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What Is An Operating System

A modern computer consists of:

«  One or more processors

«  Main memory

 Disks

Printers

e Various input/output devices

Managing all these components requires a layer of
software — the operating system
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What Is An Operating System
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Figure 1-1. Where the operating system fits in.
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What Is An Operating System
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What Iis an Operating System

It Is an extended machine

= Hides the messy details which must be
performed

= Presents user with a virtual machine, easier to
use
It is a resource manager

= Each program gets time with the resource

= Each program gets space on the resource



The Operating System as an Extended

Machine

Application programs

- Beautiful interface

-«— Ugly interface

Hardware

Figure 1-2. Operating systems turn ugly hardware into beautiful
abstractions.
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The Operating System as a Resource
Manager

« Allow multiple programs to run at the same time

« Manage and protect memory, I/O devices, and
other resources

* Includes multiplexing (sharing) resources in two
different ways:

* Intime
* In space
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History of Operating Systems

Generations:

e  (1945-55) Vacuum Tubes

e (1955-65) Transistors and Batch Systems
 (1965-1980) ICs and Multiprogramming
(1980—Present) Personal Computers
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Transistors and Batch Systems (1)

Tape System
tape Qutput
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Figure 1-3. An early batch system.
(a) Programmers bring cards to 1401.
(b)1401 reads batch of jobs onto tape.
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Transistors and Batch Systems (2)
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Figure 1-3. (c) Operator carries input tape to 7094.
(d) 7094 does computing. (e) Operator carries output tape to
1401. (f) 1401 prints output.
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Transistors and Batch Systems (4)
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Figure 1-4. Structure of a typical FMS job.
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|ICs and Multiprogramming

Job 3

Job 2

Job 1

Operating
system

Memory
partitions

Figure 1-5. A multiprogramming system
with three jobs In memory.
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Computer Hardware Review
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Figure 1-6. Some of the components
of a simple personal computer.
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CPU Pipelining

Execute
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Figure 1-7. (a) A three-stage pipeline. (b) A superscalar CPU.
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Multithreaded and Multicore Chips

L1
cache
Core1 | | Core 2 Core 1| | Core 2
L2 L2
7]
Core 3 Core 4
L2 L2
(a) (b)

Figure 1-8. (a) A quad-core chip with a shared L2 cache.
(b) A quad-core chip with separate L2 caches.
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Typical access time

Memory (1)

Typical capacity

1 nsec Registers <1 KB

2 nsec Cache 4 MB
10 nsec Main memory 512-2048 MB
10 msec Magnetic disk 200-1000 GB
100 sec Magnetic tape 400-800 GB

Figure 1-9. A typical memory hierarchy.
The numbers are very rough approximations.

Tanenbaum, Modern Operating Systems 3 e, (¢) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639



Memory (2)

Questions when dealing with cache:

« When to put a new item into the cache.
 Which cache line to put the new item In.

e Which item to remove from the cache when a
slot Is needed.

 Where to put a newly evicted item Iin the larger
memory.
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Figure 1-10. Structure of a disk drive.
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/O Devices

Disk drive
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Figure 1-11. (a) The steps in starting an 1/O device and
getting an interrupt.
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The Operating System Zoo

Mainframe operating systems

Server operating systems
Multiprocessor operating systems
Personal computer operating systems
Handheld operating systems
Embedded operating systems

Sensor node operating systems
Real-time operating systems

Smart card operating systems
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Operating System Concepts

Processes
Address spaces
~lles
nput/Output
Protection

Shell

Virtual memory
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Processes

Figure 1-13. A process tree. Process A created two child
processes, B and C. Process B created three child
processes, D, E, and F.
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Deadlock

(a) A potential deadlock. (b) an actual deadlock.

24



Files (1)
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Figure 1-14. Afile system for a university department.
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Files (2)

(@) (b)

Figure 1-15. (a) Before mounting, the files on the CD-ROM are not
accessible. (b) After mounting, they are part of the file
hierarchy.
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Files (3)

Process Process

OO

Figure 1-16. Two processes connected by a pipe.
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System Calls

System calls: a set of “extended instructions”
provided by O.S., providing the interface
between a process and the O.S.

Example: Read a certain number of bytes from
a file
count = read(fd, buffer, nbytes)



System Calls

Address
OxFFFFFFFF _
Return to caller ] :
T ek I Library
rap to the kernel procedure
5| Put code for read in register read
10
4
User space < Increment SP 11
~ Call read
3| Push fd User program
2| Push &buffer calling read
1| Push nbytes
6 9
Kernel space < Dispateh i 8 | Sys call
(Operating system) P - ~| handler

or

Figure 1-17. The 11 steps in making the system call
read(fd, buffer, nbytes).
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System Calls for Process Management

Process management

Call Description
pid = fork() Create a child process identical to the parent
pid = waitpid(pid, &statloc, options) Wait for a child to terminate
s = execve(name, argv, environp) Replace a process’ core image
exit(status) Terminate process execution and return status

Figure 1-18. Some of the major POSIX system calls.
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System Calls for Process Management

fork()
The only way to create a new process in Unix.
Create a copy of the process executing it.

fork returns 0 in the child, and returns child's pid in
the parent. Returns -1 for error.

exit(status)
A process terminates by calling exit system call.
status: 0-255, 0: normal, others: abnormal terminations.

waitpid(pid, status, opts)

pid: specific child, -1: first child.
status: child exit status.

opts: block or not.



System Calls for Process Management

execve
The only way a program is executed in Unix.
s = execve(file, argv, envp)

Example: A simplified shell.

Shell: Unix command interpreter.

Examples of shell commands:

date

date > file (output redirection)

sort < file (input redirection)

sort < filel > file2 (input + output redirection)

cat filel file2 | sort > file3 (pipe + output redirection)



A Simple Shell

#define TRUE 1

while (TRUE) { /* repeat forever */
type_prompt( ); /* display prompt on the screen */
read_command(command, parameters); /* read input from terminal */
if (fork() '=0) { /* fork off child process */
/* Parent code. */
waitpid(—1, &status, 0); /* wait for child to exit */
} else {
/* Child code. */
execve(command, parameters, 0); /* execute command */
}
}

Figure 1-19. A stripped-down shell.
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System Calls for File Management (1)

File management

Call Description
fd = open(file, how, ...) Open a file for reading, writing, or both
s = close(fd) Close an open file
n = read(fd, buffer, nbytes) Read data from a file into a buffer
n = write(fd, buffer, nbytes) Write data from a buffer into a file
position = Iseek(fd, offset, whence) Move the file pointer
s = stat(name, &buf) Get a file’s status information

Figure 1-18. Some of the major POSIX system calls.
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System Calls for File Management

Read, write, create, open and close a file:
fd = creat(filename, mode)

fd = open(file, how)

close(fd)

Random access a file:

pos = Iseek(fd, offset, whence)
Duplicate the file descriptor:

fd2 = dup(fd)

fd2 = dup2(fd, fd2)

Create a pipe:

pipe(&fd[0])

returns two file descriptors:

fd[0] : for reading

fd[1] : for writing

Example for using pipe system call



Example of Creating a Pipe
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System Calls for File Management (2)

Call Description
s = mkdir(hame, mode) Create a new directory
s = rmdir(name) Remove an empty directory
s = link(name1, name2) Create a new entry, name2, pointing to name
s = unlink(name) Remove a directory entry
s = mount(special, name, flag) Mount a file system
s = umount(special) Unmount a file system

Figure 1-18. Some of the major POSIX system calls.
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Miscellaneous System Calls

Call

Description

s = chdir(dirname)

Change the working directory

s = chmod(name, mode)

Change a file’s protection bits

s = kill(pid, signal)

Send a signal to a process

seconds = time(&seconds)

Get the elapsed time since Jan. 1, 1970

Figure 1-18. Some of the major POSIX system calls.
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Memory Layout

Address (hex)
FFFF

Stack
7

Data I
Text

0000

Figure 1-20. Processes have three segments:
text, data, and stack.
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Linking

/usr/ast /usr/jim /usr/ast fust/jim
16 | mail 31| bin 16 | mail 31| bin
81 | games 70 | memo 81 | games 70 | memo
40 | test 59 f.c. 40 | test 59 | f.c.

38| progi 70 | note 38 | progi
() (b)

Figure 1-21. (a) Two directories before linking /usr/jim/memo to
ast’s directory. (b) The same directories after linking.
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Mounting

bin dev lib mnt  usr b%
(b)

(a)

Figure 1-22. (a) File system before the mount.
(b) File system after the mount.
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Operating Systems Structure

Monolithic systems — basic structure:

« A main program that invokes the requested
service procedure.

« Aset of service procedures that carry out the
system calls.

« Aset of utility procedures that help the service
procedures.

Tanenbaum, Modern Operating Systems 3 e, (¢) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639



Operating System Structure

Main
procedure

Service
procedures

&/
B Utility
. . . . procedures

Simple structuring model for a monolithic system
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Layered Systems

Layer Function
5 The operator
4 User programs
3 Input/output management
2 Operator-process communication
1 Memory and drum management
0 Processor allocation and multiprogramming

Figure 1-25. Structure of the THE operating system.
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Client-Server Model

Client Client Process Terminal File Memory
User mode
process process server server server server
\ , / Kernel mode
Microkernel \ }

48

Client obtains
service by

sending messages
to server processes

The client-server model



Client-Server Model

Machine 1 Machine 2 Machine 3 Machine 4
Client ? A File server Process server Terminal server
LI Kernel Kernel Kernel Kernel .
\ Network

Message from
client to server

Figure 1-27. The client-server model over a network.
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Virtual Machines (1)

Virtual 370s

System calls here

|/O instructions here

Trap here - VM/370

Trap here

370 Bare hardware

Figure 1-28. The structure of VM/370 with CMS.
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