
Chapter 4
File Systems

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

File Systems

The best way to store information:
Store all information in virtual memory address space
Use ordinary memory read/write to access information
Not feasible: no enough address space
When process exits, information is lost

Another approach:
Define named objects called files which hold programs
and data
Files are not part of the address space
O.S. provides special operations (system calls) to
create/destroy files
Files are permanent records

Essential requirements for long-term
information storage:

• It must be possible to store a very large amount
of information.

• The information must survive the termination of
the process using it.

• Multiple processes must be able to access the
information concurrently.

File Systems

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Think of a disk as a linear sequence of fixed-size
blocks and supporting reading and writing of
blocks. Questions that quickly arise:

• How do you find information?
• How do you keep one user from reading another’s data?
• How do you know which blocks are free?

File Systems

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 4-1. Some typical file extensions.

File Naming

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

User’s View of the File System
A file system consists of two distinct parts

1. A collection of files, each storing related data
2. A directory structure, which organizes and provides
information about all the files in the system

Three common file organizations

1. Unstructured byte sequence
The basic unit for reading and writing is byte, sequential
access.

Example: Unix.

User’s View of the File System
2. Sequence of fixed-size records
The basic unit is a record, sequential access. Records can be
read and written, but cannot be inserted or deleted in the
middle of a file.

Example: CP/M.

3. A tree of disk blocks
The basic unit is a record. Each block holds n keyed records.
Records can be looked up by key and inserted. Blocks can be
split.

Used on mainframe computers.

Figure 4-2. Three kinds of files. (a) Byte sequence.
(b) Record sequence. (c) Tree.

File Structure

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

File Types

Regular files: contain data bytes

Directories: contain the names of other files

Special files: I/O devices
•Character special files: e.g. terminals, printers
•Block special files: e.g. disks, tapes

File access methods
•Sequential access: start at the beginning, read the bytes
or records in order
•Random access: read bytes or records in any order

Figure 4-3. (a) An executable file. (b) An archive.

File Types

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 4-4a. Some possible file attributes.

File Attributes

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

File attributes: Extra information associated with each file

The most common system calls relating to files:

File Operations

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

• Append
• Seek
• Get Attributes
• Set Attributes
• Rename

• Create
• Delete
• Open
• Close
• Read
• Write

Open: bring attributes and disk addresses to memory for fast access

Close: put back to disk

Seek: put the pointer to a specific location in the file

Figure 4-5. A simple program to copy a file.

Example Program Using File System Calls (1)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

. . .

Figure 4-5. A simple program to copy a file.

Example Program Using File System Calls (2)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Directories

1. Single directory shared by all users
Different users cannot use the same file name.

2. One directory per user
Different users can use the file name. But each user can
keep only a sequence of files, no any group support.

3. Arbitrary tree per user
Flexible. Used in Unix.

Figure 4-6. A single-level directory system containing four files.

Hierarchical Directory Systems (1)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 4-7. A hierarchical directory system.

Hierarchical Directory Systems (2)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 4-8. A UNIX directory tree.

Path Names

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

System calls for managing directories:

Directory Operations

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

• Readdir
• Rename
• Link
• Uplink

• Create
• Delete
• Opendir
• Closedir

File System Implementation (Designer’s View)

How to store n bytes on disk

1.Allocate n consecutive bytes of disk space

For insertion, have to move the file (slow)

2. The file is split up into a number of (not necessarily
contiguous) fixed size blocks

More expensive to keep track of where the blocks are.

Candidates: sector, track, cylinder

The time to read a block from disk:
Seek time + rotation time + transfer time

Example:
A disk with 32768 bytes per track
Rotation time: 16.67 msec
Average seek time 30 msec

Block size K bytes
The time to read a block:
30 + 16.67/2 + (K/32768) x16.67

Large block size: poor disk space utilization
Small block size: reading a block is slow

Compromise between the speed and utilization:
General block size: 512, 1K or 2K

Block Size

Block Size

Figure 4-21. The solid curve (left-hand scale) gives the data rate
of a disk. The dashed curve (right-hand scale) gives the disk

space efficiency. All files are 4 KB.

Disk Space Management Block Size

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

1. Store blocks consecutively
When file grows, may cause problem.

2. Linked list
Use the last two bytes as s pointer to point to the next
block in the file.

Problems:
a. The number of bytes in a block is no longer power of 2
b. Random access is slow

Keeping Track of Blocks of Each File

Figure 4-10. (a) Contiguous allocation of disk space for 7 files.
(b) The state of the disk after files D and F have been removed.

Contiguous Allocation

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 4-11. Storing a file as a linked list of disk blocks.

Linked List Allocation

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

File allocation table (FAT)

A table has one entry for each disk block. All blocks of a file
linked together.

•The directory keeps the first block number of each file.
•The table is stored in memory.
•Example system: MS-DOS
•Problem:

Pointers for all files on the disk are mixed up in the
same table. An entire FAT is potentially needed for
accessing one file.

Linked List Allocation Using a Table in Memory

Figure 4-12. Linked list allocation using a file allocation table
in main memory.

Linked List Allocation Using a Table in Memory

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

I-nodes

Keep the block lists for different files in different places

I-node (index node) in Unix.

Each file has a small table called I-node
I-node contains attributes, first 10 blocks of the file, and 3
indirect block numbers.

Single indirect block: points to data blocks
Double indirect block: points to single indirect blocks
Triple indirect block: points to double indirect blocks

Figure 4-13. An example i-node.

I-nodes

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Example:
For 1K disk block and 32-bit disk address, how large a file
could be?

•Single indirect block holds 256 disk addresses
•Double indirect block holds 256 single indirect blocks

•File size < 10 blocks: no indirect blocks
•File size between 10 and 266 blocks: single indirect
•File size between 267 and 266 + 256 x 256 = 65802K
blocks, use double indirect
•File size between 64M and 16G, triple indirect
•File size > 16 G, cannot handle

I-nodes

Advantage: fast random access

At most three disk references are needed to locate the
disk address of any byte in the file.

When the file is open, its I-node is brought into memory
until the file is closed.

Example of finding the 300th block in a file:
300 - 266 = 34
Follow double indirect to the first single indirect, the 34th
block.
No need to follow the 299 blocks before this block as in
the linked list case.

I-nodes

Implementing Directories
Directory organization

Single directory in the system.
Example: CP/M

Hierarchical directory tree.

Example 1: MS-DOS
Attributes: 8 1-bit flags: b7, b6, …, b0
b0 = 1: read only file
b1 = 1: hidden file
b2 = 1: system file
b4 = 1: a subdirectory

Example 2: Unix

Figure 4-14. (a) A simple directory containing fixed-size entries
with the disk addresses and attributes in the directory entry.
(b) A directory in which each entry just refers to an i-node.

Implementing Directories (1)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 4-31. The MS-DOS directory entry.

The MS-DOS File System (1)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 4-33. A UNIX V7 directory entry.

The UNIX V7 File System (1)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 4-34. A UNIX i-node.

The UNIX V7 File System (2)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 4-35. The steps in looking up /usr/ast/mbox.

The UNIX V7 File System (3)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Shared Files

A shared file appears simultaneously in different directories
belonging to different users

File system is a directed acyclic graph, not a tree

Problems: When directories contain disk addresses (e.g.
CP/M), cannot share files.

Solution: Directory does not point to disk addresses. Point to
a data structure associated with the file. Use Link Count to
record how many users are sharing the file.

When performing ``remove file", only when count = 0,
remove the file, otherwise reduce the Link Count.

Figure 4-16. File system containing a shared file.

Shared Files

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 4-17. (a) Situation prior to linking. (b) After the link is
created. (c) After the original owner removes the file.

Shared Files

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Example: Unix. To share a file, different directories point to the
same i-node.

Problem with pointing to the same data structure:
After a file owner removes the file, counting information may
still be charged to the file owner.

Solution: use symbolic linking:
Create a new file, of type LINK. Enter that file in another
user's directory. The new file only contains the path to the
shared file. Can be used on different machines.

Problem with symbolic linking:
Extra overhead to access file: read extra block to get the i-
node.

Shared Files

Unix provides both ways

ln file1 file 2
Points to the same i-node. Can be seen by
ls -i file1
ls -i file2

ln -s file link
Create a symbolic link: link

ls -l will show
l - - - - - - link@! file

more link is equivalent to more file

Shared Files

Operations required to remove a file in UNIX:

• Remove the file from its directory.
• Release the i-node to the pool of free i-nodes.
• Return all the disk blocks to the pool of free disk blocks.

Journaling File Systems

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Keeping Track of Free Blocks

1. Linked list

Use several blocks to store free block numbers. Link
these blocks together. Search is fast.

Example: 1K block size. 16-bit disk block number (20 M
disk). Need 40 blocks to hold all 20K block numbers.

2. Bit map
n blocks require n bits. Smaller space.
Search is slow. May be put in memory.

Example: 20 M disk requires only 20K bits (3 blocks).

Figure 4-22. (a) Storing the free list on a linked list. (b) A bitmap.

Keeping Track of Free Blocks

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

File System Consistency
After system crashes, the file system may be in an inconsistent state.

A utility program checks:

1.Block consistency: a block is either free or in a file.

Two counters per block: one counter counts the times the block presents in a file;
another counter counts the times the block presents in the free list.

Read all I-nodes: for each block number in I-node, increment the first counter
Check the free list, increment the second counter
Consistent: counter1/counter2 = 1/0 or 0/1
Missing block: 0/0
Correction: put the block in free list
Duplicated block in free list: 0/2
Correction: delete one from free list
Duplicated data block: 2/0
Correction: allocate a free block, copy the data of the block into it and insert the
copy to one of the file
1/1: should be corrected to 1/0

Figure 4-27. File system states. (a) Consistent. (b) Missing block.
(c) Duplicate block in free list. (d) Duplicate data block.

File System Consistency

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

File System Consistency
2. File consistency: check how many users are sharing a file

One counter per file (per I-node)
Starts from root directory, inspect all files. For each file, increment the
counter for the file's I-node
Compare the counters with the Link Count in the I-node
_ Consistent: Link Count = counter
_ Inconsistent: Link Count not = counter
_ Link Count > counter: all files removed, I-node is still not removed,
waste space
_ Link Count < counter: file may point to a released I-node
Solution: Force the Link Count = actual number of directory entries

3. Other heuristic checks
I-node number > it should be
Strange mode, e.g., 777
Directories with too many entries directory.

Disk access is about 100,000 times slower than memory
access

Reduce the number of disk accesses needed

Block cache: keep some blocks (logically belong to the
disk) in memory

Read a block, first check cache. If the block is not in
cache, read it into cache, then use it.

For full cache, replace one block
Replacement algorithm: similar to virtual memory (FIFO,
LRU,...), but need to consider special features of files

File System Performance

File System Performance

Blocks may not have good locality

Which blocks will be needed again soon
Indirect blocks are seldom used again.
Partially full data block may be needed soon (being written).

Which blocks are essential to the consistency of the file system
I-node, indirect, and directory blocks are essential, and need to be written to disk
as soon as modified.

Data blocks should not stay in cache for too long without writing them out
(possible data loss when system break down).

Two ways to deal with this:

(1) Provide a system call which forces all modified blocks out into disk.
Unix system call SYNC, called every 30 sec.

(2) Write through cache. All modified blocks are written back to disk immediately.
Example: MS-DOS.

• Some blocks, such as i-node blocks, are rarely
referenced two times within a short interval.

• Consider a modified LRU scheme, taking two
factors into account:

•Is the block likely to be needed again soon?
•Is the block essential to the consistency of the file
system?

Caching

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 4-28. The buffer cache data structures.

Caching

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Reducing Disk Arm Motion
1. Allocate the blocks that are likely to be accessed in sequence in the
same cylinder.

How to get consecutive free blocks.
If linked list is used for free blocks, keep track of disk usage not in
blocks, but in groups of consecutive blocks (e.g. in units of 2 blocks.
Allocation unit is still a block, but 2 consecutive blocks in a file are
consecutive on disk).

2. Reduce rotation time:
Place consecutive blocks in a file in the same cylinder, but interleaved
for maximum throughput.

Example:
Rotation time = 16:67 ms
Block transfer time 4 ms
4 way interleave. One rotation can read 4 blocks

Reducing Disk Arm Motion

For the system using I-node

First access I-node then data block. Put I-node close to data
block.

Usually I-node placed at the start of the disk. On the
average, data block is ½ of the number of cylinders away.

Put I-node at middle of the disk. Average distance: 1/4 of
the number of the cylinders.

Divide disk into cylinder groups. Each with its own I-nodes,
blocks and free list. For an I-node in each group. Try to
allocate blocks within the group.

Figure 4-29. (a) I-nodes placed at the start of the disk.
(b) Disk divided into cylinder groups, each with its own blocks

and i-nodes.

Reducing Disk Arm Motion

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 50
	Slide Number 51
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66

