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Abstract— The need of highly directional communications at1

mmWave frequencies introduces high overhead for beam training2

and alignment, which makes the medium access control (MAC)3

a grand challenge. To harvest the gain for high performance4

transmissions in mmWave networks, we propose an efficient5

and integrated MAC design with the concurrent support of6

three closely interactive components: 1) an accurate and low-7

cost beam training methodology with a) multiuser, multi-level,8

bi-directional coarse training for fast user association and beam9

alignment and b) adaptive fine beam training with compressed10

channel measurement and multi-resolution block-sparse channel11

estimation in response to the channel condition and the learning12

from past measurements; 2) an elastic virtual resource scheduling13

scheme that jointly considers beam training, beam tracking and14

data transmissions while enabling burst data transmissions with15

the concurrent allocation of transmission rate and duration;16

and 3) a flexible and efficient beam tracking strategy to enable17

stable beam alignment with beamwidth adaptation and mobility18

estimation. Compared with literature studies, our performance19

results demonstrate that our design can effectively reduce the20

training overhead and thus significantly improve the throughput.21

Compared to 802.11ad, the training overhead can be reduced22

more than 60%, and the throughput can be more than 75%23

higher. In low SNR case, the throughput gain can be more24

than 90%. Our scheme can also achieve about 50% higher25

throughput in the presence of user mobility.26

Index Terms— Millimeter wave, directional MAC, directional27

antenna, resource allocation, channel estimation.28

I. INTRODUCTION29

M ILLIMETER-WAVE (mmW or mmWave) communi-30

cation is receiving tremendous interest from acad-31

emia, industry and federal agencies as a promising technique32

to provide Gigabit data rate demanded by the exponential33

growth of wireless applications. A key challenge of mmWave34
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communications is the low signal range as a result of the 35

large isotropic path loss. Fortunately, the small wavelength of 36

mmWave signals also enables a large number of antennas to 37

be placed in small dimensions (e.g. at the base station, in the 38

skin of a cellphone, or even within a chip), which provides a 39

high beamforming gain to compensate for the big path loss. 40

The nature of highly directional transmissions in mmWave 41

bands, however, makes the design of medium access control 42

schemes a grand challenge [1]. New users have difficulty of 43

associating with a small cell base station or access point (AP). 44

If both AP and user devices are configured directionally, 45

it could take an extremely long time to connect them and align 46

their beams. In the measurements of basic IEEE 802.11ad [2] 47

transmission [3], the latency for AP discovery is 5ms to 1.8s 48

for a static client and up to 12.9s for a mobile client. On the 49

other hand, omni-directionally transmitting/receiving training 50

signals for beam alignment may lead to range much lower than 51

that of data transmissions. The problem is made even harder 52

when there are a large number of beam directions and users, 53

and the channel reciprocity principle breaks in the presence of 54

human blockage and environment dynamics [3]. 55

To alleviate the training overhead, codebook-based adaptive- 56

beam training [4]–[6] divide directions into different granular- 57

ity levels. At each level, training signals are sent to all direc- 58

tions within a selected angular range, and a feedback message 59

is needed to select the best beam. The feedback overhead and 60

delay would be very high with the use of multiple rounds 61

of feedbacks (with each round corresponding to a granularity 62

level) and the competitions in multi-user feedbacks along each 63

trained direction. Codebook-based scheme has been taken by 64

802.11ad. Alternatively, compressed sensing (CS) is exploited 65

to estimate the sparse mmWave channels with training sig- 66

nals sent along random directions within the whole angular 67

range [7]–[9]. Although the number of training directions 68

is reduced, the channel reconstruction complexity increases 69

exponentially with the number of measurement samples. 70

The big training overhead will translate into significant 71

throughput reduction. More frequent signaling would be 72

needed to track the directional transmissions when there exist 73

higher channel dynamics and user mobility [10]. Despite the 74

large amount of effort made to more efficiently find the 75

best beam directions or allocate radio resources [11]–[13], 76

the two are normally decoupled. Different from conventional 77

wireless communications where only data transmissions are 78

considered in radio resource allocations, it is necessary to 79

concurrently schedule radio resources for channel training, 80
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Fig. 1. BI structure in IEEE 802.11ad.

data transmissions and beam tracking, in the face of dynamics81

of channel conditions, user population, locations, and traffic.82

In light of the challenges (training overhead, frequent sig-83

naling, resource allocation, network dynamics) above, our aim84

is to design an efficient and integrated MAC scheme for85

high performance mmWave network transmissions with the86

concurrent support of three closely interactive components:87

a) Accurate and light-weight beam training with 1) multi-88

user, multi-level, bi-directional coarse training for fast user89

association and beam alignment, and 2) fine beam training90

with multi-resolution block-sparse channel estimation and91

compressed beam measurement, with adaptation to channel92

conditions and past measurement results.93

b) Self-adaptive virtual resource scheduling to determine94

both user transmission opportunities and durations for facili-95

tation of various traffic types, while trading off between beam96

training and data transmissions for an overall high network97

performance.98

c) Effective beam tracking for more stable beam alignment99

with flexible beamwidth adaptation and mobility estimation100

to cope with link failures due to user motions or channel101

dynamics.102

The rest of this paper is organized as follows. After103

briefly reviewing background and related work in Section II,104

we present our fast association and multi-level beam train-105

ing approach in Section III. We further propose our multi-106

resolution block-sparse channel estimation technique and fine107

beam training design in Section IV, followed by Section V,108

where we develop our flexible resource scheduling and beam109

tracking schemes. Finally, we analyze the simulation results110

in Section VI, and conclude the paper in Section VII.111

II. BACKGROUND, RELATED WORK,112

AND BASIC FRAMEWORK113

A. Background114

The standards IEEE 802.11ad [2] and IEEE 802.15.3c [14]115

are proposed at physical layer (PHY) and medium access116

control layer (MAC) to enable operation in frequencies around117

60 GHz mmWave band. Figure 1 shows the MAC layer118

superframe of IEEE 802.11ad protocol, referred as Beacon119

Interval (BI)). AP provides the basic timing for DEVs through120

beacon and announce frames, such as Beacon transmission121

interval (BTI) to transmit one or more beacons in different122

directions, Association beamforming training (A-BFT) for123

devices to communicate with AP and train their antenna beams124

and Announcement transmission interval (ATI) for AP to125

exchange management information with associated devices.126

A data transmission interval (DTI) contains service peri-127

ods (SPs) to transmit data using time division multiple access128

(TDMA) and contention-based access periods (CBAPs) for129

devices to compete in transmissions using Carrier sense mul-130

tiple access with collision avoidance (CSMA/CA).131

Although 802.11ad provides a basic MAC framework and 132

signaling sequences, there is no specific consideration for 133

more efficient directional finding and transmissions. With the 134

concurrent consideration of beam training and resource allo- 135

cation, we propose a detailed design of the MAC scheme with 136

three major components: quick and low-cost AP association 137

and beam training, adaptive and joint scheduling of radio 138

resources for training and transmission under channel and 139

demand changes, and efficient beam tracking during mobility. 140

To facilitate practical application of our work, we can fit our 141

schemes into the 802.11ad framework, although our schemes 142

are general and do not depend on any protocols. 143

B. Related Work 144

To compensate for the high path loss, codebook-based 145

beamforming schemes have been proposed [4]–[6] and taken 146

by 802.11ad. However, the signaling overhead and delay 147

would be very high to train a large number of beams and 148

in the presence of many users. 149

As an alternative, compressed sensing (CS) techniques have 150

been proposed to estimate mmWave channels to facilitate 151

beam alignment [7]–[9], [15]–[18], taking advantage of the 152

sparse feature of channels at mmWave frequencies. These 153

studies, however, did not fully consider the clustering of 154

transmission paths [19] in channel reconstruction. Instead, 155

taking into account the path clustering effect, we model 156

our channel as block-sparse and propose a multi-resolution 157

block-sparse method to more accurately estimate the channel. 158

As an additional benefit, our proposed method allows for 159

concurrent use of compressed measurements from different 160

levels to improve the accuracy of reconstructing CS channel 161

and reduce the total number of samples, which further reduces 162

the computational complexity. 163

Various efforts are made to only allocate radio resources in 164

mmWave networks [11]–[13], [20], and existing work mostly 165

focus on scheduling concurrent device-to-device communica- 166

tions in Wireless Personal Area Networks. Instead, we inves- 167

tigate uplink/downlink transmission scheduling between base 168

station/access point and devices. We concurrently and adap- 169

tively schedule radio resources for channel training, data 170

transmissions and beam tracking. Rather than coordinating 171

users to transmit in each slot [21], our virtual scheduling 172

enables the burst transmissions of packets, a major format 173

to transmit high volume data in mmWave communications. 174

The joint determination of transmission resources and duration 175

makes the scheduling problem much harder, and is often 176

bypassed by literature work. 177

User mobility and environmental dynamics makes it more 178

difficult to achieve beam alignment in mmWave networks, and 179

beam tracking is often needed to avoid transmission interrup- 180

tion. Based on the observation that 60 GHz channel profiles 181

at nearby locations are highly-correlated, Zhou et al. [10] 182

propose a beam-forecast scheme to reconstruct the channel 183

profile and predict new optimal beams. Highly relying on 184

a specific geometry model, the prediction accuracy may be 185

compromised in practical networks. Authors in [22] design, 186

implement and evaluate MOCA, a protocol for Mobility 187
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Fig. 2. Framework overview.

resilience and Overhead Constrained Adaptation for direc-188

tional 60 GHz links, where mobility-induced link breakage is189

quickly identified and recovered with the change of beamwidth190

and data rate. The new beamwidth is selected from a pre-191

determined fixed set, and the throughput will reduce when192

using a larger beamwidth for transmissions to alleviate the193

impacts of mobility. Rather than using a larger beamwidth194

for compromised transmission quality, to effectively handle195

channel dynamics and user mobility at low cost, we flexibly196

adapt the beamwidth for rapid reconnection in case of link197

failures and search for the new fine beam direction based on198

the estimation of user mobility levels.199

C. Basic MAC Framework200

To address the challenge of mmWave transmissions, we pro-201

pose a MAC framework with integrated beam alignment and202

transmission scheduling in Fig. 2. To reduce the big overhead203

for beam alignment, we divide the training process into coarse204

level and fine level. Beams are first generated following205

two-level codebooks to find the possible signal directions at206

coarse angular ranges, with different strategies to reduce the207

signaling overhead. Then the finer beam training is pursued208

with a selected number of additional training signals randomly209

transmitted within the angular ranges detected with good210

signal quality. The mmWave channel is estimated following211

compressed sensing at multiple resolution levels, and the212

channel condition at coarser level is applied to determine the213

weights for the finer level to improve the channel estimation214

accuracy and speed. Based on the channel conditions, AP and215

devices are scheduled for higher transmission performance and216

efficient beam tracking to cope with network dynamics.217

The contributions of this work are many folds and can be218

summarized as follows:219

• First, to enable fast AP association and beam alignment220

in both uplink and downlink directions, we propose221

multi-user multi-resolution beam training with various222

innovative components over existing standards, including223

(1) feedback aggregation to reduce signaling overhead,224

(2) traffic-aware adaptation of the number of contention225

slots, (3) compressive measurement with novel block-226

sparse estimation of the mmW channel at hierarchical227

beam resolution and (4) elastic fine beam training that228

jointly works with transmission scheduling in response229

to channel condition and learning from past training230

results.231

• Second, to efficiently manage radio resources, we propose 232

a virtual transmission scheduling scheme with (1) con- 233

current determination of transmission opportunities and 234

duration while trading off among beam training, data 235

transmissions and beam tracking, (2) virtual slot aggrega- 236

tion adaptive to heterogeneous traffic types, user demands 237

and resource availability. 238

• Third, to ensure low-overhead beam alignment and allevi- 239

ate link failures under user mobility and channel dynam- 240

ics, we propose an efficient beam tracking scheme that 241

achieves quick user rediscovery and disconnection rem- 242

edy by (1) dynamic beamwidth adjustment and (2) flex- 243

ible user movement prediction. 244

III. AP ASSOCIATION AND MULTI-LEVEL 245

BEAM ALIGNMENT 246

To harvest the gain of mmWave communications, it calls 247

for highly efficient training schemes to enable lower-overhead 248

thus faster AP association and beam alignment. 249

The AP association and multi-resolution beam alignment 250

component in our basic MAC framework is shown in Figure 2. 251

To avoid high feedback overhead as in conventional codebook- 252

based schemes, we consider two levels of coarse training to 253

quickly associate users with APs. Rather than only concen- 254

trating on beamforming uplink or downlink, or assuming the 255

existence of channel reciprocity, we consider bi-directional 256

training between AP and devices. Finally, to align beams at 257

the finest resolution desired, we will further exploit multi- 258

resolution and block-sparse channel estimation, which will be 259

introduced in details in Section IV. 260

In this section, we first present the two-level coarse training 261

and then provide the analysis on the impacts of beam resolu- 262

tion on transmission range. 263

We use some terms and major signaling flows from 264

802.11ad to facilitate better understanding, and also provide 265

the possibility of incorporating our design into the 802.11ad 266

framework. Our scheme, however, is general and not con- 267

strained to run within 802.11 networks. The differences of our 268

design from 802.11ad are: (a) we emphasize the coordination 269

of training between uplink and downlink and the overhead 270

reduction exploiting the information from the previous round 271

of signaling, (b) we allow AP to transmit feedbacks in a batch 272

for devices within one sector to reduce the header overhead, 273

and (c) we determine the number of contention slots in each 274

AP sector according to the number of associated users known 275

from the previous signaling procedures, which alleviates the 276

collision while avoiding the waste of radio resources. 277

A. Multi-Level Beam Training 278

We apply three levels of beamwidth following the terms 279

of 802.11ad: quasi-omni-directional level (QOL), sector beam 280

sweep (SBS), and fine beam steering (FBS). An example of 281

the hierarchical beam levels is given in Figure 3. At the quasi- 282

omni-directional level, the beamwidth will be configured to the 283

widest possible allowed by the system to alleviate the deafness 284

problem in receiving. 285
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Fig. 3. Hierarchical beam levels example.

The fine beam is the desired beamwidth to use for a286

mmWave system to achieve high data rates.287

We use antenna directions and antenna weight vectors288

(AWVs) interchangeably, although an AWV not only deter-289

mines the main-lobe direction of the beam but also the290

beamwidth. We also use device and user interchangeably for291

ease of presentation. We consider the association and beam292

alignment between devices and the AP in a cell. Due to the293

space limitation, we won’t discuss device-to-device commu-294

nications. Our beam alignment procedures can be completed295

with the following steps:296

Step 1 (Bi-Directional Training for Quick Association297

Between AP and Devices): An AP will send beacon messages298

periodically for new and existing devices to associate with299

and align their beams. To facilitate quick AP association300

while not compromising the link budget significantly, we will301

configure AP at SBS level and devices in QOL. Rather than302

performing the training for each device at a time, the training303

will be performed for all devices simultaneously. AP will send304

beacons in each SBS direction. Within a direction, a (new)305

device can listen from each of its QOL directions to find306

the best sending SBS sector and receiving QOL direction.307

Then AP configures itself to listen from each SBS direction.308

Devices successfully receiving beacons from AP will contend309

for response within S1 slots. To facilitate reverse channel310

training, in each SBS direction that AP listens to, a device will311

send along all its QOL directions the following information: its312

association request, the best SBS sector for AP to transmit, and313

its best receiving QOL direction. A device will then prepare314

itself at the best receive QOL direction. To reduce the feedback315

overhead, rather than sending a feedback to every device right316

away as in 802.11ad, we allow AP to send an aggregated317

feedback to the group of devices in each of the selected318

SBS directions after receiving device messages from all its319

sectors.320

AP and devices now obtain a preliminary association with321

the information: downlink, the best transmission sector of AP322

and the best QOL receive direction of a device; and uplink,323

the best QOL sending direction from a device and the best324

receive sector at AP.325

Step 2 (Bi-Directional Training to Find the Best Sector326

Pair Between AP and Each Device): To further search for327

the best receiving sector direction for each device, AP sends328

training signals again in best sectors selected from the previous 329

step, while each associated device only sweeps along the 330

set of SBS directions within the angular range of its best 331

QOL receive direction. To determine the best transmission 332

sector from a device, AP only listens to responses in the 333

best receive sectors selected by devices earlier. In each AP 334

receiving sector, multiple associated devices will contend to 335

get a response slot among S2 slots. Instead of using an equal 336

number of contention slots for each AP receiving sector as 337

in 802.11ad, we set S2 for each sector proportional to the 338

number of associated users that is learned from Step 1. This 339

will reduce the collisions in the sectors with more users while 340

avoiding wasting time slots unnecessarily in sectors with very 341

few users. The value of S2 can be sent to devices along 342

with AP feedbacks in the Step 1. If successfully obtaining 343

a slot, a device will send a response on the link quality and 344

the best receive sector from AP along the set of sector-level 345

directions within the range of its best QOL direction. AP 346

will immediately feedback to the device its best transmission 347

sector. 348

Step 3 (Determining the Best Fine-Level Transmission and 349

Receiving Directions): Finally, AP and devices need further 350

training to find the best beam alignment at the fine beam 351

level. Similar back-and-forth measures can be taken; however, 352

due to the potentially large number of fine beam patterns, 353

the overhead can be unbearable. We will further reduce the 354

overhead by exploiting the compressive measurement and 355

block-sparse estimation of the mmWave channel, which will 356

be introduced later in Section IV. 357

B. Analysis of Beamwidth and Transmission Range 358

To analyze the directive gains of the antennas, we exploit 359

a sectored antenna model which considers the front-to-back 360

ratio, and the half-power beamwidth. The gains remain the 361

same for all angles in the main lobe and are smaller in the 362

side lobe in the ideal sector antenna pattern. Let θu and θv be 363

the angles that are deviated from the boresight of the steering 364

angles of TX and RX, Bu
θ and Bv

θ be beamwidths of the TX 365

and RX antenna patterns, we have the directive gain of TX 366

Gu (θu, Bu
θ ) =

⎧⎨
⎩

2π − (2π − Bu
θ )z

Bu
θ

, if |θu| ≤ Bu
θ

2
z, otherwise,

(1) 367

where 0 ≤ z < 1 is the gain in the side lobe, with z � 1 368

for narrow beams. Likewise, the directive gain of RX can be 369

expressed as 370

Gv (θv, Bv
θ ) =

⎧⎨
⎩

2π − (2π − Bv
θ )z

Bv
θ

, if |θv| ≤ Bv
θ

2
z, otherwise.

(2) 371

The number of antennas impacts the finest beamwidth to 372

achieve thus the maximum gain of the beam. The channel gain 373

GH(d) is affected by the TX-RX distance d. For a beam with 374

the TX beamwidth Bu
θ and RX beamwidth Bv

θ , let Gu(Bu
θ ) 375

and Gv(Bv
θ ) be the TX and RX antenna gains, then we have 376

the Signal to Noise Ratio (SNR) as 377

SNR(Bu
θ , Bv

θ , d) =
pT Gu (Bu

θ )GH(d)Gv (Bv
θ )

N0
, (3) 378
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where pT indicates the transmitter power and N0 the noise379

power. Obviously, beamwidth impacts the effectiveness of the380

beamforming and consequently the transmission range.381

Compared to data transmissions at the fine beam level,382

the coarse-level signal transmission has a lower range. How-383

ever, earlier measurement studies [19] indicate that directional384

beamforming gain at either one side of TX or RX may be385

enough to combat the additional channel fading in mmWave386

band. We also exploit the gain at both sender and receiver387

to reduce the link budget loss. Additionally, the signaling388

message has the rate much lower than the data, and lower-389

bit coding would allow the coding gain to further increase the390

range.391

IV. MULTI-RESOLUTION BLOCK-SPARSE392

mmWAVE CHANNEL ESTIMATION393

Upon the completion of coarse-level training in Section III,394

the next measure to be taken is discovering the best fine-level395

beam directions, which may need a large number of training396

messages. The coarse-level training can constrain the messages397

to be sent within the best transmission and receiving sectors.398

However, if the number of fine beams to transmit remains399

large, rather than measuring a large volume of fine beam pairs400

as in 802.11ad or introducing more levels of training at high401

feedback cost, we will explore the use of compressive channel402

estimation to facilitate low-cost beam training.403

Figure 2 shows the interactions among our multi-resolution404

block-sparse channel estimation module and beam training405

component at different levels. Different from conventional406

CS-based channel estimation schemes [7]–[9], [15]–[18] that407

only consider the channel sparsity, our contributions lie in408

the following aspects: (a) we further explore the block-sparse409

feature in mmWave channels as a result of transmission path410

clustering for better channel estimation in Section IV-A and411

(b) we iteratively exploit our block-sparse channel estimation412

at hierarchical beam resolution for higher accuracy and lower413

computational complexity in Section IV-B.414

A. Block-Sparse Channel Estimation415

We will now describe how we exploit the path clustering416

feature of mmWave channels and develop the solution to417

channel estimation as block-sparse channel reconstruction.418

For ease of presentation, we consider only the azimuth419

and neglect the elevation in this paper. Implementations that420

facilitate both horizontal and vertical beamforming can be built421

on top of our design. While our proposed design can be used422

for any kind of antenna arrays, without loss of generality,423

we adopt uniform linear arrays (ULAs) in this work.424

In [19], the mmWave channel is found to be not only sparse425

but also path clustering according to the real-world measure-426

ments in New York City (NYC), from which a statistical427

mmWave model is derived. We adopt this channel model,428

where the channel is composed of K clusters within each429

there are L subpaths, then with the number of transmitting and430

receiving antennas to be Ntx and Nrx, the channel matrix can431

be written as 432

H =
K�

k=1

L�
�=1

ak� · Drx(θrx
k� ) · DH

tx(θtx
k�), (4) 433

where ak� is the complex path gain for a path � (� = 434

1, 2, . . . , L) in the cluster k (k = 1, 2, . . . , K), with k� jointly 435

corresponding to the �-th sub-path in the k-th cluster. For 436

the sake of consistency, in this work, we use the terms path 437

and sub-path interchangeably. θtx
k� and θrx

k� denote the angle 438

of departure (AoD) and the angle of arrival (AoA) for the 439

corresponding path. 440

Dtx(θtx
k�), the TX antenna’s directional response column 441

vector (Ntx × 1 dimension) for the sub-path at the angle of 442

departure θtx
k�, is expressed as: 443

Dtx(θtx
k�) 444

=
�
D(1)(θtx

k�), D
(2)(θtx

k�), . . . , D
(m)(θtx

k�), . . . , D
(Ntx)(θtx

k�)
�

445

=
�
1, ej·1·wtx

k� , ej·2·wtx
k� , . . . , ej·(Ntx−1)·wtx

k�

�T

, (5) 446

where D(m)(θtx
k�) is from antenna basics, the spatial frequency 447

wtx
k� can be written in terms of AoDs, as wtx

k� = 2πdt

λ sin θtx
k�. 448

dt is the distances between two adjacent antenna elements in 449

the ULAs in the TX. λ = c
f is wavelength in meters. f is the 450

carrier frequency of the signal in Hz, c is the speed of light 451

(3 × 108 meters/sec). 452

Drx(θrx
k� ), the RX antenna’s directional response column 453

vector (Nrx × 1 dimension) for the path at an angle of arrival 454

θrx
k� , can be similarly expressed. 455

We now use a concatenated column vector a (1 × KL) to 456

denote the complex path gains. Then 457

a = [a11, a12, . . . , a1L� 	
 �
cluster 1

, a21, a22, . . . , a2L� 	
 �
cluster 2

, . . . , 458

aK1, aK2, . . . , aKL� 	
 �
cluster K

]T , (6) 459

Note a is concatenated in a manner that the first L elements are 460

for the first cluster, and the next L elements are for the second 461

cluster and so on. As a result of path clustering, the mmWave 462

channel in (6) is seen to have the block properties. That is, a 463

is not only sparse, but also block-sparse. 464

The major task of mmW channel estimation in our work is 465

to estimate a efficiently. To achieve this, we first rewrite (4) 466

in matrix format as 467

H = DR diag(a)DH
T , (7) 468

where the matrices DT and DR contain the TX and RX array 469

response vectors as follows: 470

DT = [Dtx(θtx
11), ..,Dtx(θtx

1L), ..,Dtx(θtx
K1), ..,Dtx(θtx

KL)], 471

(8) 472

DR = [Drx(θrx
11 ), ..,Drx(θrx

1L), ..,Drx(θrx
K1), ..,Drx(θrx

KL)]. 473

(9) 474

For channel estimation, assume we transmit the training 475

signals along P directions, i.e., with P TX beamforming (BF) 476
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vectors (up, p = 1, 2, . . . , P ), and a receiver estimates the477

signals from Q directions with Q RX BF vectors (vq, q =478

1, 2, . . . , Q). Taking advantage of coarse-level training, these479

are randomly chosen from the fine beam directions within the480

TX’s best sectors and the RX’s best sectors, respectively. Then481

the measurements can be expressed in the matrix format as:482

YQ×P = VHHU ◦ S + E, (10)483

where S and E are respectively the training signals and noise,484

and485

VNrx×Q = [v1, ..,vq, ..,vQ], UNtx×P = [u1, ..,up, ..,uP ].486

(11)487

With the training signals transmitted at the power A,488

YQ×P =
√

AVHHU + E, which can be vectorized as489

y = vec(R) =
√

Avec(VHHU) + vec(E)490

Theorem 1 [23]==========
√

A(UT ⊗ VH)vec(H) + vec(E)491

Proposition 1 [24]
===========

√
A(UT ⊗ VH)Ψa + vec(E)492

= ΦΨa + vec(E) = Aa + vec(E), (12)493

where Ψ = D∗
R ∗ DT (Khatri-Rao product) is the basis494

matrix, Φ =
√

A(UT ⊗ VH) (Kronecker product) is the495

measurement matrix (determined by TX and RX beam training496

directions). In the derivation, we have used Theorem 1 [23]497

and Proposition 1 [24] as follows:498

Theorem 1: vec(AXB) = (BT ⊗ A)vec(X).499

Proposition 1: vec(H) = Ψa, where Ψ = D∗
R ∗500

DT (Khatri-Rao product).501

In order to differentiate between the estimated channel and502

the actual channel a, we now refer the estimated a as x.503

Replacing the vector a in the Eq. (12) with x, we have504

the compressed sensing form y = Ax + e, where y is the505

measurement results, A is the sensing matrix, and e is the506

noise. Different from conventional CS-based channel estima-507

tion algorithms, to enable more accurate beam alignment,508

we take into account the block-sparse feature of the vector509

x when reconstructing the virtual mmWave channel. We form510

our problems as follows:511

min
n�

i=1

�Xi�2, s.t. Ax = y, x = [X1,X2, . . . ,Xn], (13)512

where �·�2 denotes the �2-norm, i is the block index, n513

is the number of blocks, Xi = x(i−1)d+1:id, and d is the514

block size. Figure 4 depicts the block-sparse model of (13).515

A typical solution algorithm for (13) is presented in Sec. IV516

of [25] as the “Recovery of block-sparse signals” Algorithm.517

After recovering x, the virtual channel H can be estimated as518

in Eq. (7).519

B. Multi-Resolution Channel Estimation520

We have multiple levels of beamwidth: QOL, SBS and FBS.521

In our channel estimation, we propose to not only use FBS522

training measurements to estimate the mmWave channel but523

also exploit those in QOL and SBS to further improve the524

estimation accuracy.525

Fig. 4. Block-sparse model.

To facilitate the channel estimation, we can discretize angu- 526

lar domain with Ng
tx × Ng

rx grids, so the channel can be 527

estimated as a vector of the dimension Ng
txNg

rx × 1 (vec(H)). 528

As the mmWave channel is sparse, so the channel response 529

signals only appear in a small number of grids. Rather than 530

uniformly discretizing the angles, we uniformly divide the 531

spatial frequencies wtx
k� and wrx

k� into Ng
tx and Ng

rx grid points, 532

respectively. Thus, the response column vectors of the TX and 533

RX antennas at the angular grid n and m are respectively 534

Dn
tx(θtx

k�) 535

=
�
1, e

j·1·n· 2π

N
g
tx , e

j·2·n· 2π

N
g
tx , . . . , e

j·(Ntx−1)·n· 2π

N
g
tx


T

, 536

Dm
rx(θrx

k� ) 537

=
�
1, e

j·1·m· 2π

N
g
rx , e

j·2·m· 2π

N
g
rx , . . . , e

j·(Nrx−1)·m· 2π

N
g
rx

�T

. 538

If Ng
tx = Ntx and Ng

rx = Nrx, we have 539

Ψ = IDFT ∗
Ntx

∗ IDFTNrx , (14) 540

where IDFTN denotes an N -dimensional IDFT matrix. 541

Different beamwidth adopted by AP and devices affects 542

the values of Ng
tx and Ng

rx. Denote BWtx and BWrx as 543

the beamwidth of AP and a device, one option is to let 544

both BWtx ∗ Ng
tx and BWrx ∗ Ng

rx cover the whole angular 545

space, and another is to reconstruct HFBS only within the 546

sector space detected to have stronger signals in the coarse- 547

level training. With the first method, a larger beamwidth will 548

correspond to a discretized channel with a smaller dimension, 549

so we have 550

dim(HQOL) < dim(HSBS) < dim(HFBS). (15) 551

As samples are not uniformly taken from all angular directions, 552

straight-forward channel reconstruction may not be accurate. 553

Instead, we propose to reconstruct the channel recursively at 554

different levels of resolution with weighting factors to take 555

advantage of the multi-level training samples we have obtained 556

in Section III. To be more specific, we transform (13) into 557

the following weighted recovery problem under the same 558

constraints: 559

min
n�

i=1

wi�Xi�2, (16) 560
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where wi is the weighting factor for block Xi, and is set to561

be the inverse of the number of non-zero elements (supports)562

contained in the signal block Xi. By assigning smaller weights563

to the blocks that consist of more non-zero elements and564

vice versa, the optimization will penalize more heavily those565

blocks with larger weights and fewer supports, thus leaving566

more residual signals to be reconstructed for those blocks567

that contain more information (i.e., with small weights and568

more supports). In this way, our block weighting approach569

improves the CS reconstruction performance and is exploited570

in the multi-resolution (i.e. different block sizes) channel esti-571

mation process to be presented later in this section. Although572

block weights are introduced, (16) can still be solved by the573

algorithm from [25], which is mentioned earlier as a solution574

to (13), by substituting Xi in (13) with wiXi.575

The major difference between (13) and the proposed (16)576

is that we set wi to the inverse of the magnitude of the coarse577

direction reconstructed from the previous step, where channel578

is estimated in a more coarse resolution (i.e., the block in579

the current step corresponds to the resolution used in the580

previous step). By assigning smaller weights to the blocks581

that have higher recovered magnitude in the previous step,582

the optimization will penalize more heavily those blocks with583

less information, thus leaving more residual signals to be584

reconstructed for the blocks that contain more information.585

With the channel estimation at multiple resolution in different586

block sizes, our block weighting approach can improve both587

the CS reconstruction accuracy and speed.588

Rather than directly estimating channels with the CS-based589

scheme, the use of multi-level of training largely reduces590

the number of samples needed thus the overhead for CS591

recovery for channel estimation. Further, compared to the592

direct finding of all beams with the traditional �1-norm593

optimization, the leverage of results from block-sparse CS594

reconstruction (16) helps to significantly reduce number of595

iterations needed for the channel estimation process to con-596

verge. Therefore, our algorithm can more efficiently run over597

the practical platforms and devices.598

Following the training process, the recursive steps for our599

multi-resolution channel estimation approach are:600

Step (a) QOL channel reconstruction: After QOL beam601

training, reconstruct vec(HQOL).602

Step (b) SBS channel reconstruction: After SBS beam603

training, according to QOL results in Step (a), adjust the604

weights at the SBS level: the SBS elements contained in605

QOL blocks with larger magnitude (recovered in the previous606

step) are assigned with smaller weights, and then reconstruct607

vec(HSBS).608

Step (c) FBS channel reconstruction: After FBS beam609

training, according to SBS results in Step (b), adjust the610

weights at the FBS level: the FBS elements contained in611

SBS blocks with larger magnitude (recovered in the previous612

step) are assigned with smaller weights, and then reconstruct613

vec(HFBS). We can then obtain the mmWave channel matrix614

HFBS for further beam alignment.615

Compared with conventional CS-based channel estimation,616

our multi-resolution block-sparse mmWave channel estimation617

methodology not only jointly exploits the sparsity and block618

properties in mmWave channels, but also takes advantage of 619

the multi-level beam training results to significantly reduce 620

the number of measurements. This will further reduce the 621

complexity in recovering the mmWave channel, and speed up 622

the training. 623

C. Procedures for Fine Beam Training 624

With the coarse beam training in Section III, AP and devices 625

have known the best transmission and receiving sectors for 626

both downlink and uplink transmissions. We will add the 627

following procedures for compressive fine beam training to 628

Step (3) in Section III: 629

Step 3.1 (Downlink Fine Beam Training): To facilitate syn- 630

chronization, each device initially listens at its best receiving 631

sectors to intercept system parameters. For the fine beam train- 632

ing, within each best transmitting sector selected in the SBS 633

phase, AP first sends beacons along PT randomly selected fine 634

beam directions. During the transmission of each fine beam, 635

the set of devices which select the corresponding transmission 636

sector will each listen from QR randomly selected fine beam 637

directions in their respective best DEV receiving sectors. 638

After collecting samples from PT QR directions, a DEV can 639

estimate the channel and the best fine beam directions for AP 640

transmission and DEV receiving. 641

Step 3.2 (Uplink Feedback Training): AP first config- 642

ures itself to receive from the selected best receiving sectors, 643

for each associated devices will send uplink feedbacks with 644

the best measured AP TX fine beam, SNR, suggested beam 645

directions, etc. Each device will transmit from QT fine beam 646

directions within its best transmitting sector. As the set of 647

devices to associate with AP is known, the beacons in Step 648

(3.1) will contain the order of uplink transmissions from 649

devices to avoid their uplink competition. 650

Sampling from the learning of past measurements: Although 651

we cannot completely follow the channel reciprocity rule, there 652

may be correlation in uplink and downlink channels. To further 653

improve the channel estimation quality while reducing the 654

number of samples, a device can select QT fine beam direc- 655

tions close to its best downlink receiving direction. Similarly, 656

for each uplink fine beam transmission, the PR directions AP 657

listens to can be close to the best downlink transmission beam 658

direction. In addition, with the downlink channel estimated, 659

a device can suggest a few directions for uplink training based 660

on the sequence of eigenvalues of the channel in its feedback. 661

With all samples, AP then estimates the uplink channel to find 662

the best theoretical fine beam pairs. 663

D. Analysis of Beam Training Overhead 664

Our beam training involves three levels of beamwidth: QOL, 665

SBS and FBS. We use BU
Q , BU

S and BU
F to represent the 666

AP beamwidth at each level, and use BV
Q , BV

S and BV
F to 667

represent the device beamwidth. We let BU
W and BV

W denote 668

the overall angular search space for the AP and the device. 669

We first quantify the training overhead of the beam training 670

scheme discussed in Sections III and IV-C. Let Tp denote the 671

time to transmit a pilot training signal, Ts = βsTp denote the 672

time duration of a contention slot (βs ≥ 1). A training signal 673
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consists of a sequence of training symbols. As the number of674

symbols impacts the training time, it can be adapted to trade675

off between the training time and the gain in finding higher676

gain channels for higher transmission rates. The overhead in677

each step of beam training is analyzed as follows:678

Step 1: T1/Tp =
�

BU
W

BU
S

�
·
�

BV
W

BV
Q

�
+ βsS1

�
BV

W

BV
Q

� �
BU

W

BU
S

�
+679

αt

�
BU

W

BU
S

�
; S1, the number of device response slots, is an680

integer (S1 ≥ 1) and can be adapted according to the681

traffic pattern over the previous Npast superframes, and set682

according to the moving average of the associated number683

of devices. αt (αt ≤ 1) is the fraction of AP transmitting684

sectors that are identified by devices to be their best SBS685

sectors, along which AP can send them the messages. The686

overhead of Step (1) consists of the following items: The first687

one is the result of the training time taken for AP to send688

beacons in each sector and devices to receive in each quasi-689

omni-directional beam; The second item denotes the time for690

uplink training, where in each of AP’s receiving sector, every691

device in quasi-omni-directional mode needs to compete for692

sending uplink training signals; The third item is the time693

taken by AP to send aggregated feedbacks in part of the sectors694

selected by devices. Similar illustrations can be made for other695

steps too.696

Step 2: T2/Tp = αt

�
BU

W

BU
S

�
·

�
BV

Q

BV
S

�
+

�
j S2,j

�
BV

Q

BV
S

�
,697

j = 1, 2, . . . , αr

�
BU

W

BU
S

�
; αr (αr ≤ 1) is the fraction of AP698

receiving sectors that are identified by devices to be their699

best SBS sectors, along which AP can receive from them700

the feedbacks. j is a set index indicator (not actual sector ID701

number) that denotes the index of AP sector in the set of best702

AP receiving sectors. S2,j denotes the number of S2 response703

slots for the j-th sector in the set of AP reception sectors704

identified to be the best. S2,j can be set to be proportional to705

the number of devices in that sector.706

Step 3: T3/Tp = αt

�
BU

W

BU
S

�
PT QR + NdevQ

T PR + NAP
bfb ,707

where Ndev is the number of devices, and NAP
bfb is the number708

of the AP’s best fine beams for the transmission of the709

feedbacks.710

The total training overhead, TBT = T1+T2+T3, is obtained711

from Step (1) to (3), where 
·� factors (system paramters) can712

usually be pre-determined by the system.713

V. JOINT BEAM TRAINING AND714

TRANSMISSION SCHEDULING715

An important MAC function is to efficiently coordinate716

radio resource usage among multiple users. The transmission717

scheduling for mmWave communications is made difficult718

with its need of a large amount of training to find the trans-719

mission opportunities, which we target to study in this section.720

Following the basic structure of 802.11ad, each superframe721

(Beacon Interval) consists of durations for beam training as722

well as frames for data transmissions. There is a tradeoff in723

determining the durations of the two, and we will concurrently724

consider both in our scheduling to achieve a high transmission725

performance.726

The basic structure of our joint beam training and schedul- 727

ing scheme is depicted in Figure 2. In this section, we intro- 728

duce our design for these important components, the merits 729

of which include (1) adaptive beam training in response to 730

channel quality, (2) resource scheduling with joint allocation 731

of transmission opportunities and durations that can support 732

heterogeneous traffic conditions, user types and demands, and 733

(3) beam tracking with beamwidth adaptation and mobility 734

estimation. The major differences of our design from the 735

literature are: (a) our transmission scheduling concurrently 736

considers multiple factors to achieve overall network per- 737

formance improvement, reduces the control overhead, and 738

enables burst transmissions with virtual scheduling and aggre- 739

gation of transmission slots, and (b) with various adaptations, 740

our adaptive beam training and tracking schemes are resilient 741

to network dynamics. 742

A. Adaptive Beam Training 743

A training signal consists of a sequence of training symbols, 744

and training signals can be sent along many directions. The 745

channel is dynamic and the number of training samples needed 746

is uncertain. The training can be increased at both tempo- 747

ral and spatial directions to achieve more accurate channel 748

estimation and find the best direction for higher transmission 749

rates, while higher training time will compromise the overall 750

transmission throughput. To reduce the training time while 751

ensuring the desired transmission quality, we propose to adapt 752

the training period based on the channel measurement quality. 753

After receiving the beacon signals from AP in step (3.1), 754

a device will determine if it will require AP to send additional 755

training signals based on the average SNR of the received 756

signals. If it is lower than a pre-determine threshold, the device 757

will request additional training in its feedback in step (3.2). 758

The Padd and Qadd additional fine beams for AP to send and 759

the device to receive from can be determined based on SNR 760

as follows: 761

Padd =
�
η1 · SNRTH − SNR

SNRTH

�
, 762

Qadd =
�
ζ1 · SNRTH − SNR

SNRTH

�
, 763

764

where η1, ζ1 control the adaptation speed, SNRTH is the 765

threshold. If multiple requesting devices share the same trans- 766

mission sector, AP will set Padd to the highest number 767

required, and send along randomly selected directions within 768

the sector. Similarly, AP can also request a device to send 769

additional uplink training signals. 770

If a device or AP has collected training signals from two 771

rounds, it can compare the difference between the channel 772

estimation based on the total training signals obtained in both 773

rounds to determine if more training is needed. In this case, 774

Padd and Qadd for the next round are determined by 775

Padd =
�
η2

�H − Hprev�1

ΔH

�
, Qadd =

�
ζ2
�H− Hprev�1

ΔH

�
, 776

where η2 and ζ2 are the adaptation factors, H and Hprev are 777

the estimated channels in the current round and the previous 778
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round, ΔH is the threshold for channel estimation difference,779

and the triggering condition is �H− Hprev�1 > ΔH.780

B. Virtual Transmission Scheduling781

The data transmission interval is composed of three compo-782

nents: TDTI = Tran+Tsp+Tdp. Tsp denotes the durations for783

scheduled periods, where the scheduling of data transmissions784

for different users in the network significantly impacts the net-785

work throughput. The contention-based random access period786

Tran can be used to send unscheduled uplink data and some787

short messages. The traffic can be bursty and the mmWave788

channel is subject to low coherent time and channel blocking.789

We also introduce a dynamic period Tdp to accommodate the790

immediate needs of user data transmissions or beam tracking,791

which is developed in Section V-C.792

As random access will introduce high overhead, IEEE793

802.11ad allows the use of TDMA kind of service period, but794

without giving a detailed scheme how the radio resources can795

be scheduled for use. Coordinating transmissions among users796

with heterogeneous quality requirements in the presence of797

different types of traffic and blocking-prone wireless channels798

is a grand challenge. The simple slot allocation for continuous799

voice transmissions used in conventional cellular networks800

cannot be applied to the dynamic packet transmissions.801

There are two major issues to address for the data trans-802

mission scheduling in Tsp: 1) How to select the users to803

transmit, and 2) How to determine the transmission durations804

to allocate to the selected users. To accommodate user requests805

while also meeting the resource constraint, there are a large806

number of options. It is difficult to select the users and807

also determine the transmission duration for each user at the808

same time in practical scheduling. We propose a self-adaptive809

virtual resource scheduling scheme based on user requests,810

application types, and practical resource availability.811

To accommodate different types of applications, we divide812

the scheduled transmission period Tsp into two logic parts:813

reserved period and allocated period, in other words, Tsp =814

T res
sp + T allo

sp . A reserved period T res
sp is used to support815

users which require long-term and periodic transmissions in816

every superframe, such as real-time multi-media streaming and817

updates of monitoring data. Admission control is needed and818

can be performed based on any rule of the service providers.819

In this paper, we consider a scheme with the limit of N res
ds820

streams to admit in the reserved period, with each data stream821

occupying at most N res
ts transmission slots. For a required822

transmission rate, the number of time slots needed to support823

an application will adapt as the channel condition changes with824

two options: 1) adapting the number of time slots allocated to825

the admitted users in each superframe based on the estimated826

channel condition, and 2) keeping the number of time slots827

unchanged, but letting the guaranteed applications to compete828

in getting the remaining resources needed. We can ensure829

enough time slots to support the minimum rate required by830

each application through the option 1 and allocate additional831

resources based on the option 2.832

Users with elastic traffic will compete for resources in833

the allocated period T allo
sp . The sector set selected for834

transmissions after training is denoted as I and the user 835

set in the i-th sector is Ji, then xi,j(i) denotes the j(i)-th 836

user to transmit in the i-th sector. We use xT
i,j(i) and xR

i,j(i) 837

to differentiate between the uplink transmission to AP and 838

downlink transmission from the AP. The rate r(x) of a data 839

stream x can be estimated from the channel measurement. 840

If the minimum data rates needed for uplink and downlink 841

transmissions cannot be accommodated due to poor channel 842

condition, we consider the user experiences a outage and set 843

the effective user data rate to zero. Transmission Slot (TS) 844

is the basic unit in our temporal resource scheduling, and a 845

data link can take multiples of TS. To maximize the network 846

performance, we need to schedule the data streams (xT (i, j(i)) 847

and xR(i, j(i))) and their allocated TSs. 848

It is difficult to simultaneously determine which users to 849

transmit and the transmission duration as there is a coupling 850

between the transmission priority and the resources already 851

allocated. We propose a novel virtual scheduling scheme with 852

two steps: (a) efficient resource allocation to determine which 853

user to transmit in each time slot, and (b) slot shuffling to 854

allocate each user with continuous time slots by aggregating 855

all its slots assigned virtually in the scheduled period. This 856

allows each user to transmit data as a burst to reduce the 857

control overhead without incurring synchronization and adding 858

a transmission header in each slot. 859

In each slot, if we straight-forwardly select the user with the 860

highest channel rate and priority to transmit, all resources may 861

be allocated to one user, at the cost of resource starvation for 862

others. The greedy focus on one metric neglects the trade-offs 863

among different performance factors for different users and 864

the network. Instead, we aim to maximize the overall network 865

performance by considering the fairness jointly determined by 866

multiple factors: priority, delay, and data rate. We assign each 867

slot virtually to the user with the largest weighted data rate 868

according to the following schedule: 869

x = arg max
x

a(x)W (x)r(x)/R(x), (17) 870

where 871

x ∈ {xT
i,j(i), x

R
i,j(i)}, i ∈ I, j(i) ∈ Ji. (18) 872

(17) can be solved with a heuristic algorithm that searches 873

through the candidate streams to look for {xT
i,j(i), x

R
i,j(i)} to 874

maximize the objective function. Since the range of candidate 875

beams has been narrowed down with our multi-level beam 876

training, the search space of the candidate beams is small. 877

As the beams are chosen from a discrete space, the complexity 878

of our algorithm is low. a(x) is the priority parameter for a data 879

stream x (determined by the service type, QoS requirements 880

etc.) and W (x) is the queuing delay. For delay-constrained 881

traffic, we have 882

Prob[W (x) > T (x)] ≤ ε(x), (19) 883

where ε(x) is a specified probability that the delay exceeds 884

the threshold T (x). Then the priority parameter a(x) can be 885

defined as a(x) = − log ε(x)/T (x). A smaller ε(x) suggests a 886

larger a(x) that implies higher priority. ε(x) can be set to 1 for 887

delay tolerant applications. The parameters a(x), W (x), and 888
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R(x) (the average transmission rate of user x) will be updated889

after assigning each slot to ensure that other users have the890

chance of transmissions. As the slots are only assigned and891

users have not transmitted yet, so our parameter update is892

virtual. The transmission rate r can be estimated as893

r = Bw log2(1 + SNR(Bu
θ , Bv

θ , d)), (20)894

where Bw is the bandwidth. As presented in Section III-B,895

the signal-to-noise ratio SNR is affected by the antenna896

numbers, the channel conditions, the TX-RX distance, and897

the transmission and reception beamwidths. The slots assigned898

to the same user can be used together to perform burst899

transmission. Rather than determining the user to transmit900

and the transmission duration together, our scheduling scheme901

significantly reduces the complexity with the virtual schedul-902

ing of transmission in each slot and the aggregation of slots903

into a duration. Our scheduling scheme can support users with904

different number of antennas.905

C. Beam Tracking With Beamwidth Adaptation906

and Mobility Estimation907

Featured by highly directional transmissions, two major908

challenges faced by mmWave communications are channel909

dynamics and user mobility, which can cause frequent discon-910

nections thus degraded network performance. To cope with911

these problems, we introduce two important components to912

facilitate beam tracking, beamwidth adaptation and mobility913

estimation. Upon disconnection, additional low-cost training914

of new beam directions may help the user to recover from915

disconnection, unfulfilled transmissions may be rescheduled to916

transmit in the remaining time of the duration assigned to the917

device and the dynamic resource block (Tdp in Section V-B).918

Beam quality can be tracked with testing signals piggy-919

backed at the end of data packets. Upon detecting a significant920

reduction of the beam quality or disconnection, our proposed921

Beamwidth Adaptation will be triggered:922

(1) A sender will quickly switch to train two beams923

adjacent to the original beam direction using the time slot924

scheduled for the corresponding device if its remaining time925

is enough or using the time in the dynamic period.926

(2) If a user moves too fast and gets out of the coverage of927

its backup beams, especially when the beamwidths of TX and928

RX beams are very narrow, we propose to train one further left929

beam and one further right beam with the beamwidth doubled930

to speed up the searching.931

(3) If a user is found in one of the two double-width beams,932

we continue to train and find the best fine beam.933

This searching process can continue, and the number of934

additional beams to search depends on the system configura-935

tion. If a user constantly moves, when reaching its scheduled936

time slot, its direction may largely deviate from the optimal937

direction found through beam training at the beginning of the938

superframe. The frequent and large-range beam search after939

the disconnection will incur a high training overhead. To better940

handle user mobility, we propose another Mobility Estimation941

scheme to predict the user direction based on the beam search942

range over the past Np superframes: 943

θdev = Tlat

Np�
i=1

|θi
dev|/

Np�
i=1

T i
lat, (21) 944

where the angular deviation θi
dev of a mobile user in the 945

i-th past superframe can be known from the beam tracking 946

process, T i
lat is the time taken to search for the new beam 947

direction in the i-th past superframe and Tlat is the time 948

duration from the end of training in the current superframe to 949

the slot time assigned to the user.
�Np

i=1 |θi
dev|/

�Np

i=1 T i
lat is an 950

estimation of the averaged angular moving speed of the user. 951

The sign (+/−) of θ indicates whether the angular deviation 952

is left or right, and we let the sign of θdev be the same as that 953

in the previous superframe. With this estimation, in the time 954

slot scheduled for the user, BS will first deviates its steering 955

direction by θdev so that the signal can have a better chance to 956

reach the mobile user. In case there is an estimation inaccuracy 957

and thus the link breakage, the range of the beam searching 958

will be much smaller. 959

VI. SIMULATIONS AND RESULTS 960

In this section, we evaluate the performance of our pro- 961

posed schemes. As comparison, we will demonstrate the 962

performances of the following schemes: (1) Proposed-adaptive 963

(proposed scheme with adaptive training), (2) Proposed- 964

nonadaptive (proposed scheme without adaptive training), 965

(3) CS-nonadaptive (nonadaptive beamforming with baseline 966

CS [18]), (4) HOL (since we can’t find related uplink/downlink 967

scheduling work to compare in mmWave realm, we adapt 968

Head-of-Line delay based slot-by-slot scheduling in [21] 969

for mmWave networks), (5) 802.11ad (codebook-based train- 970

ing, IEEE standard in [2]), (6) Proposed-nonCS (proposed 971

multi-level beam training without CS-based channel estima- 972

tion assistance), (7) Proposed-BT-BA (proposed-adaptive with 973

Beam Tracking and Beamwidth Adaptation), (8) Proposed- 974

BT-BA-ME (Proposed-BT-BA with Mobility Estimation) 975

and (9) Proposed-w/o-BT-BA (proposed-adaptive with no 976

BT or BA). 977

A. Settings 978

In our performance studies, we consider the scenario with 979

one AP and multiple devices. The mmWave channel is simu- 980

lated from the model derived from NYC measurements in [19]. 981

The user traffic (both downlink and uplink) is generated as 982

follows: user arrivals conform to Poisson distribution; traffic 983

load paramters for different users are uniformly distributed 984

between 400 and 500 packets per second; packet size ranges 985

from 5 to 10 KB. More default parameters are presented 986

in Table I. We studied the following performance metrics: 987

(1)Training overhead (averaged temporal cost in a superframe 988

to complete the beam training) and (2) Network throughput 989

(total throughput among all users). The results are averaged 990

among a long period (200 seconds). 991

B. Effect of SNR 992

Noise conditions in wireless mmWave networks greatly 993

impact the data transmission quality thus network perfor- 994

mances. At lower SNR, more training samples are needed to 995
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TABLE I

DEFAULT PARAMETERS

Fig. 5. Effects of SNR.

ensure a given quality of channel estimation. Figure 5(a) shows996

that when the channel condition is better, the beam training997

overhead is reduced. The gain of our scheme improves when998

the training overhead is larger at lower SNR. When SNR999

is 4dB, from 802.11ad to Proposed-nonCS, we observe an1000

improvement of 7.29% in terms of training overhead. This1001

shows the benefits of our design efforts on top of 802.11ad in1002

Section III-A, including adapting the number of response slots1003

to reduce collision, allowing AP to feedback in groups instead1004

of device by device etc. Proposed-adaptive performs 62.41%1005

better than 802.11ad and Proposed-nonadaptive 41.89%. The1006

results demonstrate the benefits of our proposed beam train-1007

ing and adaptive schemes in reducing the training overhead1008

and improving the training quality. Compared with 802.11ad,1009

Propose-nonCS works differently in the coarse-level beam1010

training but works in the same way for finding the optimal1011

fine beams. It can be seen that our CS-based schemes perform1012

much better than Proposed-nonCS, which confirms that the1013

training overhead is majorly affected by fine beam training1014

and our CS-based schemes significantly reduce the fine beam1015

training overhead by exploiting our CS-based multi-resolution1016

channel estimation scheme. Compared with CS-nonadaptive,1017

our proposed schemes perform better with much lower training1018

overhead. Proposed-adaptive and Proposed-nonadaptive out-1019

perform CS-nonadaptive by 41.99% and 10.31%, respectively.1020

Different from conventional CS-nonadaptive schemes, besides1021

adaptive beamforming, we also exploit the block features of1022

mmWave channels and take advantage of coarse training to1023

largely reduce unnecessary measurements, and exploit multi-1024

resolution channel estimation which take advantage of samples1025

from different levels of measurements and block sparsity of1026

mmWave channel for higher quality channel reconstruction.1027

As expected, in Figure 5(b), the throughput increases1028

with the SNR, thanks to higher achievable data rates and1029

reduced training overhead. At SNR of 4dB, compared 1030

with 802.11ad, we observe a throughput improvement 1031

of 90.96% for Proposed-adaptive, 66.18% for Proposed- 1032

nonadaptive and 9.31% for Propose-nonCS. We again see 1033

that the Proposed-nonCS outperforms 802.11ad by reducing 1034

the training overhead involved in coarse-level beams and our 1035

CS-based schemes significantly outperform Propose-nonCS 1036

and 802.11ad by further reducing the fine beam training 1037

overhead thus improving the throughput. The comparison also 1038

confirms that the advantages of our proposed schemes and 1039

the adaptive beam training in enabling more efficient radio 1040

resource allocation. Proposed-adaptive outperforms Proposed- 1041

nonadaptive in throughput because (1) it can reduce training 1042

overhead and (2) nonadaptive scheme may not train sufficient 1043

number of beams or find the best quality beam to accurately 1044

estimate channel, especially under low SNR. Compared with 1045

HOL, Proposed-adaptive and Proposed-nonadaptive improve 1046

the throughput by 31.67% and 14.58%, respectively. Our 1047

joint training and transmission scheduling scheme performs 1048

better by concurrently scheduling radio resources for beam 1049

training, data transmissions and beam tracking. Also, our 1050

virtual scheduling allows for burst transmissions in multiple 1051

slots, reducing the overhead for synchronization and attached 1052

packet header in each slot. 1053

From Figures 5a and 5b, we can clearly see the tradeoffs 1054

between beam training duration and network throughput. 1055

As beam training overhead increases, there is likely a shorter 1056

period for data transmissions, which affects the throughput. 1057

Since our scheme jointly schedules beam training and data 1058

transmissions based on network conditions, we are able to 1059

better trade off between training and transmissions to achieve 1060

higher performance than the other schemes compared. 1061

C. Effect of Antenna Number 1062

The number of antennas greatly affects the number of 1063

possible beams to be measured thus the training overhead. 1064

The network throughput is significantly impacted by the beam 1065

training overhead. The larger the training overhead, the less the 1066

time available for data transmission thus reducing the through- 1067

put. On the other hand, more antennas will also introduce 1068

higher beamforming gain in transmissions. 1069

In Figure 6a, the training overhead grows exponentially 1070

with the number of antennas. With a larger antenna number, 1071

there will be many more possible beams to be trained. When 1072

the number of AP antennas is 256, compared with 802.11ad, 1073

we observe an overhead reduction of 61.25% when Proposed- 1074

adaptive is used and 40% overhead reduction when using 1075

Proposed-nonadaptive. This demonstrates the effectiveness of 1076

our proposed schemes in reducing the training overhead and 1077

the adaptive beam training further reduces the overhead. 1078

In Figure 6b, the throughput increases when the number 1079

of antennas increases, but the gain doesn’t seem to fully 1080

reflect the gain from antenna number. Obviously, the higher 1081

training overhead compromises the beamforming gain, which 1082

further confirms that it is important to control the training 1083

overhead. We also see that when AP has 256 antennas, 1084

Proposed-adaptive performs 74.41% better than 802.11ad and 1085
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Fig. 6. Effects of antenna number.

Fig. 7. Effects of user number.

Proposed-nonadaptive 59.56%, which indicates the benefits of1086

our proposed beam training and adaptive schemes in reducing1087

the training overhead for higher throughput.1088

D. Effect of User Number1089

The number of users in the network has a significant impact1090

on the network performances as it affects the efficiency of1091

beam training and AP association thus achievable data trans-1092

mission rate and the allocation of different data transmission1093

periods. While keeping each user’s traffic load the same,1094

we vary the number of users.1095

Figure 7a shows that the overall training overhead increases1096

with the number of users, as longer time is needed to complete1097

the channel training for more users. The performance of1098

both of our proposed schemes outperform 802.11ad, and1099

the improvement increases at higher number of users. At a1100

user number of 10, compared to 802.11ad, our Proposed-1101

adaptive and Proposed-nonadaptive have an overhead reduc-1102

tion of 53.53% and 40.03%, respectively. In Figure 7b, the1103

network throughput increases with the number of users, which1104

is not difficult to understand since more users are joining the1105

network for data transmission. Both of our proposed schemes1106

significantly increase the network throughput under different1107

number of users. At the user number of 10, Proposed-adaptive1108

and Proposed-nonadaptive outperform 802.11ad by 94.17%1109

and 66.11%, respectively. This demonstrates the effectiveness1110

of our MAC schemes in accommodating more network traffic.1111

E. Effect of User Mobility1112

The highly directional transmissions of mmWave networks1113

make the network performances sensitive to the movement1114

Fig. 8. Effects of user mobility.

of users. We vary the mobility levels of users and study 1115

the benefits and tradeoffs of our proposed beam tracking, 1116

beamwidth adaptation and mobility estimation schemes. 1117

In Figure 8a, our proposed schemes significantly outper- 1118

form 802.11ad, and the improvement increases as the users 1119

move faster. Our Proposed-BT-BA-ME further improves from 1120

Proposed-BT-BA and Proposed-w/o-BT-BA with the use of 1121

mobility estimation. At the average moving speed of 25 mi/h, 1122

the Proposed-w/o-BT-BA, Proposed-BT-BA, Proposed-BT- 1123

BA-ME outperform 802.11ad by 18.59%, 26.71% and 34.86%, 1124

respectively. While user mobility causess link disconnections, 1125

our flexible beam training and beamwidth adaptation with 1126

mobility prediction reduce the training overhead and delay to 1127

realign the beam. The beamwidth-adaption is very effective 1128

in tracking the beams under mobility while the mobility 1129

estimation helps to further improve the performance. 1130

In Figure 8(b), the network throughput degrades as the 1131

users’ mobility level increases, which shows the sensitivity 1132

of mmWave networks to user movement. At the user average 1133

moving speed of 25 mi/h, the Proposed-w/o-BT-BA, Proposed- 1134

BT-BA and Proposed-BT-BA-ME outperform 802.11ad by 1135

20.31%, 33.90% and 46.85%, respectively. The results validate 1136

the benefits of our proposed beam tracking components and 1137

their effectiveness in reducing the training overhead to main- 1138

tain connectivity for mobile users. The reduction of tracking 1139

and training overhead further allows more resources for data 1140

transmissions to improve the throughput. 1141

VII. CONCLUSION 1142

With its potential of supporting multi-Gbps data transmis- 1143

sions, millimeter-wave technique is a promising candidate for 1144

next-generation wireless communications. However, the need 1145

of highly directional transmission brings great challenges 1146

in the design of medium access control in mmWave net- 1147

works. This paper addresses the need of a low-cost multi- 1148

user beam training scheme with the concurrent use of multi- 1149

level coarse training and multi-resolution block-sparse channel 1150

estimation for fine beam alignment. We also jointly allocate 1151

radio resources for beam training and data transmissions, 1152

design an efficient virtual scheduling scheme based on user 1153

application types and demands, and incorporate flexible beam 1154

tracking scheme for low-overhead beam re-alignment in the 1155

presence of user mobility and channel dynamics. Simulation 1156

results show the significant benefits of our proposed design 1157
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compared with 802.11ad and also the tradeoffs in various1158

design considerations in the proposed framework.1159
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