lishing a necessary condition on M for a strictly non-1 ° k ° r , such that for all j õ k , i £j Å iw
j and

blocking capability.i £k õ iw
k .

Thus, to obtain a lower bound on the number M ofFigure 3 illustrates a 3-D mesh network with 125 nodes
with length L Å 5. For this case, each node £ can be nodes needed for a strictly nonblocking r-D mesh, we
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will consider a specific conference request sequence and 1 ° j ° r . Clearly, the number of nodes in Hj( L /2) is
ÉHj( L /2)É Å Lr01 . The intersection of k hyperplanesa method to allocate nodes to conferees to satisfy these

requests. In particular, we will refer to a hyperplane allo- Hj1 (L /2) , Hj2 (L /2) , . . . , Hjk (L /2) is > k
lÅ1 Hjl (L /2) ,

cation of nodes for satisfying conference requests wherein where É> k
lÅ1 Hjl (L /2)É Å Lr0k .

the conferees associated with a conference request are Since in this counting procedure we are always consid-
assigned all the nodes in some hyperplanes in the r-D ering hyperplanes where the fixed coordinate is ij Å L /
mesh. When the nodes in some hyperplanes are all as- 2, where 1 ° j ° r , we will simply the notation in the
signed to a conference, the mesh becomes disconnected following to more compactly write Hjk (L /2) Å Hjk .into several disjoint connected components. Obviously,

By the inclusion–exclusion principle, the total number
to guarantee a strictly nonblocking capability for future

of nodes in < r
jÅ1 Hj is

conferences that might be requested by idle conferees, at
least one of these connected components (namely, the
one with most nodes) must be of sufficient size to support É< r

jÅ1 HjÉ Å ∑
r

jÅ1

ÉHjÉ 0 ∑
j1, j2

ÉHj1 < Hj2É / rrr

any remaining conference request.
To support our proof of the main theorem for a lower / (01) k01 ∑

jlÅj1, . . . , jk

É> HjlÉ / rrr

bound on M , consider the following lemma which pre-
sents a regular scheme by which a hyperplane can sepa-

/ (01) r01 ∑
jlÅj1, . . . , jr

É> HjlÉrate an r-D mesh into several mutually disjoint sub-
meshes, each similar in structure but with a smaller size
relative to the original mesh. It will be useful in this

Å Sr

1DLr01 0 Sr

2DLr02 / rrrlemma to denote as B(L) Å < r
jÅ1 Hj( L /2) the total num-

ber of nodes in the r hyperplanes Hj( L /2) , 1 ° j ° r in
a r-D mesh of length L in each dimension. The total
number of nodes, B(L) , in these hyperplanes will also / (01) k01Sr

kDLr0k / rrr

be obtained from this lemma.

Lemma 1. An r-D mesh of length L in each dimension / (01) r01Sr

rDLr0r Å Lr 0 (L 0 1) r .
can be separated into exactly p Å 2 r disjoint connected
components by the r hyperplanes Hj(L/2) Å { » i1 , i2 ,
. . . , ij , . . . , ir …: ijÅ L/2} , where 1° j° r. Each of these

Since the derivative of B(L) is always positive, it fol-disjoint connected components is a smaller r-D mesh with
lows that B(L) increases with L . jlength (L 0 1)/2 and with ((L 0 1)/2) r nodes. Finally,

B(L) Å Lr 0 (L 0 1) r . Moreover, B(L) is increasing
The following lemma is useful for proving Theoremon L.

1 giving a necessary condition on M .
Proof. A hyperplane Hj( L /2) (1 ° j ° L) separates

the r-D mesh into two parts: In one part, each coordinate Lemma 2. If a ¢ b ce 0 , for integer n ¢ 0 , we have (a
ij õ L /2, and in the other part, ij ú L /2. It follows then 0 b) n ¢ an 0 nan01b.
that a collection of r hyperplanes, namely, H1(L /2) ,

Proof. We can prove this by induction on n . The claimH2(L /2) , . . . , Hr(L /2) , would separate the mesh into
obviously holds for n Å 0.2 r-connected components. The coordinates of each of the

Suppose that it holds for n Å k , that is, (a 0 b) k ¢ ak

nodes in each of these components satisfy a system of
0 kak01b . Consider n Å k / 1. We haveinequalities: i1ú (õ)L /2, i2ú (õ)L /2, . . . , irú (õ)L /

2. It can be observed that each of these components is
(a 0 b) k/1 Å (a 0 b)(a 0 b) k

also an r-D mesh with length at most (L 0 1)/2 . As
an example, Figure 4 illustrates three hyperplanes used ¢ (a 0 b)(ak 0 kak01b) Å ak/1 0 (k / 1)akb
for partitioning a 3-D mesh. Figure 5 gives more details

/ ka kb 2 ¢ ak/1 0 (k / 1)a (k/1)01b ,of this partitioning. Shown in this figure are the nodes
on these hyperplanes, as well as nodes in the resulting

that is, the claim holds for n Å k / 1. jcomponents separated by these hyperplanes.
We can now count the number of nodes in these hyper-

planes. Note that some of these hyperplanes contain com- Now we can prove the necessary condition on M by
considering the requirement on the number of nodes nec-mon nodes. Hence, our counting will be based on an

inclusion and exclusion procedure. Consider hyperplanes essary to support strictly nonblocking conferencing
among N conferees when a sequence of requests for con-Hj( L /2) Å { » i1 , i2 , . . . , ij , . . . , ir … : ij Å L /2}, where
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298 DU AND MASSON

Fig. 4. Partitioning 3-D mesh using three hyperplanes.

ferences is satisfied using a repeated hyperplane allocation N conferees. More precisely, the lower bound is [N / (r
of nodes. / 1)] (r/1) /r .

Proof. Assume that an r-D mesh with M nodes isTheorem 1. M Å V((N /r) (r/1) /r) nodes are necessary
for an r-D mesh to support nonblocking conferencing for strictly nonblocking for N conferees. Suppose that from

Fig. 5. Locations of nodes in 3-D mesh after hyperplane partitioning.
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the start no conferences have been realized on the r-D plane allocations used to satisfy the second set of p Å 2 r

conference requests. Clearly, because the overall r-Dmesh, so that all M nodes are idle. Now suppose an initial
conference request is made of size B1 Å B(L) Å Lr mesh is assumed to be strictly nonblocking, additional

conferencing requests among the remaining N 0 B1 0 B20 (L 0 1) r . Since this is the number of nodes in the
hyperplanes H1(L /2) , H2(L /2) , . . . , Hr(L /2) , we can idle conferees must now be satisfied within the still

smaller 2 r disjoint r-D meshes, each with ((L 0 1)/22) rallocate all the nodes in these hyperplanes to the conferees
for this requested conference. As discussed above, we nodes. Thus,
refer to this as a hyperplane allocation of nodes. By the
above lemma, such an allocation of nodes in these hyper- S2 ¢ N 0 B1 0 B2 ,
planes partitions the r-D mesh of M nodes with length
L Å M 1/r into 2 r disjoint smaller r-D meshes, each with where
((L 0 1)/2) r nodes. Since we are assuming that the
r-D mesh is strictly nonblocking, all additional confer-
ence requests must be possible to satisfy in a strictly S2 °

S1

2 r °
M

2 r

1
2 r °

M

(22) r .
nonblocking manner.

Let S1 Å ((L 0 1)/2) r denote the number of nodes
If we repeat the above conference request and hyper-in each of the smaller meshes resulting from the first

plane allocation process k times for incoming conferencehyperplane allocation used to satisfy the initial request.
requests of appropriate sizes, we would then have pkÅ 2 kr

Clearly, additional conferencing requests among the re-
disconnected submeshes each with Sk nodes, where Bk ismaining N 0 B1 idle conferees must now be satisfied
the number of conferees assigned nodes in the k-th stepwithin the 2 r disjoint r-D meshes, each with ((L 0 1)/
(which is the same number of nodes in the hyperplanes2) r nodes. Thus,
used in the conference assignment in this step) . Also,
since the overall r-D mesh is strictly nonblocking,S1 ¢ N 0 B1 ,

where Sk ¢ Fk Å N 0 B 1 0 B 2 0 rrr 0 Bk Å N 0 ∑
i

iÅ1

Bi ,

S1 ° M /2 r

where
and

Sk °
M

(2 k) rB1 Å B(L) Å Lr 0 (L 0 1) r .

Next, suppose there are p Å 2 r additional conference
Bk ° pk01B(L /2 k01) Å (2 r) k01((L /2 k01) r

requests, each for a conference of size B2 Å B[(L 0 1)/
2] conferees. We can satisfy these new conference re- 0 (L /2 k01 0 1) r) Å Lr 0 (L 0 2 k01) r

quests with a second set of p Å 2 r hyperplane allocations
of nodes, each within one of the 2 r disjoint r-D meshes Bi ° Lr 0 (L 0 2 i01) r , 1 ° i ° k .
of ((L 0 1)/2) r nodes resulting from the first hyperplane
allocation. The total number of nodes used to satisfy these Thus, for all k we need
p Å 2 r new conference requests is B2 Å 2 rB[(L 0 1)/
2] , where

M

(2 k) r ¢ N 0 ∑
k

iÅ1

2 i01rM (r01) /r

B2 Å pB((L 0 1)/2) ° pB(L /2)

Å N 0 ∑
k

iÅ1

Lr 0 (L 0 2 i01) rÅ 2 rSS L

2D
r

0 S L

2
0 1DrD Å Lr 0 (L 0 2) r .

Å N 0 (kLr 0 ∑
k

iÅ1

(L 0 2 i01) r)Also, note that using a second round of hyperplane
allocations of nodes within each of the p Å 2 r disjoint
r-D meshes results in another partitioning of each of these

orsmaller meshes into 2 r still smaller disjoint r-D meshes,
each now having ((L 0 1)/22) r nodes. Let S2 Å ((L
0 1)/22) r denote the number of nodes in each of the still M

(2 k) r / (kLr 0 ∑
k

iÅ1

(L 0 2 i01) r) ¢ N .
smaller meshes obtained by the second round of hyper-
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300 DU AND MASSON

Consider reasoning as in the proof of Theorem 1 can be used to
obtain the following theorem:

f (k) Å M

(2 k) r / (kLr 0 ∑
k

iÅ1

(L 0 2 i01) r) , Theorem 2. M Å V((N /r) (r/1) /r) nodes are necessary
for an r-D torus to support nonblocking conferencing for
N conferees.

f (k) ° M

(2 k) r / kLr 0 ∑
k

iÅ1

(Lk 0 rLr012 i01)

3.2. Sufficient Conditions on M for a Strictly
° M

(2 k) r
/ rLr01(2 k 0 1) ° M

(2 k) r Nonblocking r-Dimensional Mesh Serving
N Conferees

In this section, we determine the number of nodes, M ,/ rLr012 k Å M

(2 k) r / rM (r01) /r2 k

for an r-D mesh sufficient to support strictly nonblocking
N-node conferencing. To do this, we first determine the

Å M(r01) /rS M 1/r

(2 k) r
/ r2 kD Å g(k) . minimum number of boundary edges (or links) of a con-

nected component of nodes of a specified size which can
separate that component from all others. In general, con-

In the above, inequality (a 0 b) n ¢ an 0 nan01b is used sider component C of graph G(V, E) . C is a subset of
as it holds for any positive integer n when a ¢ b ¢ 0, nodes in the graph, that is, C , V . The edge boundary
by Lemma 2. BE(C) of C is BE(C) Å {(£, w) : (£, w) √ E(G) , £

g(k) achieves its minimum when M 1/r Å (2 k) r/1 , or √ C , w √/ C }, and each edge e √ BE(C) is called
2 k Å M 1/[r (r/1)] , that is, edge boundary for component C . The node boundary

BN(C) is BN(C) Å {w : (£, w) √ E , £ √ C , w √/ C ,
w √ V }, and each node £ √ BN(C) is called a boundarymin g(k) Å M (r01) /rS M 1/r

M 1/[r (r/1)] ) r / rM 1/[r (r/1)]D
node for component C .

For a graph, a lower bound can be determined for the
Å (r / 1)Mr / (r/1) . ratio of the number of boundary edges (nodes) versus

the number of nodes in the component. The edge (node)
isoperimetric ratio [4] le(C)(l

£
(C)) of a component CHowever, since for each k we must have g(k) ¢ f (k)

of certain size k is¢ N , we have

(r / 1)Mr / (r/1) ¢ N
le(C) Å min

ÉCÉÅk

ÉBE(C)É
ÉCÉ

or

l
£
(C) Å min

ÉCÉÅk

ÉBN(C)É
ÉCÉ

.
M ¢ S N

r / 1D
(r/1) /r

Å VSSN

r D
(r/1) /rD . j

For some graphs, this ratio is known to be lower-
bounded by a constant which does not depend on theBefore considering sufficient conditions for r-dimen-

sional meshes, we can consider the necessary condition component size k . For example, expanders and supercon-
centrators are of such classes of graphs [1, 2] . However,for the case of an r-dimensional torus. An r-D torus is

similar to an r-D mesh, except that every node now has for other graphs, the isoperimetric ratio depends on the
component size k . This property is particularly useful toan identical degree of 2r , since the special situation of a

‘‘border’’ has been eliminated in the r-D torus. Thus, the us, as given a component set of nodes of certain size, we
can determine as a lower bound the number of edgesr-D torus has more connectivity than that of a correspond-

ing r-D mesh. necessary to separate the component from other nodes of
the graph. In other words, if a fixed upper bound is knownIt is not difficult to see that our above arguments can

be extended to this case. Besides the r hyperplanes re- on the number of edges that can be used to separate a
component, the size of the component cannot be arbi-quired to separate the r-D mesh in Lemma 1, another r

hyperplanes (x1 Å 1, x2 Å 1, . . . , xr Å 1) would be trarily small, in the sense that this component size thus
has a lower bound depending on the number of boundaryneeded to partition the torus into 2 r submeshes. Thus, for

the first step, we need twice as many as nodes to separate edges used. This observation is the basis of our proof of
the theorem to obtain an upper bound on M for the strictlythe torus into smaller meshes. After doing so, all the other

arguments remain the same. Thus, essentially, the same nonblocking r-D mesh.
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Fig. 6. Isoperimetric number: 2-D mesh.

As an example of the edge isoperimetric ratio for sional mesh, it is known that the isoperimetric ratio de-
pends on the component size. The following theorem bymeshes, consider the simple case of a 2-D mesh. It can

be shown that the edge isoperimetric ratio for component Bollobás and Leader [4] presents a key relationship be-
tween the size of a component and the size of its edgeC in a 2-D mesh is le(C) Å 2/ÉCÉ

1/2 , that is, for a
component C of size ÉCÉ, any edge boundary set BE boundary.
separating C from other components must satisfy the fol-

Theorem 3 [Bollobás and Leader, 1991]. Let A be alowing inequality: ÉBEÉ/ÉCÉ¢ le(C)Å 2/ÉCÉ
1/2 , where

subset of connected nodes in an r-D mesh [L] r with Aequality holds when the component is a 2-D square. A
° Lr /2 . Then,rather simple (and intuitive) argument for this bound is

that, when component C is a rectangle with sides of size
ÉBE(A)É ¢ min{ÉAÉ101/kkL (r /k )01 : k Å 1, 2, . . . , r}.a and b , at least a / b edges are needed to separate two

sides from other components. This is necessary since the
We can derive the isoperimetric ratio from this theo-rectangle will have at least two sides adjacent to other

rem. Consider an r-D mesh with a fixed dimension, thatcomponents if it is located on a border. Thus, ÉBEÉ ¢ a
is, r is a constant. We have the following theorem on/ b . We also have ÉCÉ Å ab for a rectangle, so ÉBEÉ/
isoperimetric ratio of any component A with size no big-

ÉCÉ Å (a / b) / (ab) ¢ (2
√
ab) / (ab) Å 2/(

√
ab)

ger than certain constant fraction of the mesh size Lr Å MÅ 2/
√
ÉCÉ , where the equality holds when a Å b , that is,

when N is sufficiently large, that is, when M /ÉAÉ ¢ er

when C is a square.
for big N .When C is not a rectangle, let R denote the rectangle

with the smallest number of nodes such that C is enclosed Theorem 4. Given connected components in an r-D mesh
by R in the sense that all nodes in C are contained within with size M, consider component Ci of size ÉCiÉ such that
the rectangle R . Suppose that R has sides of size a and M/ÉCiÉ¢ er . The edge boundary BEi used to separate Cib . Again, at least a / b edges are needed to separate C f rom other components has size ÉBEiÉ satisfying the
from other components, while now the component size following inequality:
of C is not larger than that of the enclosing rectangle R .
In this case, ÉBEÉ ¢ a / b and ÉCÉ ° ab . So, BE

ÉBEiÉ

ÉCiÉ
¢ le(Ci ) Å r

ÉCiÉ
1/r .¢ 2

√
ab ¢ 2

√
ÉCÉ . Thus, ÉBEÉ/ÉCÉ ¢ 2/

√
ÉCÉ .

Figure 6 illustrates two configurations for the 2-D
mesh. Both these configurations contain a component C Proof. From Theorem 3, for an r-D mesh with size
of size 9. The (a) configuration uses ÉBEÉ Å 7 edges to M and length L Å M 1/r , we have
separate it from other components, while the (b) configu-
ration uses only ÉBEÉ Å 6 edges, the smallest possible

ÉBEiÉ ¢ min{ÉCiÉ
101/kkL (r /k )01 : k Å 1, 2, . . . , r}.

number since the component is a 3 1 3 square. In both
cases, the ratio of ÉBEÉ and ÉCÉ is no less than

Thus,
2/

√
ÉCÉ Å 2/

√
9 Å 2

3, as determined above.
From the above discussions, it is thus interesting to

ÉBEiÉ

ÉCiÉ
¢ min kS Lr

ÉCiÉ
D1/k 1

L
Å min kS M

ÉCiÉ
D1/k 1

L
.extend the edge boundary result for a 2-D mesh to more

general cases such as r-D meshes. For a higher-dimen-
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Consider f (k) Å kd 1/k . Its derivative f *(x) Å d 1/k[1 an edge boundary set as BEi for component Ci if it is
composed of edges with one end in X and the other end0 ( ln d) /k] . For k Å 1, 2, . . . , r , if ∀k , 1 0 ( ln d) /k

° 0, that is, 1 0 ( ln d) /r ° 0, or d ¢ er , then function in Ci . The edge boundary BEi separates Ci from other
components.kd 1/k reaches a minimum at k Å r .

Thus, for Ci with M /ÉCiÉ ¢ er , we have Figure 7 illustrates a conferencing configuration within
a 9 1 9 two-D mesh. Nodes are numbered from (1, 1)
to (9, 9) . Here, boundary nodes are drawn as solid disks,ÉBEiÉ

ÉCiÉ
¢ rS Lr

ÉCiÉ
D1/r 1

L
Å r

ÉCiÉ
1/r

. j while idle nodes are shown as empty disks. Nonboundary
conferee nodes are drawn as solid disks with an outside
circle. Boundary edges are drawn as heavy lines. In thisNow we consider the sufficient condition on M for an
configuration, we have two conferences shown estab-r-D mesh. The basic idea to obtain the upper bound is to
lished. The node set Conf1 representing conference 1 hasestablish a lower bound on the maximum-size idle node
14 conferees, where 13 of these are boundary nodes andcomponent ( the one with the largest size) such that we
1 node ((5, 3)) is a nonboundary node. The node setcan always find a component to allocate to the remaining
representing conference 2 (Conf2) has six nodes, and allconferees. Since at most N nodes are allocated to confer-
are boundary nodes. We list the nodes in Conf2 as Conf2ees, we only need to consider the case where all compo-
Å {(3, 6) , (4, 6) , (4, 7) , (5, 7) , (4, 8) , (4, 9)}. Here,nents have size less than N . This fact allows the use of
the set X of assigned nodes is X Å Conf1 < Conf2 .the above theorem to determine the maximum component

There are five idle components, namely, C1 , C2 , C3 ,size, since, for any ÉCiÉ, we have that M /ÉCiÉ ¢ M /N .
C4 , and C5 . Components C1 and C2 are separated by
boundary edges connected to boundary nodes in Conf1 .Theorem 5. An r-D mesh with M Å O(N (r/1) /r) nodes
The idle components C3 and C4 are separated by boundarycan support strictly nonblocking conferences for N con-
edges connected to Conf2 . Component C5 , however, isferees, where dimension r is fixed.
separated from other components by boundary edges con-

Proof. The basic idea used to find the upper bound is nected to Conf1 and Conf2 . We see that C5 Å {(3, 4) ,
to consider any configuration where a certain number of (4, 4)}, and the edge boundary set for C5 is BE5 Å { »(2,
conferees (less than N , of course) are allocated arbitrarily 4) } (3, 4) … , »(4, 4) } (5, 4)… , »(3, 3) } (3, 4)… , »(4,
to nodes. We want to establish a lower bound on the size 3) } (4, 4) … , »(3, 4) } (3, 5) … , »(4, 4) } (4, 5) …}. The
of the maximum-connected idle component among all first four edges listed in BE5 are related to boundary nodes
those separated by the allocated conferee nodes. If the in Conf1 , and the last two edges are related to boundary
size of this maximum component is sufficiently large as nodes in Conf2 .
indicated by its lower bound for any number of allocated Since each boundary node must be an allocated node,
nodes, we can guarantee the existence of a component to we have < k

iÅ1 Bi ⊆ X . Each £ √ < k
iÅ1 Bi can be incident

allocate to any future conference request, thus providing to at most 2r boundary edges, while a boundary edge is
a strictly nonblocking conferencing capability. always connected to a boundary node. Thus, we have

Consider an r-D mesh with M nodes which is to sup-
port strictly nonblocking conferencing applications. De-

É< k
iÅ1 BiÉ ° ÉXÉ

note X as the set of nodes already allocated to conferees,
and denote C as the set of components of idle nodes, and
which will be referred to as idle components. Without
loss of generality, suppose that C consists of k (k ¢ 1)-

∑
k

iÅ1

ÉBEiÉ ° 2rÉ< k
iÅ1 BiÉ.connected components, separated by nodes in X . So, C

Å {C1 , C2 , . . . , Ck}. Since these components are disjoint,
we have É< CiÉ Å ( ÉCiÉ. We also have M Å ÉXÉ

Thus,/ É<CiÉ Å ÉXÉ / ( ÉCiÉ. Note that all nodes in <Ci

are idle (unallocated nodes) , and each node £ in X falls
into one of two categories: ÉXÉ ¢ 1

2r
∑
k

iÅ1

ÉBEiÉ (1)

• A nonboundary allocated node: Node £ is connected
and the number of idle nodes M 0 ÉXÉ in the mesh isonly to nodes in X itself.

• A boundary allocated node: Node £ is connected to
some idle nodes. M 0 ÉXÉ Å ∑

k

iÅ1

ÉCiÉ. (2)

Each connected idle component is separated from other
idle components by a set of boundary edges. Denote such For each component Ci , consider its edge boundary
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Fig. 7. Nodes separation in 2-D mesh.

set BEi . For a strictly nonblocking r-D mesh with size For every configuration, if the remaining largest idle
component Cmax is large enough to support any conferenceM , we know from the previous subsection that MÅV[(1/

r)N (r/1) /r] . If there exists Ci such that ÉCiÉ ¢ N , then among the remaining idle nodes, the mesh is strictly non-
blocking, that is, we need to guarantee thatwe have a component with sufficient size to realize any

conference of no more than N conferees. Obviously, the
ÉCmaxÉ ¢ N 0 ÉXÉ, ∀ÉXÉ ° N . (5)mesh can support any feasible request in this case. Hence,

we only need to consider the case when ÉCiÉ ° N . In
The reason why condition (5) guarantees a strictlythis case, we have M /ÉCiÉ ¢ (N / (r / 1)) (r/1) /r) /N

nonblocking mesh is as follows: For any set Xs of assignedÅ N 1/r / (r / 1) (r/1) /r . When N is sufficiently large [N
conferees, regardless of the groupings in which they ar-¢ c0 , where c0 Å ((r / 1) (r/1) /re r) r is a constant] ,
rived and the allocation of nodes to these groups of con-N 1/r / (r / 1) (r/1) /r ¢ er , so M /ÉCiÉ ¢ er . By Theorem
ferences, if inequality (5) holds for all X , the remaining4, for such Ci , we have
largest idle component would always be of sufficient size
such that any next conference request (with at most NÉBEiÉ

Ci

¢ r

ÉCiÉ
1/r 0 ÉXsÉ conferees) can be satisfied. Once Xs conferees

have been assigned to nodes, there are two possibilities
or for the next event: namely, either a new conference re-

quest would arrive or an existing conference would de-
part. Consider the first case when the next event is a

ÉBEiÉ

ÉCiÉ
¢ r

ÉCmaxÉ
1/r , (3)

conference request of size ÉXrÉ. If inequality (5) holds,
we can always find an idle component to allocate to thewhere Cmax Å Cj and ÉCjÉ Å max k

iÅ1ÉCiÉ.
conferees in this request. Any such assignment, however,Note that, in general, for a , b , c , d , e ú 0, if a /b ¢ e
generates a new configuration where ÉX *É nodes haveand c /d ¢ e , then (a / c) / (b / d) ¢ e . Thus, by Eqs.
been allocated, where X * is the union of Xr and Xs , X *(1) – (3) , we have
Å Xr < Xs . The second case is when an existing confer-
ence of size ÉXrÉ would depart. Here, the allocated node
set X 9 resulting from the conference departure becomesÉXÉ

M 0 ÉXÉ

¢

1
2r

∑
k

iÅ1

ÉBiÉ

∑
k

iÅ1

ÉCiÉ

¢ 1
2r

∑
k

iÅ1

ÉBiÉ

∑
k

iÅ1

ÉCiÉ

smaller as the allocated nodes of Xr are released. Thus,
X 9 Å Xs 0 Xr . In both cases, a new assigned node set X
(either X * for first case or X 9 for second case) is obtained.
Since inequality (5) holds for all possible X , in this new¢ 1

2r

r

ÉCmaxÉ
1/r
Å 1

2ÉCmaxÉ
1/r

,
configuration, a component with a size large enough to
realize any next request is guaranteed to exist. Thus, re-

where gardless of the current configuration, we can guarantee the
existence of idle components to allocate to conferences.

ÉCmaxÉ ¢ SM 0 ÉXÉ

2ÉXÉ
Dr

. (4) The above condition (5) is satisfied when the following
holds:
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Thus, it suffices that
min

X
SM 0 ÉXÉ

2ÉXÉ
Dr

¢ N 0 ÉXÉ,

M ¢ 2S 1
r 1/r N (r/1) /r / ND Å OS 1

r 1/r N (r/1) /r / ND .
and from inequality (4) , it is sufficient that

Since r is constant, N Å o(N (r/1) /r) , so
min

X
S (M 0 ÉXÉ)

2ÉXÉ
Dr

/ ÉXÉ ¢ N . (6)

M Å O(N (r/1) /r) . j

The above inequality (6) holds when the following is
Note that the above theorem just gives an asymptotic

satisfied:
upper bound for the size of r-D mesh to support strictly
nonblocking conferencing. For a given number N of con-
ferees, we can solve inequality (6) for all X where 1

min
X

f (ÉXÉ) ¢ N , f (ÉXÉ) Å SM 0 N

2ÉXÉ
Dr

/ ÉXÉ. ° ÉXÉ ° N . This can be accomplished by checking
whether an M value satisfies the system of inequalities,
and the smallest such M would suffice to guarantee a

The derivative f *(x) of function f ( x) is f *(x) Å 1 strictly nonblocking mesh.0 [(M 0 N) /2] r(r /xr/1) , so f (ÉXÉ) reaches its mini- Thus, when the mesh dimension r is a fixed integer,
mum when ÉXÉ

r/1 Å r[(M 0 N) /2] r , or ÉXÉ Å (r[(M we know from Theorem 1 that the necessary condition is0 N) /2] r)1/(r/1) , and V(((N /r) (r/1) /r) Å V(N (r/1) /r) . Together with Theorem
5, we have the following result:

min
X

f ( X ) Å M 0 N

2SrSM 0 N

2 DrD1/(r/1)

r

Theorem 6. For an r-D mesh with a fixed dimension r,
M Å Q(N (r/1) /r) nodes are necessary and sufficient to
support a strictly nonblocking conference application for
N conferees.

/ SrSM 0 N

2 DrD1/(r/1)

3.3. Variable Mesh Dimensionality

The above discussions considered conditions for an r-DÅ Sr 1/(r/1) / 1
r r / (r/1)DSM 0 N

2 Dr / (r/1)

.
mesh using the assumption that the dimensionality r is a
fixed constant. We will now consider the implications of
loosening this assumption such that r can be varied, thatThus, we need
is, it will only required that Lr Å M is satisfied for r-D
mesh with M nodes and length L .

For this case, we have the following theorem on the(r 1/(r/1) / r0r / (r/1) )SM 0 N

2 Dr / (r/1)

¢ N
edge isoperimetric ratio for r-D mesh with an arbitrary r
value. Note that this lower bound is smaller compared to
the case when r is a fixed constant:or

Theorem 7. For any connected component Ci in an r-
D mesh with size M, the edge boundary BEi used toM ¢ 2SS N

r 1/(r/1) / r0r / (r/1)D (r/1) /rD / N
separate Ci f rom others has size ÉBEiÉ satisfying the
following inequality:

Å 2SS 1
r r / (r/1) / r0 [ (r2 / (r/1)]D (r/1) /r

N (r/1) /rD / N .
ÉBEiÉ

ÉCiÉ
¢ 1

ÉCiÉ
1/r

.

Note that for r ú 1 we have
Proof. From Theorem 3, for an r-D mesh with M

nodes and length L Å M 1/r , we have

S 1
r 1/(r/1) / r0 [r / (r/1)]D (r/1) /r

° S 1
r 1/(r/1)Dr/1/r

Å 1
r 1/r ,

ÉBEiÉ ¢ min{ÉCiÉ
101/kkL (r /k )01 : k Å 1, 2, . . . , r},
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and
ÉCmaxÉ ¢ SM 0 ÉXÉ

2rÉXÉ
Dr

. (8)

It suffices to haveBEi

Ci

¢ min kÉCiÉ
01/kL (r /k )01 ÉCiÉ

1/r

ÉCiÉ
1/r

min
X
S (M 0 ÉXÉ)

2rÉXÉ
Dr

/ ÉXÉ ¢ N . (9)Å min kÉCiÉ
(k0r ) /rkL (r0k ) /k 1

ÉCiÉ
1/r

Å min kS Lr

ÉCiÉ
D (r0k ) /rk 1

ÉCiÉ
1/r

. The above is satisfied if

min
X

f (ÉXÉ) ¢ N , f (ÉXÉ) Å SM 0 N

2rÉXÉ
Dr

/ ÉXÉ.

Since M ¢ ÉCiÉ, we have Lr /ÉCiÉ ¢ 1. For k Å 1, 2,
. . . , r , we have r ¢ k ¢ 1, or (r 0 k) / (rk) ¢ 0; thus,

f (ÉXÉ) reaches minimum when

ÉXÉ Å SrSM 0 N

2r DrD1/(r/1)

,kS Lr

ÉCiÉ
D (r0k ) /rk

¢ 1.

and
Finally,

min
X

f (ÉXÉ) Å Sr 1/(r/1) / 1
r r / (r/1)DSM 0 N

2r Dr / (r/1)

.

min kS Lr

ÉCiÉ
D (r0k ) /rk 1

ÉCiÉ
1/r
¢ 1

ÉCiÉ
1/r

.

We need

Hence, we have the desired result. j

(r 1/(r/1) / r0 [r / (r/1)] )SM 0 N

2r Dr / (r/1)

¢ N .

Using a very similar argument as in Theorem 5,
we can prove the following more general result for an Thus, it suffices that
r-D mesh. Here, no constraint is placed on the dimension-
ality r :

M¢ 2rS 1
r 1/r N (r/1) /rD/ NÅO(r (r01) /rN (r/1) /r) . j

Theorem 8. An r-D mesh with M Å O(r (r01) /rN (r/1) /r)
nodes can support a strictly nonblocking conference for Note that this upper bound can be tighter than the
N conferees. bound for the fixed dimensionality case if an appropriate

r value is selected. Thus, Theorem 5 can be viewed as a
Proof. The proof is similar to the fixed r case. We use special case of this more general theorem.

the isoperimetric ratio for the general high-dimensional We are interested in a nonblocking r-D mesh which
mesh determined by Theorem 7. uses the fewest number of nodes to support N conferees.

For general r , inequality (3) in the proof of Theorem We get the following bound when using higher-dimen-
5 becomes sional meshes:

Corollary 1. There exists r-D meshes for N conferees
which use as few as M Å O(N log N) nodes. This bound

ÉBEiÉ

ÉCiÉ
¢ 1

ÉCmaxÉ
1/r . (7)

is reached when the mesh dimension r is Q( log N) .

Proof. By the above theorem, an r-D mesh for N con-
ferees is strictly nonblocking if it has O(rN (r/1) /r nodesSimilar to inequality (4) , for general r , we have the

following bound for the size of the largest idle compo- for variable r values.
Let f (r) Å rN (r/1) /r . Its derivative f *(r) isnent:
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Using similar reasoning to that in the proof of Theorem
f *(r) Å rN (r/1) /r / rN (r/1) /rln NS0 1

r 2D 5, we have the following theorem:

Theorem 9. An r-D torus with M Å O(N (r/1) /r) nodes
Å rN (r/1) /rS1 0 ln N

r D . can support strictly nonblocking conferencing for N con-
ferees, when dimension r is fixed. For variable dimension
r, M Å O(r (r01) /rN (r/1) /r) nodes are sufficient for a

Thus, f (r) reaches its minimum when (ln N) /r Å 1 or r strictly nonblocking r-D torus conference network for N
Å ln N : conferees.

min f (r) Å N ( lnN/1) / lnNln N Å O(N log N) . When combined with Theorem 2, we have

Theorem 10. For an r-D torus with a fixed dimensionIn fact, when r Å c log N Å Q( log N) , where c is any
r, M Å Q(N (r/1) /r) nodes are necessary and sufficient toconstant, we have
support a strictly nonblocking conference network.

f (r) Å (c log N)2N (c logN/1) / (c logN ) Å O(N log N) . j

4. ALGORITHM TO ALLOCATE NODES
In the following, we consider the sufficient conditions TO CONFERENCES

for the nonblocking r-D torus.

In this section, we consider an algorithm for allocating
nodes to conference requests for strictly nonblocking3.4. Results for the r-Dimensional Torus
r-D meshes.

For any existing configuration, a strictly nonblockingNow consider the case for r-D torus. The torus and the
mesh guarantees the existence of a component with suffi-mesh have very similar structures, while the torus has
cient size to realize any valid request, that is, the idleslightly more edges. Bollobás and Leader [4] provided
component with the maximum size can always be usedthe following result for the r-dimensional torus:
to accommodate the conference request. A conferee as-
signment algorithm for allocation of nodes to the confer-Lemma 3 [Bollobás and Leader, 1991]. Let A be a
ees would use the largest component to realize the request.subset of nodes of an r-D torus [L] r with A ° Lr /2 .
Before doing that, however, we need to determine theThen,
current set of idle components and identify the largest
component.

ÉBE(A)É¢min{2ÉAÉ101/kkL (r /k )01 : kÅ 1, 2, . . . , r}.
Finding connected components in a graph with nodes

N and edges E can be accomplished using a variation of
Note that only a constant factor of 2 is added for the depth-first-search techniques. Such an algorithm, called
lower bound when compared to the bound for the mesh. the conference assignment algorithm, is depicted in Fig-
A similar edge isoperimetric ratio result for the r-D torus ure 8 as follows:
is as follows: This algorithm would consider each edge at most once

since each of its end nodes would check the other end
Lemma 4. For connected components in an r-D torus node, and this checking is performed at most once. For
with size M, consider component Ci of size ÉCiÉ such that the first step to determine the components, the running
M/ÉCiÉ ¢ er . The edge boundary BEi used to separate time is O(V / E) . To allocate the nodes in the largest
Ci f rom others has size ÉBEiÉ , satisfying the following component to the requested conference, we also could
inequality: use the same depth-first search procedure. The only differ-

ence is that the procedure will stop when k nodes are
found. As a result, the algorithm runs in time O(V / E)ÉBEiÉ

ÉCiÉ
¢ le(Ci ) Å 2r

ÉCiÉ
1/r

. for each on-line conference request.
Consider an r-D mesh for N-conferees, when di-

mension r is fixed. There are V Å O(N (r/1) /r) nodes
In general, for any component Ci , the following in- and E Å O(N (r/1) /r) edges. Thus, the running time

equality is satisfied: for this case is O(N (r/1) /r) . If r is a variable, V
Å O(rN (r/1) /r) and E Å O(r 2N (r/ ) /r) . Thus, the running
time is O(r 2N (r/1) /r) .ÉBEiÉ

ÉCiÉ
¢ le(Ci ) Å 2

ÉCiÉ
1/r .

The time needed for obtaining the current idle compo-
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Conference Assignment Algorithm

Input: Graph G Å (V, E ) , conference request from k conferees;
1. For each non-allocated node £ in G

1.1 If £ is marked, continue;
1.2 If £ is not marked, we perform a depth-first-search starting from £ to find the component containing £.

All nodes found in the same component are marked with the component number. A node is in the component
when it is not assigned or marked, and there is a feasible (unused ) edge reaching it from a previously reached node
in the same idle component.

2. Allocate k nodes in the largest component to the request;

Fig. 8. Conference assignment algorithim.

nents would be reduced if we update information regard- maintaining information regarding all components which
could involve searching through the entire mesh. Thereing these components after each on-line request assign-

ment. For example, for a requested allocation, either the are 5N Å O(N) such small submeshes. Thus, we effec-
tively reduce the information storage requirement. Also,largest component exactly accommodating the request

( i.e., all nodes are used) or a subset of the nodes in the we can find a feasible submesh using O(N) time, which is
an improvement over the O(N 3/2 ) time for the algorithmcomponent are used. In each case, the other remaining

components are not affected. So, we only need to deter- described in Figure 8.
mine the smaller components within the largest compo-
nent resulting from the node allocation. When a confer-
ence departs, we can check the neighboring components 5. CONCLUSION
of the released nodes and merge them. However, these
improvements in the algorithm running time do not reduce In this paper, we considered r-dimensional conferencing

meshes as a configurable conference server component.the asymptotic bound for the algorithm, since in the worst
case, the edges that need to be checked could be as many Using an argument employing the isoperimetric ratio of

the sizes of edge and node sets in a graph, we showedas all the edges in the graph. Also, most importantly, the
time needed for node allocation could take O(V / E) if that a necessary and sufficient condition such that an r-

dimensional conferencing mesh of M processing elementsa search algorithm is used to find a tree of size k .
To improve on the running time needed for on-line can provide a strictly nonblocking conferencing capability

among a set of N conferees is that M Å V(N (r/ ) /r) pro-requests, we can take advantage of some particular con-
structions of meshes, which could use more nodes than cessing elements, when r is fixed. We also give a general

bound of M Å O(r (r01) /rN (r/1) /r) for a strictly non-the smallest number of nodes possible. Consider an exam-
ple for a 2-D mesh. We can use the following construction blocking r-dimensional mesh for N conferees for variable

r values.which requires 5N 3/2 nodes: In this construction, a total
5N submeshes, each of size N 1/2 , are used. The first N of We considered algorithms for allocating processing el-

ements to satisfy conference requests in our configurablesuch submeshes are used for a request size no larger than
N 1/2 , as no more than N requests are present at any instant, conferencing server design and analyzed their running

times. We also gave examples of explicit mesh construc-and the remaining 4N submeshes are used for realizing
requests larger than N 1/2 . Note that in this latter case tions to allow more efficient algorithms for satisfying on-

line conference requests.any request with size ki ú N 1/2 is realized by ki /N 1/2
submeshes. The total number of such submeshes needed It is important to note that our approach to establishing

the sufficient conditions on M for strictly nonblockingis ( ki /N 1/2 ° 2N 1/2 ; thus, (2N 1/2 ) 2 Å 4N submeshes
suffice to realize conferences in any grouping for these r-D meshes can be extended to general graph structures,

such as, for example, expanders and lattices, or, indeed,2N 1/2 submeshes.
Since the upper bound on the number of nodes for a to any graphs for which the isoperimetric ratios can be

determined [7]. Hence, we have established a fundamen-strictly nonblocking capability for a 2-D mesh is approxi-
mately 2N 3/2 , this construction does not use the smallest tal relationship between the size requirements on M for

strictly nonblocking conferencing among N conferees us-number of nodes possible. However, using more nodes
has allowed us to utilize a more efficient algorithm, since ing certain graph structures and the isoperimetric ratios

for those structures.we have a predetermined way to assign submeshes to
requests based on their sizes. Thus, we only need to main- Conference network models in which a communication

link can support more than one conference at the sametain the current ‘‘status’’ for each submesh, instead of
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ference networks, Proc 31st Annual Conf on Informationtime are of particular interest also. Called Multicapacity
Sci and Sys, 1997.Conference Networks, this class of conference networks

[7] Y. Du and G.M. Masson, Isoperimetric inequalities andpossess many attractive properties [6] . Further research
general theorem on sufficient conditions for strictly non-on these networks would shed insight on the resource
blocking conference networks, Technical Report TR-requirement for satisfying conference requests [8] .
1997-14, Department of Computer Science, The Johns
Hopkins University, 1997.
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