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Abstract—In a long-haul sensor network, sensors are remotely
deployed over a large geographical area to perform certain tasks. We
consider a class of such networks where sensors take measurements
of one or more dynamic targets and send state estimates of the
target(s) to a fusion center via satellite links. The severe loss and
delay inherent over the satellite channels render insufficient the
number of estimates successfully arriving at the fusion center,
thereby limiting the potential fusion gain and resulting in suboptimal
accuracy performance of the fused estimates. The system can
adopt certain retransmission-based transport protocols so that lost
messages can be recovered over time. However, excess delay may
be incurred that can potentially violate the deadline for reporting
the estimate. For many applications, though, retrodiction/smoothing
techniques can be applied so that the chances of incurring such
excess delay are greatly reduced. In this work, we analyze the
extent to which retrodiction, along with message retransmission,
can improve the performance of delay-sensitive state estimation
tasks. Results of numerical and simulation studies of an illustrative
example and a ballistic target tracking application are shown in the
end to demonstrate the validity of our analysis.

Index Terms—Long-haul sensor networks, state estimate fusion,
message retransmission, prediction and retrodiction, mean-square-
error (MSE) performance, reporting latency.

I. INTRODUCTION

In a long-haul sensor network, sensors are deployed to cover

a vast geographical area, which could be a continent or even the

entire globe depending on the specific application. We consider

a class of such networks in which state estimates (e.g., position

and velocity) of certain dynamic targets – such as aircrafts or

ballistic missiles [3] – are sent from the remote sensors to a

fusion center so that a global estimate can be obtained by fusing

the individual estimates. In some situations, satellite links might

be the only type of cost-effective medium for such long-range

communications because of the prohibitive cost of extending

submarine and terrestrial fiber connections extensively to rough

terrains and sparsely populated areas. This work in particular

focuses on such satellite link-based monitoring and tracking

applications.

The motivation for this work is the many challenges arising

from the imperfect communications over the long-haul satellite

links. Because of the long distance (tens of thousands of miles),

the propagation time of signals is significant. For example, the

round-trip time (RTT) for signal propagation with a geostationary

earth orbit (GEO) satellite is more than a half second [10].

More importantly, communication over the satellite links is

characterized by sporadic high bit-error rates (BERs) and burst

losses. Losses either incurred during transmission or resulting

from the high BERs could further effectively reduce the number

of messages available at the fusion center. It is well known that

fusion of estimates from different sensors is a viable means of

reducing the estimation error; with high loss rates, however, only

a portion of the potential fusion gain could be achieved and the

quality of the fused estimate output obtained may be deemed

unacceptable by the system operator. Apparently, all the above-

mentioned drawbacks of the satellite links could work against the

very purpose of the underlying task – to promptly and accurately

report state estimates – and may result in failure to comply with

the requirement on the worst-case estimation error.

State estimation under imperfect communications has been

studied in the literature. State augmentation [11] can handle fixed

delay up to several sampling periods. In [4], an upper bound of

the packet loss rate is derived above which the estimation error

becomes unbounded. A dynamic selective fusion method based

on information gain is proposed in [9] so that fusion is deferred

till enough information has arrived at the fusion center. One way

to counteract the effect of the lossy transmission link is to adopt

certain transport protocols in which message retransmission is

implemented and some lost messages can be recovered after

one or multiple rounds of retransmission. Not to be overlooked,

however, is another aspect of the system requirement – the

delay performance. Owing to often near real-time requirements

of the monitoring/tracking tasks, the system often allows for

only a small time gap between the time of interest and the time

when the estimate should be finally obtained and reported. This

often comes as a predefined reporting deadline before which

an estimate must be reported by the fusion center. Message

retransmission may exacerbate the reporting delay performance

by incurring extra time on top of the already relatively large

propagation and transmission latency. The fusion center may have

to increase its reporting time significantly in order to recover the

lost messages, even at the risk of violating the stipulated reporting

deadline.

The transmission control protocol (TCP) implemented in wired

Internet and wireless local area networks (WLANs) is still

garnering research efforts that are too numerous to list. Analysis

of TCP-like transport protocols over satellite links can be found

in studies such as [1] and [5]. Commonly acknowledged are

the difficulties in applying “conventional” TCP protocols to

transmission over satellite links, mainly because of the very

large propagation delay not encountered in other networks. The



specificity of our application also somewhat distinguishes our

analysis from the ones geared toward the voice- and video-based

broadcasting and data-based Internet access, both of which have

continuous data in flight. Also of note is that in our settings, state

estimates from the remote sensors are generally intermittently

sent over a wide-band satellite channel – with the interval

possibly ranging from a few times within a second to once every

few minutes – and thus congestion is not as much a concern as

in conventional TCP applications. Hence, we assume a simplified

transport protocol in which retransmission is performed on the

message-level basis.

In many state estimation applications, retrodiction, also known

as smoothing, serves as the “backward prediction” of an earlier

estimate. Depending on the relationship between the length of

data used and the time of interest, we can categorize retrodiction

roughly into fixed-point, fixed-lag, and fixed-interval retrodiction

[11]. Whereas the conventional retrodiction techniques are used

mainly for improving estimates that have been obtained, we are

primarily interested in how missing estimates can be interpolated

from retrodiction1 and how much the excess latency can be

potentially reduced for recovering the lost messages.

In this work, we provide analytical models to systematically

study the impact from retransmission and retrodiction on fu-

sion performance under variable loss and delay conditions in

a long-haul sensor network. In particular, we study two types

of retrodiction mechanisms: non-cooperative and cooperative

retrodiction. In the former case, sensors do not participate in

retroactive estimation themselves and the fusion center has to

extrapolate available information and perform retrodiction on its

own; whereas in the latter scenario, the sensors send out their

own retrodicted values upon request, which are to be utilized

directly by the fusion center upon successful reception. To the

best of our knowledge, this work is among the first to link

both communication (message retransmission) and computation

(prediction and retrodiction) with state estimation performance.

Accounting for both estimation errors and reporting latency, we

explore the effect of applying retransmission and retrodiction on

system performance improvement and their limitations. Simu-

lations of a numerical example and a coasting ballistic target

tracking application are conducted and the results under various

conditions are shown to validate our analysis.

The paper is organized as follows: After briefly introducing

retransmission and retrodiction mechanisms in Sec. II, we provide

analysis of the delivery rate of a message after retransmission

(without retrodiction) in Sec. III. Then we focus on the effect

of retrodiction on the estimation performance improvement in

Secs. IV and V, considering both non-cooperative and coooper-

ative types of retrodiction. Numerical and simulation results are

presented in Sec. VI before we conclude the paper in Sec. VII.

II. BACKGROUND AND SYSTEM MODEL

A. Estimate Fusion

Fig. 1 illustrates the architecture of estimate fusion. The

measurement data are collected at the remote sensors and state

estimates are individually generated. These estimates are then

1In the meantime, an available estimate is retrodicted by subsequent estimate(s)
as well whenever applicable as in conventional retrodiction.
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Fig. 1: Fusion of state estimates generated by a total of M sensors
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Fig. 2: Timing of message retransmission: the timeout is TTO , retrans-
mission window is W , and different choices of the cutoff time TCO are
marked by bold lines

sent via long-haul links to the fusion center, which, upon suc-

cessful reception of a subset of these estimates, applies a certain

fusion rule and obtains the final estimate to be reported. The

raw measurement data usually come in larger volumes and thus

are not directly sent to the fusion center. Many types of filtering

(generating the estimates from the noisy measurements) and fu-

sion (fusing the estimates to generate a better one) algorithms for

tracking applications have been studied in the literature. However,

our focus in this work is not on performance comparison among

different algorithms; rather, of interest to us is the performance

improvement, for given filtering and fusion algorithms, from

retransmission and retrodiction to be described below.

B. Message Retransmission

In a long-haul sensor network, a remote sensor sends out a

message containing the state estimate; upon successful reception

of this message, the fusion center sends back an acknowledgment

(ACK) message to the sensor. A failed arrival of the ACK

message before the expiration of the timeout TTO – due to loss

and/or long delay of the message itself or the ACK – will prompt

the sensor to retransmit the message. Typically, TTO could be

several times the RTT of the connection, and over long-haul

connections it could be of the order of seconds. Setting TTO

too long could reduce the maximum number of retransmissions,

thereby limiting the potential to recover the lost message; on the

other hand, a short TTO may incur many rounds of retransmission

(often unnecessarily) when the sensor could have waited a bit

longer to receive the ACK. Such retransmission continues till the

acknowledgment is received by the sensor, or the retransmission

window W expires. This window should ideally contain multiple

TTO periods so that under adverse link conditions, it’s likely that

the message can eventually be recovered after multiple tries.

In a real system, the reporting deadline may limit the potential

gain from retransmission as the overall time before reporting
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Fig. 3: Timing of estimate retrodiction: the estimation interval is TI

and different choices of the cutoff time TCO are marked by bold lines
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Fig. 4: Prediction and retrodiction: the estimate at time n is to be
obtained

can be very short. A cutoff time TCO is defined to mark the

end of the waiting at the fusion center. This cutoff on the one

hand limits the total number of retransmissions, and on the other

limits certain messages from being eventually delivered due to the

randomness of the delay. In Fig. 2, the effect of this time cutoff

is shown. The window W is set to be 3TTO and hence there are

a total of two rounds of retransmision (at TTO and 2TTO). In the

first case, TCO is small so that the last round of retransmitted

message cannot arrive in time for fusion. While in the last case,

setting TCO way beyond the end of the retransmission window

is not likely to significantly increase the chance of receiving

the message. Therefore, the system should guarantee that the

retransmission window – at the sensors side – is commensurate

with the cutoff time – at the fusion center, as in the second case in

the figure, so that the fusion center could benefit from all rounds

of retransmission while not wasting time attempting to recover

the pending message after the retransmission has ended.

C. Estimate Retrodiction

Estimation of a target state at a particular time based on

measurements collected beyond that time is generally called

retrodiction or smoothing. Retrodiction improves the accuracy of

the estimates, thanks to the use of more information, at the cost

of extra delay. Nevertheless, the inherent link delay in a long-

haul network occurring before the final reporting entails that the

fusion center can exploit the opportunities for potential retrod-

iction to improve the accuracy of the fused estimate. Moreover,

the randomness of the arrival delay of different messages also

facilitates the fusion center to opportunistically interpolate the

missing messages from the available ones for subsequent time

periods.

Consider a discrete-time system in which estimates are gen-

erated regularly at a certain fixed period TI . We emphasize that

retrodiction cannot be universally applied. The prerequisite is that

an estimate at least cannot be reported before a retrodicted esti-

mate can possibly be obtained. In other words, the retransmission

window W and the cutoff time TCO must contain at least one

estimation interval TI
2. This is shown in Fig. 3. In the first case,

no retrodiction can be possibly performed because the cutoff time

comes before the end of the same estimation interval; while in the

second and third case, a maximum of one and two, respectively,

rounds of retrodiction can be possibly carried out. In many actual

systems, the near real-time reporting requirement dictates that the

estimation intervals are chosen fairly small. As a result, the next

estimate can be generated and sent to the fusion center in time

for retrodiction before the reporting deadline.
Let xn denote the true target state at time t = nTI and x̂n its

estimate. One note is that since we have both continuous time

– when addressing latency – and the discrete time indices for

retrodiction analysis, all time subsequently labeled as “n” – the

time of interest to us – should be understood as the continuous

time nTI and the retransmission parameters TTO and W and the

cutoff time TCO are all defined relative to this time instant.
Fig. 4 demonstrates the effect of prediction and retrodiction on

the quality of the state estimate. For each sensor, for example,

we have the following types of estimates when retrodiction of up
to one step is performed:

a) x̂n, shorthand for x̂n|n, the “default” estimate;

b) x̂n− , the predicted estimate;

c) x̂n−|n+1, the retrodicted estimate; and

d) x̂n+|n+1, the retrodicted estimate.

In the cases a) and d), the estimate x̂n is received by the

fusion center; whereas in both other cases, this estimate is

missing and hence prediction of one or multiple steps is at first

necessary. As is well-known in filtering theory, estimates derived

from prediction alone generally have higher errors when system

uncertainty exists; and the errors will increase with the number

of prediction steps that have accrued. For example, x̂n|n−2 is a

worse estimate than x̂n|n−1 in terms of accuracy. On the other

hand, the presence of the subsequent estimate x̂n+1 (in the last

two cases) helps improve the quality of the estimate of time n.

Of course, the improvement is on top of the predicted estimate

in case c) but on the already received x̂n in case d). Of concern

here is whether an interpolated estimate from retrodiction – such

as that in case c) – can adequately substitute the default estimate

in case a); and what is the probabilistic performance of obtaining

these different types of estimates so that the system requirement

on estimation errors can be met.
The quantitative performance of retrodiction also depends on

the specific algorithm. In this work, we apply the Rauch-Tung-

Striebel (RTS) retrodiction [11] because not only the algorithm is

easy to implement, with relatively low computational cost, but the

algorithm involves only the state estimates and their covariances

– rather than the raw measurement data – which is well suited in

our settings when the fusion center needs to run the algorithm.

When the retrodiction task is also carried out by the sensors (as

will be studied in Sec. V), they have greater latitude in selecting

which retrodiction algorithm to use since they have measurements

immediately available. Nevertheless, for fair comparison, we have

the sensors apply the RTS retrodiction algorithm as well when

needed.

2And also the initial latency of the latest estimate to arrive at the fusion center.



III. MESSAGE DELIVERY WITH RETRANSMISSION

The message-level loss and delay characteristics are deter-

mined by the long-haul link conditions. We assume that each

message sent by a sensor is lost during transmission with

probability p independently of other messages. Normally, the

latency that a message experiences before arriving at the fusion

center consists of the initial detection and measurement delay,

data processing delay by both the sensor and the fusion center,

propagation delay, and transmission delay, among others3. These

are collectively considered as the minimum delay that a message

must undergo to reach the fusion center, which is bound mostly

by factors such as the distance of the satellite link, the transmis-

sion data rate, and length of the message. The extra random delay

is often due to link conditions such as weather and terrain. We

suppose a pdf f(t) can model the overall delay t that a message

experiences to be successfully delivered to the fusion center. One

typical example is that of the shifted exponential distribution:

f(t) =
1

μ
exp

t−T
μ , for t ≥ T. (1)

in which T serves as the common link and processing delay, and

μ is the mean of the random delay beyond T . In a real system,

the empirical values of the message delay can be measured over

time and thus an approximate function f̃ can be estimated. In

the following analysis, however, we still use the generic function

f(t) to model the arrival delay.

A. Message Delivery Rate

We are interested in the average probability of a message being

successfully delivered by a certain time, that is, by the cutoff time

TCO. An estimate is only counted once even if it arrives multiple

times due to retransmission. The duplicate messages received by

the FC can simply be ignored as they will not contribute further

to the fusion performance.

With the time of interest being regarded as time zero in

this section, the maximum number of retransmissions before the

cutoff time TCO is

Kretx =

⌈
min{TCO,W}

TTO

⌉
− 1. (2)

From the definition, Kretx+1 is the total rounds of transmission,

including the original and subsequent retransmissions.

We define pkdel,t as the probability that a message is delivered

by time t after k rounds of retransmissions, and

Tretx,k = TCO − kTTO, for k = 0, 1, ...,Kretx (3)

as the duration of the period [kTTO, TCO] in which the k-

th retransmitted message is in flight and could be potentially

delivered to the fusion center.

When there is no retransmission within [0, t], the probability

of a message being delivered by time t is

p0del,t = (1− p)F (t), (4)

in which F (t) =
∫ t

0
f(u) du is the cdf of the arrival delay.

Its complement, the probability that the original message is

3The queueing delay is minimal for the same reason with little/no congestion.

unavailable at time t, is denoted as

p0loss,t = 1− p0del,t = p+ (1− p)F (t), (5)

in which F (t) = 1−F (t) is the tail distribution. With these two

probabilities, we can derive the message delivery rate pKretx

del,TCO
.

The original message is delivered by TCO with probability

p0del,TCO
= p0del,Tretx,0

= (1− p)F (Tretx,0). (6)

And with the first round of retransmission, the delivery probabil-

ity totals

p1del,TCO
= p0del,TCO

+ p0loss,Tretx,0
p0del,Tretx,1

. (7)

In general, for the k-th (0 < k ≤ Kretx) round of message

retransmission, we have

pkdel,TCO
= pk−1

del,TCO
+ p0del,Tretx,k

(
k−1∏
i=0

p0loss,Tretx,i

)
. (8)

In other words, the extra delivery rate from the k-th round is

realized when all the previous k − 1 retransmissions and the

original message are not available by TCO. Subsequently, we

can obtain the overall message delivery probability within time

[0, TCO] by summing up all such probabilities:

pKretx

del,TCO
=

Kretx∑
k=0

p0del,Tretx,k

(
k−1∏
i=0

p0loss,Tretx,i

)

= (1− p)

Kretx∑
k=0

F (Tretx,k)

{
k−1∏
i=0

[1− (1− p)F (Tretx,i)]

}
.

(9)

B. MSE Performance

The estimation mean-square-error (MSE) performance can be

linked to the message delivery probability. As a general rule

of thumb, as an unbiased estimate becomes more likely to be

delivered to the fusion center, the quality of the final estimate

benefits in terms of improved accuracy. To illustrate the effect,

we consider a numerical example, in which the scalar dynamic

state evolves as follows:

xn = −0.95xn−1 + wn, (10)

where wn is zero-mean white Gaussian process noise with

variance 1. The system is observed by a sensor of the form

x̂n = xn + vn, (11)

where the i.i.d. estimation error term vn also satisfies vn ∼
N (0, 1) and is independent of wn.

The MSE is simply the square of the estimation error for this

scalar system, which is MSE = 1 when all the messages are

delivered. Let x̂F denote the final state estimate at the fusion

center. Now suppose in a lossy environment, the fusion center

uses the estimate provided by the sensor x̂F
n = x̂n, if the estimate

is successfully received; and its own predicted state from the

previous estimate x̂F
n = −0.95x̂F

n−1 otherwise. As the system

imposes its maximum tolerable MSE as MSEmax = 1.5, there

exists an associated minimum message delivery rate pdel,min

– which is found to be 0.63 from simulations – below which

the MSE requirement will be violated. Consequently, the effect



of network loss and delay characteristics and the retransmission

parameters (including timeout TTO, window W , and cutoff TCO)

should guarantee that the delivery rate in Eq. (9) is at least

pdel,min.

TABLE I: MSE performance with different TCP timeout and final
cutoff: loss p = 0.5, delay t ∼ U(0.5, 2.5)

cases TTO W TCO No. retx del prob satisfy MSE?

1 1.5 3 3 1 .625 N

2 1.2 3 3 2 .671 Y

3 1.5 3 3.5 1 .688 Y

In Table I, we show how parameters can be tuned to meet the

MSE requirement. The message-level loss rate is measured to

be p = 0.5, and the arrival delay falls uniformly in the interval

[0.5,2.5]. Case 1 – considered as the default setting – cannot

satisfy the maximum tolerable MSE set at 1.5. From Eq. (9), the

actual delivery rate is 0.625, just shy of the minimum delivery rate

0.63. To improve the performance, the system can either schedule

more frequent retransmission (case 2) or delay its final reporting

if allowed (case 3). In case 2, the timeout is set as 1.2 instead

of 1.5; subsequently, a new round of retransmission can be

scheduled before the cutoff time, thereby increasing the message

delivery rate to 0.671, now above the minimum requirement.

Alternatively, in case 3, with the same retransmission schedule,

the fusion center simply waits an extra half second, and the

resulting delivery rate is even better, at 0.688.

IV. STATE ESTIMATES WITH RETRANSMISSION AND

NON-COOPERATIVE RETRODICTION

From the last section, retransmission can effectively increase

the message delivery rate, which in turn improves the estimation

MSE performance. However, at times, we wish to expedite

this recovery process so that the final estimate can be reported

promptly; besides, the system may impose rather stringent re-

quirements on the estimation MSE so that given the same allo-

cated time for retransmission, we want more accurate estimates

from the output of the fusion center. This section, along with

Sec. V, addresses these concerns by means of utilizing estimate

retrodiction.

Based on the criteria that whether the sensors actively partici-

pate in retrodiction during message retransmission, we categorize

our schemes into non-cooperative and cooperative retrodiction. In

the former case, message retransmission is carried out in exactly

the same way as before; it is up to the fusion center to oppor-

tunistically apply retrodiction whenever applicable. In contrast,

cooperative retrodiction means that the sensors themselves, upon

request, send out the retrodicted estimates during retransmission

so that the fusion center can directly fuse such retrodicted values

if successfully delivered. In what follows, we derive the delivery

rates of different types of estimates during retransmission for

both types of retrodiction and consider their impact on the final

MSE performance. The remainder of this section focuses on the

non-cooperative retrodiction.

A. Analysis of One-Step Non-Cooperative Retrodiction

We aim to derive the delivery probabilities of different types

of estimates with retrodiction of up to one step being performed

and the resulting MSE performance. Analysis for retrodiction of

two or more steps can be similarly obtained, albeit in a more

exhaustive manner, as the number of possible scenarios grows

exponentially with the number of steps4.

Using similar notations as those introduced in Sec. II, we

consider the following probabilities at the cutoff time nTI+TCO:

• pn− , the probability that x̂n− is reported (neither x̂n or x̂n+1

is delivered by the cutoff);

• pn|n, the probability that x̂n|n is reported (x̂n+1 is not

delivered yet);

• pn−|n+1, the probability that x̂n−|n+1 is reported (x̂n+1 has

been delivered but not x̂n);

• pn+|n+1, the probability that x̂n+|n+1 is reported (both x̂n

and x̂n+1 have been delivered).

The analysis in the last section can be readily applied here,

thanks to the independence of the transmission from different

time intervals. Similar to Eq. (2), we have the maximum number

of retransmissions during t ∈ [nTI + TI , nTI + TCO] given as

Kretx,retr1 =

⌈
min{TCO − TI ,W}

TTO

⌉
− 1, (12)

in which the subscript retr1 denotes that there is a maximum

of one-step retrodiction. And the duration in Eq. (3) can also be

defined likewise for the above time interval:

Tretx,retr1,k = TCO − TI − kTTO, for k = 0, 1, ...,Kretx,retr1 .

(13)

To calculate the above probabilities, we need to consider the

probability that x̂n+1 is delivered at the cutoff time. This proba-

bility, denoted as p
Kretx,retr1

del,TCO−TI
, follows the very same form as in

Eq. (9), but with newly defined Eqs. (12) and (13) substituting

the corresponding terms. Then we have

pn− = (1− pKretx

del,TCO
)(1− p

Kretx,retr1

del,TCO−TI
) (14)

pn|n = pKretx

del,TCO
(1− p

Kretx,retr1

del,TCO−TI
) (15)

pn−|n+1 = (1− pKretx

del,TCO
)p

Kretx,retr1

del,TCO−TI
(16)

pn+|n+1 = pKretx

del,TCO
p
Kretx,retr1

del,TCO−TI
(17)

It’s generally difficult to derive the MSE analytically. Note that

in Eqs. (14) and (16), the time at which the last received estimate

was generated is not specified; that is, the number of prediction

steps leading up to x̂n− is unknown. Even with known MSEs

for x̂n|n and x̂n+|n+1, an exact evaluation of MSEs for x̂n−

and x̂n−|n+1 requires knowledge of the MSEs for any number

of prediction steps, which is of course unrealistic. However,

approximation from finite-step predicted values can be used to

somewhat reflect the actual MSE performance. Numerical results

will be provided in Sec. VI.

V. STATE ESTIMATES WITH RETRANSMISSION AND

COOPERATIVE RETRODICTION

In this section, we provide similar analysis as above – that is,

with a maximum of one step of retrodiction being performed

4Another caveat is that message-level loss and delay may worsen as signifi-
cantly more data are sent simultaneously with increasing retrodiction steps.



– and focus on comparisons between cooperative and non-

cooperative retrodiction techniques. In particular, two possible

implementations of the cooperative retrodiction are studied, one

in which we only consider one-way communications – as we

have done so far – and the other requiring two-way analysis that

addresses the delivery of the ACK messages as well.

A. Condition for One-Step Cooperative Retrodiction

In non-cooperative retrodiction, message retransmission is

scheduled in the manner as described in Sec. II and a sensor

is oblivious to the retrodiction process happening at the fusion

center. In contrast, cooperative retrodiction requires the retrod-

icted estimates to be sent out during retransmission. In order for

a sensor to actually send out its one-step retrodicted estimates,

the retransmission window W should not have expired at the end

of the estimation interval TI ; in fact, there should be at least one

round of retransmission initiated by the sensor after TI when

the retrodicted estimate can be sent out by the sensor. Hence,

compared to non-cooperative retrodiction, tighter conditions are

in place for cooperative retrodiction.

B. Cooperative Retrodiction: One-way Communications without
ACK

During the time period [nTI + TI , nTI + TCO], instead of the

original estimate, the sensor sends out the retrodicted estimate

x̂n+|n+1 directly. The total number of retransmission rounds for

the original message during [nTI , nTI + TI ] is reduced to

Kretx,coop =

⌈
TI

TTO

⌉
− 1, (18)

while both the new state estimate x̂n+1|n+1 and retrodicted

estimate x̂n+|n+1 are sent after TI . If TI = lTTO, l = 1, 2, 3, ...,
both estimates will undergo

Kretx,coop,retr1 = Kretx,retr1 =

⌈
TCO − TI

TTO

⌉
− 1, (19)

rounds of retransmission, in which the subscripts “coop, retr1”

and “retr1” denote cooperative and non-cooperative retrodiction

of up to one step respectively. Similar to our earlier analysis,

we can obtain the delivery probabilities of the original esti-

mate x̂n|n as p
Kretx,coop

del,TCO
, of the subsequent estimate x̂n+1|n+1

as p
Kretx,retr1

del,TCO−TI
, and of the retrodicted estimate by the sensor

x̂n+|n+1 as p
Kretx,coop,retr1

del,TCO−TI
. With an increased size of the state

space, the probabilities of obtaining different types of estimates

at the cutoff time can now be computed as

pn− =

(1− p
Kretx,coop,retr1

del,TCO−TI
)(1− p

Kretx,coop

del,TCO
)(1− p

Kretx,retr1

del,TCO−TI
) (20)

pn|n =

(1− p
Kretx,coop,retr1

del,TCO−TI
)p

Kretx,coop

del,TCO
(1− p

Kretx,retr1

del,TCO−TI
) (21)

pn−|n+1 =

(1− p
Kretx,coop,retr1

del,TCO−TI
)(1− p

Kretx,coop

del,TCO
)p

Kretx,retr1

del,TCO−TI
(22)

pn+|n+1 =

p
Kretx,coop,retr1

del,TCO−TI
+ (1− p

Kretx,coop,retr1

del,TCO−TI
)p

Kretx,coop

del,TCO
p
Kretx,retr1

del,TCO−TI

(23)

Note in Eq. (23) that the estimate x̂n+|n+1 can be obtained either

directly from the sensor, or indirectly in the manner we discussed

in the non-cooperative retrodiction case.

The above analysis is along the same line as that in the last

section, where only one-way communication is considered. This

can also been seen as the extreme case where no ACK is ever

sent back by the fusion center, since the sensors always have

their one-step retrodicted estimates sent out after one estima-

tion interval TI . In reality, though, the ACK might have been

successfully received by the sensor within TI , thereby obviating

the need for further retransmission. Next, we carry out two-way

communication analysis to account for such scenarios.

C. Cooperative Retrodiction: Two-way Communications with
ACK

For satellite systems with the conventional bent-pipe type of

transponders [10], one uplink (sensor → satellite) and downlink

(satellite → FC) pair is used for the forward link, and the

reverse link similarly consists of the uplink (FC → satellite)

and downlink (satellite → sensor) pair. Depending on specific

channel allocation schemes (e.g., TDMA- or FDMA-based), that

is, whether the forward and reverse channels are assigned the

same frequency band, the delay distribution of the ACK could

vary from that of the messages5. Regardless, we have the pdf

of the sum of two random delay values being expressed as the

convolution of their respective pdfs:

h(t) = f(t) � g(t) =

∫ ∞

t=0

f(u)g(t− u) du, (24)

in which f and g are the distributions of the forward and reverse

links, respectively. Meanwhile, if the ACK message is lost over

the reverse link with a probability pACK , the overall probability

that the ACK message can be eventually delivered is (1−p)(1−
pACK), and its complement

pT = 1− (1− p)(1− pACK) (25)

is the loss rate of the “super-message” that includes both the

estimate message and ACK. With this loss rate and h(t) function,

we have the probability that the ACK is delivered by time t and

hence no more retransmission occurs afterward:

pretx(t) = (1− pT )H(t), for t ∈ [0,min{TCO,W}], (26)

in which H(t) =
∫ t

0
h(u)f(u) du is the cdf of the two-way

communications delay.

After the ACK has been successfully received within one

estimation interval, the retrodicted estimate is no longer to be sent

out, thereby reducing the chance that the best estimate x̂n+|n+1

is available at the fusion center. Subsequently, with probability

1− pretx(TI), Eqs. (20)–(23) hold true; on the other hand, with

probability pretx(TI), only two types of estimates are possible

to be used by the cutoff time – since x̂n|n has been received

successfully – with probabilities 1 − p
Kretx,retr1

del,TCO−TI
for x̂n|n and

p
Kretx,retr1

del,TCO−TI
for x̂n+|n+1. Using the law of total probability, we

can easily incorporate them to calculate the overall probabilities

of obtaining each type of estimate.

5Also the initial delay could be quite different too, owing to the usually much
smaller size of the ACK messages.



TABLE II: Probabilities of using different types of estimates with
default link statistics

estimate x̂n− x̂n x̂n−|n+1 x̂n+|n+1

no retx .500 .500 - -

retx, no retr .259 .741 - -

non-coop retr .134 .384 .125 .357

coop retr (w/o ACK) .134 .134 .125 .607

coop retr (w/ ACK) .080 .288 .075 .557

VI. PERFORMANCE STUDIES OF ESTIMATE FUSION WITH

RETRANSMISSION AND RETRODICTION

In this section, we first revisit the numerical example intro-

duced in Sec. III and explore the effects of estimate fusion,

message retransmission, and state retrodiction on estimation

performance. Both the one-sensor and two-sensor scenarios are

considered, the latter of which can be generalized to multi-sensor

fusion. Then, we simulate the tracking of a coasting ballistic

target and demonstrate the benefits and limitations of applying

retransmission and retrodiction.

A. Communication Link Statistics

The following link statistics are used in our simulations. The

default forward link loss rate is p = 0.5, compared to that of

the reverse link pACK = 0.1. The ACK message is often much

shorter than the estimate and thus is less likely to be lost. The

arrival delay of both directions satisfies the shifted exponential

distribution defined in Eq. (1), with μF = 0.3 s and μR = 0.2 s

for the forward and reverse links respectively and common initial

latency T = 0.5 s. The default TTO = TI and W = TCO are set

to be 1.5 s and 3 s respectively in the numerical example, both

multiples of the measured RTT at 0.75 s; whereas in the ballistic

target tracking simulations, W = TCO = 5 s and TTO = TI is

set as 3 s.

B. Performance of The Numerical Example

Again, the system state evolves according to Eq. (10). With

the statistics from the last subsection, we list the probabilities, as

derived in Secs. IV and V, of using different types of estimates

at the time cutoff, in Table II. Comparing the first two rows, we

observe that message retransmission can effectively increase the

delivery rate of the original message x̂n as expected. Comparing

the last three rows with the second, we observe that although the

probability of using the original estimate x̂n becomes smaller

when retrodiction is applied, the fusion center has a good chance

to obtain the estimate with the smallest possible error – x̂n+|n+1

in this case as shown in the last column – and result in further

reduction of the estimation error.

1) Estimation MSE with One or Two Sensors: Consider the

following two estimates

x̂1
n = xn + v1n (27)

x̂2
n = xn + v2n (28)

generated by Sensor 1 and 2 respectively, where v1n ∼ N (0, 1)
and v2n ∼ N (0, 2), independent of each other, and both are

independent of the process noise wn. The two sensors are

heterogeneous as they have uneven estimation error performance.

TABLE III: Estimation error variances from different pairs of sensor
estimates

x̂1
n|n−1

x̂1
n x̂1

n−|n±1
x̂1
n+|n+1

EV 1.903 1 1.143 0.775

x̂2
n|n−1

2.805 1.602 0.737 0.812 0.607

x̂2
n 2 0.975 0.667 0.727 0.559

x̂2
n−|n±1

1.933 0.959 0.659 0.990 0.553

x̂2
n+|n+1

1.631 0.878 0.620 0.672 0.663

EV: error variance

If both sensors send their state estimates to the fusion center,

the following fusion rule is applied:

PF = P 1 − P 1 − P 12

P 1 + P 2 − 2P 12
, (29)

x̂F = x̂1 +
P 1 − P 12

P 1 + P 2 − 2P 12
(x̂2 − x̂1), (30)

which is the scalar form of the track-to-track fusion (T2TF) [2].

In these equations, x̂1 and x̂2 are respectively the estimates for

Sensor 1 and 2 eventually served as the inputs to the fusion

algorithm; P 1 and P 2 are the associated error variances. Because

of the common process noise wn, the correlation between the

two estimates cannot be ignored, whose effect is reflected in the

cross-covariance term P 12. Calculation of P 12 is not always easy,

and we have obtained the results from trial-and-error for different

pairs of estimates from both sensors.

In Table III, the error variances of different types of estimates

are listed in the second row for Sensor 1 and the second column

for Sensor 2. The symbol “x̂n−|n±1” denotes the estimate is

obtained with both x̂n+1 and x̂n−1 available, but not x̂n. We note

that although the accuracy performance of Sensor 2 is generally

worse than that of Sensor 1, retrodiction can generate a better

estimate than the original when the latter is not available; that

is, x̂n−|n±1 has a smaller error variance than the original x̂n for

Sensor 2, but not the case for Sensor 1. The remaining entries

in the table are the error variances of the fused state estimate

for different pairs of estimates of both sensors. Some interesting

results can be observed from the table. For example, the best

estimate is not obtained when both the retrodicted estimates are

used, but rather x̂n+|n+1 from Sensor 1 and x̂n−|n±1 from Sensor

2. In fact, the last column shows that with x̂n+|n+1 from Sensor

1 available, it is a better choice to use the one-step predicted

estimate from Sensor 2 (which has a higher error variance)

instead of the retrodicted x̂2
n+|n+1.

Figs. 5 and 6 show the estimation MSEs of various schemes

when the fusion center uses only Sensor 1 or 2, respectively.

As can be observed in both figures, the performance difference

before versus after using retransmission and retrodiction becomes

more significant as the message-level loss rate increases. Even

with moderate loss rates, for both sensors, message retransmis-

sion can effectively reduce the MSEs by more than 20% over

one-time transmission. When retrodiction is also applied, the

MSEs are reduced by an overall of more than 50% with Sensor

1 versus that of over 40% with Sensor 2. Further performance

improvement from non-cooperative to cooperative retrodiction,

both with or without ACK, though discernible from the plots, is

not as significant.

In Fig. 7, the MSEs of the fused estimate for different

schemes under variable loss rates are plotted. Comparing with
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Fig. 8: Estimation MSEs under different process noise variances

the two figures to the left, we can clearly see the improved

accuracy performance after fusion for every case. In addition, the

distinction of the error reduction performance between low- and

high-loss scenarios becomes more obvious. All schemes share

nearly identical MSEs when the loss rate is low; however, the

percentage of error reduction after applying retransmission and

retrodiction is even higher, under moderate to severe loss rates,

than that with only either sensor, at more than 60%.

2) Process Noise: In Eq. (10), the process noise has a variance

of 1. We repeat the above studies for a system whose process

noise follows wn ∼ N (0, 0.5). The comparisons are shown in

Fig. 8 for the two-sensor fused estimates with the loss rate 0.5

(the cooperative retrodiction is shown here as one case as the

performance difference with or without ACK’s is small). The

differences in the MSEs among the schemes are smaller when the

process noise variance is reduced by a half. Generally speaking,

when the system evolves with less uncertainty – corresponding to

a smaller noise variance – the effect of loss is not as significant

as the system becomes more “predictable”. In the same light,

retrodiction is not likely to bring as much improvement since the

newest measurement does not provide significant information to

reduce the estimation error.

3) Cutoff Time: As the default parameters, the cutoff time

TCO has been set to be 3 s, twice the duration of both the

estimation interval TI and retransmission timeout TTO. The effect

of reducing the cutoff time on the fused estimate is shown in Fig.

9. For one-time transmission without retrodiction, the error hardly

changes because a message, if not lost, would have been delivered

within 2 s with a probability of over 99%. However, since

the loss rate is 0.5, retransmission can recover, with increasing

probabilities when the cutoff time is increased, the message lost

in the first round of transmission. Also the chances of receiving

the subsequent and/or the retrodicted estimate go up with longer

cutoff deadlines. Such effect is most noticeable as the cutoff

increases from 2 s to 2.4 s during which the new round of

(re)transmission is mostly likely to arrive.

C. Performance of Tracking of a Coasting Ballistic Target

We implemented estimation of a coasting ballistic target whose

motion is governed mostly by gravity. By considering an example

with minimal process noise, we demonstrate that although the

use of retrodiction is fairly limited with perfect communications,

retransmission along with retrodiction can still provide system

improvements in a lossy transmission medium.

1) Target Model: The states of a coasting ballistic target are

generated using the following state-space model [8]:

ẋ �
[
ṗ

v̇

]
= f

([
p

v

])
�
[

v

aG(p)

]
. (31)

The target state vector x =
[
pT vT

]T
, where p =

[
x y z

]T
and v � ṗ =

[
ẋ ẏ ż

]T
are the target position and velocity

vectors, respectively. aG(p) is the gravitational acceleration

under the spherical Earth model [8]:

aG(p) = − μ

p2
up = − μ

p3
p, (32)

where p is the vector from the Earth’s center to the target,

p � ‖p‖ is its length, up � p/p is the unit vector in

the direction of p, and μ = 3.986012 × 105 km3/s2 is the

Earth’s gravitational constant. The algorithm for state propa-

gation can be found in [12]. The initial target state is [6]:

[113.75 3950 5150 0.94 3.33 − 6.0125]T , in which the

position and velocity values are in the units of km and km/s

respectively.

2) Sensor Profiles: A total of M = 3 sensors are deployed for

reporting their state estimates. The measurements (z) of the range

(r), elevation (E), and azimuth (A) of the target are generated

using the following measurement model [6]:

z = h(x) + v, (33)

where the target state x is in Cartesian coordinates, but the

measurement z and additive noise v are in the sensor spherical

coordinates. If [x y z]T is the true position of the target, then
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the measurement is given as

z =

⎡
⎣ r

E

A

⎤
⎦+ v =

⎡
⎢⎢⎢⎢⎣

√
x2 + y2 + z2

tan−1

(
z√

x2+y2

)
tan−1

(
x
y

)

⎤
⎥⎥⎥⎥⎦+ v, (34)

v ∼ N (0,R), R =

⎡
⎢⎣
σ2
r 0 0

0 σ2
E 0

0 0
σ2
E

cos2(E)

⎤
⎥⎦ . (35)

The sensors apply the recursive best linear unbiased estimator

(BLUE) proposed in [13] improving upon the measurement-

conversion approach [7]; that is, the output has the minimum

MSE among all linear unbiased filters in Cartesian coordinates.
3) Fusion Rule: We apply the linear fuser defined as follows:

PF =

(
M∑
i=1

(Pi)−1

)−1

, and x̂F = PF
M∑
i=1

(Pi)−1x̂i, (36)

where x̂F is the fused estimate and PF is its error covariance

matrix. Pi and x̂i are similarly defined for the estimates used

by the fusion center corresponding to Sensor i ∈ {1, 2, 3}. The

cross-covariances do not appear in the fuser because the process

noise is zero in this example; that is, the trajectory of the ballistic

target is deterministic.
4) Position Root-Mean-Square-Error (RMSE) Performance:

Because of the zero process noise, the effect of prediction and

retrodiction on estimation errors is minimal. Our test results indi-

cate that under perfect communications, no discernible difference

exists among the actual, predicted, or retrodicted estimates (one-

step for both of latter cases). With lossy transmission links, how-

ever, the accuracy performance is degraded by various degrees

compared to the full-communication case. In Fig. 10, the RMSE

performance of the position estimate during the first 5 minutes of

the tracking task is plotted for various loss rates. The estimation

errors become noticeably higher as the lost rate is increased.

The performance difference in the first 30 seconds is especially

striking since the average waiting time for the fusion center to

receive the initial estimates of all the sensors is significantly

longer with higher loss rates.

To reduce the estimation error, we introduce retransmission and

retrodiction, and the results are plotted in Fig. 11 for a severe loss

rate 0.9. As the initial messages are more likely to be delivered

with retransmission, the chances of applying retrodiction are also

increased; the combined effects are two-fold: first, the fusion

center can report its first estimate earlier; second, the estimation

error can be reduced by 20-30% in the first half minute when both

techniques are applied. These can be significant improvements in

time-critical tracking tasks.

VII. CONCLUSION

In this paper, focusing on the state estimate fusion in lossy

long-haul sensor networks, we analyzed the probabilities of

obtaining different types of estimates by the fusion center when

retransmission and retrodiction techniques are applied. Simula-

tion results of a numerical example and one coasting ballistic

target tracking example demonstrate the effectiveness of the

retransmission and retrodiction mechanisms and the extent to

which they can be applied so that the system requirements on

estimation errors can be satisfied.
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