Chapter 1
Introduction

="\What is an operating system
»History of operating systems
»The operating system zoo
»Computer hardware review
=Operating system concepts
»System calls

=Operating system structure

Tanenbaum, Modern Operating Systems 3 e, (¢) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

What Is An Operating System

A modern computer consists of:

« One or more processors

« Main memory

 Disks

Printers

e Various input/output devices

Managing all these components requires a layer of
software — the operating system

Tanenbaum, Modern Operating Systems 3 e, (¢) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

What Is An Operating System

E-mail Music
Web reader player

browser

User interface program

User mode <

> Software

%
Kernel mode { Operating system

Figure 1-1. Where the operating system fits in.

] 5

~ Hardware

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

What Is An Operating System

Banking Airline Web N ——
system reservation browser PP Prog
. . Command
Compliars Eeliors interpreter [| System
programs
Operating system
Machine language
Microarchitecture » Hardware

Physical devices

What Iis an Operating System

It Is an extended machine

= Hides the messy details which must be
performed

= Presents user with a virtual machine, easier to
use
It is a resource manager

= Each program gets time with the resource

= Each program gets space on the resource

The Operating System as an Extended

Machine

Application programs

- Beautiful interface

-«— Ugly interface

Hardware

Figure 1-2. Operating systems turn ugly hardware into beautiful
abstractions.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

The Operating System as a Resource
Manager

« Allow multiple programs to run at the same time

« Manage and protect memory, I/O devices, and
other resources

* Includes multiplexing (sharing) resources in two
different ways:

* Intime
* In space

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

History of Operating Systems

Generations:

e (1945-55) Vacuum Tubes

e (1955-65) Transistors and Batch Systems
 (1965-1980) ICs and Multiprogramming
(1980—Present) Personal Computers

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Transistors and Batch Systems (1)

Tape System
tape Qutput

tape
2 °
o/
A

7094

1401

1401

(a) (b) (c) (d) (e) (f)

Figure 1-3. An early batch system.
(a) Programmers bring cards to 1401.
(b)1401 reads batch of jobs onto tape.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Transistors and Batch Systems (2)

Tape System
tape Qutput

tape
2 °
o/
A

7094

b

1401

1401

(a) (b) (c) (d) (e) (f)

Figure 1-3. (c) Operator carries input tape to 7094.
(d) 7094 does computing. (e) Operator carries output tape to
1401. (f) 1401 prints output.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Transistors and Batch Systems (4)

y /$END

_~——Data for program
S

A Fortran program //

B
/$FOHTRAN
_/$JOB, 10,6610802, MARVIN TANENBAUM g

Figure 1-4. Structure of a typical FMS job.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

|ICs and Multiprogramming

Job 3

Job 2

Job 1

Operating
system

Memory
partitions

Figure 1-5. A multiprogramming system
with three jobs In memory.

Tanenbaum, Modern Operating Systems 3 e, (¢) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Computer Hardware Review

Monitor
Hard
Keyboard USB printer disk drive
5 — 00ooo
; Hard
VIV controller controller controller
Bus

Figure 1-6. Some of the components
of a simple personal computer.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

CPU Pipelining

Execute
unit
Fetch Decode
unit = unit
: Execute
Fetch L Decode - Execute Hbm?fmg it
unit unit unit utier
Fetch Decode
unit - unit
Execute
unit

Figure 1-7. (a) A three-stage pipeline. (b) A superscalar CPU.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Multithreaded and Multicore Chips

L1
cache
Core1 | | Core 2 Core 1| | Core 2
L2 L2
7]
Core 3 Core 4
L2 L2
(a) (b)

Figure 1-8. (a) A quad-core chip with a shared L2 cache.
(b) A quad-core chip with separate L2 caches.

Tanenbaum, Modern Operating Systems 3 e, (¢) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Typical access time

Memory (1)

Typical capacity

1 nsec Registers <1 KB

2 nsec Cache 4 MB
10 nsec Main memory 512-2048 MB
10 msec Magnetic disk 200-1000 GB
100 sec Magnetic tape 400-800 GB

Figure 1-9. A typical memory hierarchy.
The numbers are very rough approximations.

Tanenbaum, Modern Operating Systems 3 e, (¢) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Memory (2)

Questions when dealing with cache:

« When to put a new item into the cache.
 Which cache line to put the new item In.

e Which item to remove from the cache when a
slot Is needed.

 Where to put a newly evicted item Iin the larger
memory.

Surface 7

Surface 6
Surface 5

Surface 4
Surface 3

Surface 2
Surface 1

Surface 0

Disks

J

(

» 1
s 1

(

Read/write head (1 per surface)

(

.

(

TS

.—h—
g

Direction of arm motion

Figure 1-10. Structure of a disk drive.

Tanenbaum, Modern Operating Systems 3 e, (¢) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

/O Devices

Disk drive

@ ¢ Current instruction

Next instruction

O
0
c
A

3 | Interrupt Disk
controller controller 3. Return
1. Interrupt

1L‘L_‘ﬂ L9l

! \
2. Dispatch f
to handler \1
Interrupt handler -

fm Al

Figure 1-11. (a) The steps in starting an 1/O device and
getting an interrupt.

Tanenbaum, Modern Operating Systems 3 e, (¢) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

The Operating System Zoo

Mainframe operating systems

Server operating systems
Multiprocessor operating systems
Personal computer operating systems
Handheld operating systems
Embedded operating systems

Sensor node operating systems
Real-time operating systems

Smart card operating systems

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Operating System Concepts

Processes
Address spaces
~lles
nput/Output
Protection

Shell

Virtual memory

Tanenbaum, Modern Operating Systems 3 e, (¢) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Processes

Figure 1-13. A process tree. Process A created two child
processes, B and C. Process B created three child
processes, D, E, and F.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Deadlock

(a) A potential deadlock. (b) an actual deadlock.

24

Files (1)

Root directory

-

Students Faculty
Y i /
4 ~
Robbert Matty | Leo Prof.Brown Prof.Green Prof White
Y
I v 2 v
! r J/
/ /
[7 \\ 3 V
r Y Y \ Y
Courses Papers Grants Committees
i J] \
y] / \
\ i I 1, X
\ [1\ I 1\
/
Y Y
@) @)
CS101 CS105 . v g SOSP COST-11

Figure 1-14. Afile system for a university department.

Tanenbaum, Modern Operating Systems 3 e, (¢) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Files (2)

(@) (b)

Figure 1-15. (a) Before mounting, the files on the CD-ROM are not
accessible. (b) After mounting, they are part of the file
hierarchy.

Tanenbaum, Modern Operating Systems 3 e, (¢) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Files (3)

Process Process

OO

Figure 1-16. Two processes connected by a pipe.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

System Calls

System calls: a set of “extended instructions”
provided by O.S., providing the interface
between a process and the O.S.

Example: Read a certain number of bytes from
a file
count = read(fd, buffer, nbytes)

System Calls

Address
OxFFFFFFFF _
Return to caller] :
T ek I Library
rap to the kernel procedure
5| Put code for read in register read
10
4
User space < Increment SP 11
~ Call read
3| Push fd User program
2| Push &buffer calling read
1| Push nbytes
6 9
Kernel space < Dispateh i 8 | Sys call
(Operating system) P - ~| handler

or

Figure 1-17. The 11 steps in making the system call
read(fd, buffer, nbytes).

Tanenbaum, Modern Operating Systems 3 e, (¢) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

System Calls for Process Management

Process management

Call Description
pid = fork() Create a child process identical to the parent
pid = waitpid(pid, &statloc, options) Wait for a child to terminate
s = execve(name, argv, environp) Replace a process’ core image
exit(status) Terminate process execution and return status

Figure 1-18. Some of the major POSIX system calls.

Tanenbaum, Modern Operating Systems 3 e, (¢) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

System Calls for Process Management

fork()
The only way to create a new process in Unix.
Create a copy of the process executing it.

fork returns 0 in the child, and returns child's pid in
the parent. Returns -1 for error.

exit(status)
A process terminates by calling exit system call.
status: 0-255, 0: normal, others: abnormal terminations.

waitpid(pid, status, opts)

pid: specific child, -1: first child.
status: child exit status.

opts: block or not.

System Calls for Process Management

execve
The only way a program is executed in Unix.
s = execve(file, argv, envp)

Example: A simplified shell.

Shell: Unix command interpreter.

Examples of shell commands:

date

date > file (output redirection)

sort < file (input redirection)

sort < filel > file2 (input + output redirection)

cat filel file2 | sort > file3 (pipe + output redirection)

A Simple Shell

#define TRUE 1

while (TRUE) { /* repeat forever */
type_prompt(); /* display prompt on the screen */
read_command(command, parameters); /* read input from terminal */
if (fork() '=0) { /* fork off child process */
/* Parent code. */
waitpid(—1, &status, 0); /* wait for child to exit */
} else {
/* Child code. */
execve(command, parameters, 0); /* execute command */
}
}

Figure 1-19. A stripped-down shell.

Tanenbaum, Modern Operating Systems 3 e, (¢) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

System Calls for File Management (1)

File management

Call Description
fd = open(file, how, ...) Open a file for reading, writing, or both
s = close(fd) Close an open file
n = read(fd, buffer, nbytes) Read data from a file into a buffer
n = write(fd, buffer, nbytes) Write data from a buffer into a file
position = Iseek(fd, offset, whence) Move the file pointer
s = stat(name, &buf) Get a file’s status information

Figure 1-18. Some of the major POSIX system calls.

Tanenbaum, Modern Operating Systems 3 e, (¢) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

System Calls for File Management

Read, write, create, open and close a file:
fd = creat(filename, mode)

fd = open(file, how)

close(fd)

Random access a file:

pos = Iseek(fd, offset, whence)
Duplicate the file descriptor:

fd2 = dup(fd)

fd2 = dup2(fd, fd2)

Create a pipe:

pipe(&fd[0])

returns two file descriptors:

fd[0] : for reading

fd[1] : for writing

Example for using pipe system call

Example of Creating a Pipe

jdcf;nf STO_[HPLT 0 /4 file dedcoiptos for =bangacd input +7
Adefine STO_QUTRUT) ¢4 Fale descriptor for s-andacd optpub e
pizeline’procreal, process?:
chal sprocessl, sprocess?; fv poinlers to progrzn names .
{

it 1d] 2],

pipsi&fd[all; Sv rormake a plpe s/

Lt (Forki; t=0% {
“+ 'he pETEnt praccss saecoubes these siptemaq-z. o

rlogelF4[a]); fo provess | odaes ool noec bo ocead Fron ploe s
clesef3TO_OLGTHUT), f4 prapeie for new stendwcc outpus =
dup{fd[1}7; 7% el standard eutpul kn Fali] xr
closel{rd[1]}: F2 pipe not Aeeded anve moTe s -
exer | inTocessl, procesct, O,

} alup {
f+ The child process exaclhlvs these slal enents. +f
clcee(fdfill: Aw process ¢ odoes ol -ped Eo wreite Lo opipe e
i Inse {570 THPLT) ; F% PTOpECE o1 new stardierd irput «F
dqupirdi0] 1, ‘v tet skandacd incut to 1d|a, -7
closedfaln); Fe 3ipe rot needed any pare «f

emecliprocessy, process?, 0°:

Fig- 1-14. A sheleton (o sernnp wp o two-process mip=lne

TTOTTE ST MR el ey | R o L e P el ke g |

- ——

System Calls for File Management (2)

Call Description
s = mkdir(hame, mode) Create a new directory
s = rmdir(name) Remove an empty directory
s = link(name1, name2) Create a new entry, name2, pointing to name
s = unlink(name) Remove a directory entry
s = mount(special, name, flag) Mount a file system
s = umount(special) Unmount a file system

Figure 1-18. Some of the major POSIX system calls.

Tanenbaum, Modern Operating Systems 3 e, (¢) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Miscellaneous System Calls

Call

Description

s = chdir(dirname)

Change the working directory

s = chmod(name, mode)

Change a file’s protection bits

s = kill(pid, signal)

Send a signal to a process

seconds = time(&seconds)

Get the elapsed time since Jan. 1, 1970

Figure 1-18. Some of the major POSIX system calls.

Tanenbaum, Modern Operating Systems 3 e, (¢) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Memory Layout

Address (hex)
FFFF

Stack
7

Data I
Text

0000

Figure 1-20. Processes have three segments:
text, data, and stack.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Linking

/usr/ast /usr/jim /usr/ast fust/jim
16 | mail 31| bin 16 | mail 31| bin
81 | games 70 | memo 81 | games 70 | memo
40 | test 59 f.c. 40 | test 59 | f.c.

38| progi 70 | note 38 | progi
() (b)

Figure 1-21. (a) Two directories before linking /usr/jim/memo to
ast’s directory. (b) The same directories after linking.

Tanenbaum, Modern Operating Systems 3 e, (¢) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Mounting

bin dev lib mnt usr b%
(b)

(a)

Figure 1-22. (a) File system before the mount.
(b) File system after the mount.

Tanenbaum, Modern Operating Systems 3 e, (¢) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Operating Systems Structure

Monolithic systems — basic structure:

« A main program that invokes the requested
service procedure.

« Aset of service procedures that carry out the
system calls.

« Aset of utility procedures that help the service
procedures.

Tanenbaum, Modern Operating Systems 3 e, (¢) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Operating System Structure

Main
procedure

Service
procedures

&/
B Utility
. . . . procedures

Simple structuring model for a monolithic system

44

Layered Systems

Layer Function
5 The operator
4 User programs
3 Input/output management
2 Operator-process communication
1 Memory and drum management
0 Processor allocation and multiprogramming

Figure 1-25. Structure of the THE operating system.

Tanenbaum, Modern Operating Systems 3 e, (¢) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Client-Server Model

Client Client Process Terminal File Memory
User mode
process process server server server server
\ , / Kernel mode
Microkernel \ }

48

Client obtains
service by

sending messages
to server processes

The client-server model

Client-Server Model

Machine 1 Machine 2 Machine 3 Machine 4
Client ? A File server Process server Terminal server
LI Kernel Kernel Kernel Kernel .
\ Network

Message from
client to server

Figure 1-27. The client-server model over a network.

Tanenbaum, Modern Operating Systems 3 e, (¢) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Virtual Machines (1)

Virtual 370s

System calls here

|/O instructions here

Trap here - VM/370

Trap here

370 Bare hardware

Figure 1-28. The structure of VM/370 with CMS.

Tanenbaum, Modern Operating Systems 3 e, (¢) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	What is an Operating System
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Deadlock
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 43
	Operating System Structure
	Slide Number 46
	Client-Server Model�
	Slide Number 49
	Slide Number 50

