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Abstract— With the popularity of wireless devices and the
increasing demand of network applications, it is emergent to
develop more effective communications paradigm to enable
new and powerful pervasive applications, and to allow services
to be accessed anywhere, at anytime. However, it is extremely
challenging to construct efficient and reliable networks to
connect wireless devices due to the increasing communications
need and the dynamic nature of wireless communications.
In order to improve transmission throughput, many efforts
have been made in recent years to reduce traffic and hence
transmission collisions by constructing backbone networks
with the minimum size. However, many other important
issues need to be considered. Instead of simply minimizing
the number of backbone nodes or supporting some isolated
network features, in this work, we exploit the use of algebraic
connectivity to control backbone network topology design
for concurrent improvement of backbone network robustness,
capacity, stability and routing efficiency. In order to capture
other network features, we provide a general cost function and
introduce a new metric, connectivity efficiency, to tradeoff
algebraic connectivity and cost for backbone construction.
We formally prove the problem of formulating a backbone
network with the maximum connectivity efficiency is NP-hard,
and design both centralized and distributed algorithms to
build more robust and efficient backbone infrastructure to
better support the application needs. We have made extensive
simulations to evaluate the performance of our work. Com-
pared to literature studies on constructing wireless backbone
networks, the incorporation of algebraic connectivity into
the network performance metric could achieve much higher
throughput and delivery ratio, and much lower end-to-end
delay and routing distances under all test scenarios. We hope
our work could stimulate more future research in designing
more reliable and efficient networks.

Our performance studies demonstrate that, compared to
peer work, the incorporation of algebraic connectivity into
network performance metric could achieve much higher
throughput and delivery ratio, and much lower end-to-end
delay and routing distances under all test scenarios. We hope
our work could stimulate more future research in designing
more reliable and efficient networks.

I. INTRODUCTION

THere are increasing interests and use of wireless
networks with the proliferation of wireless devices,

and the fast progress of mobile computing and wireless
networking techniques. In a multi-hop wireless network,
wireless devices could self-configure and form a network
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with an arbitrary topology. The network’s topology may
change rapidly and unpredictably. Such a network may
operate in a stand-alone fashion, or may be connected to
the larger Internet. Multi-hop wireless networks become a
popular subject for research in recent years, and various
studies have been made to increase the performance of the
networks and support more advanced mobile computing
and applications [1]–[5].

With the popularity of wireless devices, there is a signif-
icant increase of communication nodes in the network. In
wired networks, a larger number of network nodes could
potentially lead to the increase of throughput and reduction
of network diameter. In wireless networks, however, due to
the sharing of transmission medium, the competition among
a larger number of nodes in accessing the channel would
result in higher transmission collisions, thus a significant
increase of transmission delay, throughput degradation, and
extra energy consumption. Many efforts have been made
in recent years to construct a backbone network to carry
the total network traffic by selecting a minimum set of
backbone nodes out of the total network nodes, in order to
reduce the total network transmissions and hence collisions
for improving the network throughput [?], [10]–[13], [26]–
[28].

In a dynamic wireless network, it is important and
challenging to support reliable communications to reduce
network transmission loss and failure in presence of node
mobility, device unreliability and unstable wireless com-
munications medium. It is especially important to ensure
reliable communications over a backbone network which
is responsible for carrying the total network traffic. In ad-
dition, there is a need to consider other important factors in
backbone design, including network stability, capacity, load
balancing, path length, energy consumption and therefore
longevity. These issues are largely ignored in topology
studies carried in the literature. Although a very limited
number of backbone schemes [17], [24], [37] have been
proposed to support a certain degree of network reliability,
the increase of vertex degree of backbone nodes locally
is conservative, which would compromise the network
capacity with a higher number of backbone nodes. They
also generally do not consider other important network
features discussed above.

To achieve backbone reliability and support other im-
portant network features discussed above, in this work, we
propose a new metric, connectivity efficiency. Specifically,
we exploit use and control of algebraic connectivity [15],
an important concept introduced in spectral graph theory,
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in backbone network design to control backbone network
topology for improved robustness, stability, capacity and
routing efficiency. To further capture other network fea-
tures, we consider the use of a cost function. The connec-
tivity efficiency is defined as a function of algebraic con-
nectivity and total network cost, which allows the backbone
design to tradeoff between increasing algebraic connectivity
and reducing total network cost. To the best of our knowl-
edge, this is the first work that exploits use of algebraic
connectivity to capture the spectral characteristics of the
network graph in designing a wireless backbone network
that can simultaneously improve the network performance
from several important perspectives. In addition, the intro-
duction of a general cost function allows the incorporation
of other network features in backbone design. Besides
serving as a basis for designing an efficient and reliable
mobile backbone network, we expect the new performance
metric proposed in this work to be applicable in other
network research fields for a higher network performance.

The objective of our backbone design is to select a subset
of nodes out of all candidate backbone nodes to form a
connected backbone network with the maximum network
connectivity efficiency. We prove that the connectivity
efficiency maximization problem is NP-hard, and propose
both centralized and distributed approximate algorithms to
solve the problem. Our backbone construction algorithms
do not constrain the cost function format so that the
proposed backbone formulation algorithms can be applied
for achieving various design goals. To demonstrate the
benefit of introducing a new and more effective metric
for backbone design and evaluate the performance of our
backbone construction algorithm, we introduce a node cost
model to capture the impact on delay and hence network
capacity due to node capacity, transmission error, and node
distribution. The total network cost is the summation of
node cost.

The rest of the paper is organized as follows. In Section
II, III, and IV, we review the related work in the literature,
analyze the features of algebraic connectivity and formulate
the problem. We prove that the NP hardness of the connec-
tivity efficiency maximization problem in Section V, and
present our centralized algorithm and distributed algorithm
in Sections VI and VII respectively. In Section VIII, we
evaluate the performance of our algorithms through ex-
tensive simulations. Finally, we summarize the results and
discuss future research directions in Section IX.

II. RELATED WORK

Cluster organization has been widely studied in the
literature work. It is generally performed in two steps,
selecting cluster heads among nodes based on some criteria
and forming clusters by associating each cluster head with a
set of members. Clusterhead selection criteria fall into three
categories: lowest (or highest) ID among all unassigned
nodes [30], maximum node degree [29], or some generic
weight [25]. A set of heuristic approaches have been
proposed to construct the backbone networks. Ju et al.

[7], [39] introduced heuristic approaches to construct the
backbone network. Blough et al. [18] intended to constrain
the interference by limiting the maximum degree of nodes.

Distributed algorithms to construct connected dominating
sets (CDS) in ad hoc networks are studied in [10]–[12].
Alzoubi et al. [10] models the transmission range as a
unit disk, and proposes a localized approximate method to
construct the minimum CDS within a constant time using a
linear number of messages. Marathe et al. [34] also models
the network as unit disk graph, and considers methods for
constructing maximum independent set, minimum coloring,
and minimum dominating set. The algorithm in [11] marks
a node as a dominator if it has two unconnected neighbors,
and reduces the CDS size by applying two dominant
pruning rules. Dai et al. [12] further improve the algorithms
proposed in [11] to reduce CDS size. Wu et al. [1] propose
an iterative local solution (ILS) for computing a CDS with
the objective of reducing the CDS size over a number
of iterations. A survey and simulation-based performance
studies were carried in [31] to compare various backbone
construction schemes proposed in literature. Scheideler et
al. [19] further explored interference model in the dominat-
ing set problem. These schemes mainly focus on forming
a CDS with the minimum size without considering the
transmission reliability and other network features.

Algorithms in [13], [25]–[28] considered using different
weights as the priority criteria to select clusterheads, while
the goal of the majority of the schemes is to minimize
the number of clusterheads (or the size of the backbone)
instead of the total weight of the clusterheads. The priority
is given to nodes with high stability or low mobility in
[27], and to nodes relatively stable and with high degree
in [28]. Basagni [26] gives an algorithm to solve the
maximal weighted independent set problem. Wang et al
[13] develops a distributed heuristic algorithm for con-
structing the minimum weighted dominating set and the
minimum weighted connected dominating set. However,
these algorithms also do not consider the overall backbone
network reliability.

The authors in [36], [37] observe the importance of
reducing network diameter. The backbone construction in
[36] is based on the hard limit on the network diameter
without considering reliability. The authors in [17], [24]
and [37] intended to form a more robust backbone network
which was k-connected, k-dominating and k-connected, m-
dominating respectively by enforcing a conservative local
vertex degree constraint. In contrast, we exploit the alge-
braic connectivity which supports transmission reliability
at a larger network range (i.e., the path level) in our back-
bone design to improve network reliability. The algebraic
connectivity has a continuous value and can serve as a
fine metric to measure the network connectivity. Besides
serving a metric for network reliability, a higher alge-
braic connectivity will ensure a higher bottleneck capacity
and network capacity, higher network stability, and higher
routing efficiency. The reduction of network diameter is a
natural result when increasing the algebraic connectivity for
a higher network reliability. In addition to these factors,
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our proposed performance metric incorporates a general
cost function to allow the capture of other network features
in the backbone design with a tradeoff between increasing
algebraic connectivity and reducing the total network cost.

The idea of constructing a hierarchical backbone network
was considered in [32], [33], [35], [38]. Xu et al. [38]
simply selects the nodes that first claim the leadership in a
neighborhood to be clusterheads, while TBONE proposed
in [35] attempts to minimize the number of backbone
nodes, giving priority to higher weight nodes. Work in
[32] attempts to cover all the regular nodes assuming there
are an infinite number of backbone capable nodes, while
minimizing the number of nodes required in the backbone
construction. The authors in [33] propose a more practi-
cal backbone network deployment algorithm with a given
number of bachbone nodes. Instead of simply minimizing
the number of backbone nodes or some basic cost function,
we propose a new performance metric in this paper, which
will facilitate building more reliable and efficient backbone
networks. Finally, the problem of finding the maximum
algebraic connectivity augmentation has been proved to be
NP-hard in [45]. In this paper, we further prove that forming
a connected dominating set by selecting a subset of nodes
from the network to maximize the algebraic connectivity
efficiency is NP-hard.

III. THEORETICAL FOUNDATION

In this section, we analyze the properties of algebraic
connectivity which are important for network design. We
first introduce some basic concepts in graph theory, and
we then show the good features of algebraic connectivity
and its properness in being a backbone network design
metric through the analysis of a set of theories on the
characteristics of algebraic connectivity.

For a graph G with n vertices, v(G) and e(G) are vertex
and edge connectivity of G respectively. The diameter
diam(G) equals the maximum shortest distance between
all pairs of vertices, and ρ represents the average distance.
Spectral graph theory studies the properties of a graph G in
relationship to the characteristic polynomial, eigenvalues,
and eigenvectors of its adjacency matrix A or Laplacian
matrix L. The Laplacian of G is defined as L(G) = ∆−A,
where the elements of the diagonal matrix ∆ are the vertex
degrees of G with ∆m as the maximum of them, and L is
positive semidefinite quadratic. Assume L has n eigenval-
ues ordered with multiplicity, λ1 ≤ λ2 · · · ≤ λn−1 ≤ λn,
in [15], Fiedler coined algebraic connectivity as a(G) = λ2

which is a non-negative real number.
To justify that a(G) is a good measure of graph connec-

tivity, Fiedler and Weyl [8], [15] provided several properties
as follows.

Lemma 1: If G1 = (V, E1) and G2 = (V, E2), a(G1) +
a(G2) ≤ a(G1 ∪G2).

Theorem 1: For G1 = (V,E1) and G2 = (V, E), if
E1 ⊂ E, a(G1) ≤ a(G2).

Theorem 2: (Interlacing Theorem) If G′ = G + e,
λi(G) ≤ λi(G′) ≤ λi+1(G), i = 1, . . . , n− 1.

For a network, as the number of connections increases,
the level of connectivity should not decrease. This property
has been exploited in [44] to increase the algebraic connec-
tivity of the network. As the algebraic connectivity a(G)
does not drop when the edge set E becomes larger, it is a
good metric to capture network connectivity. Normally, the
addition of an extra connection will not significantly change
the network connectivity level unless a critical edge that
can merge two disconnected components of the network
is added. Based on the algebraic connectivity theory, the
number of times 0 appears as an eigenvalue in the Laplacian
represents the number of connected components in the
graph. The addition of one critical edge will reduce the
number of connected components by one, and a connected
network has only one connected component. The algebraic
connectivity will change from 0 to be larger than 0, once
the network becomes connected. The interlacing theorem
ensures that λ2(G′) is bounded between λ2(G) and λ3(G),
which indicates that algebraic connectivity is not too sensi-
tive to a small change to the network, which can be frequent
in a dynamic network, unless it is critical.

For a network to be reliable, it is desirable to have a
higher edge and/or vertex connectivity in order to handle
link or node failure. This is particularly important for
mobile wireless networks. In [15], Fiedler provided the
following theory to provide the bounds and relate a(G)
to the conventional connectivity measures v(G) and e(G):

Theorem 3: The following conditions hold.
(1) a(G) ≤ v(G) ≤ e(G)
(2) a(G) ≥ 2e(G)(1− cosπ

n )
(3) a(G) ≥ 2(cosπ

n−cos 2π
n )e(G)−2cosπ

n (1−cosπ
n )∆m.

The following theorems proposed by Kirchhoff [9], Alon
and Milman [21] correlate the structure of the graph with
algebraic connectivity.

Theorem 4: (Matrix Tree Theorem) The number of span-
ning trees t(G) = 1

nΠn
i=2λi.

Theorem 5: If G = (V, E), A, B ⊂ V , A ∩ B = φ, F
represents the set of edges that do not have both ends in
A or B, then |F | ≥ ρ2λ2

|A||B|
|A|+|B| , where ρ is the minimum

distance between A and B.
Theorem 6: |∂A| ≥ λ2

|A|(n−|A|)
n , where ∂A is the edge

cut induced by A and V −A.
The number of spanning trees represents the number of

ways to connect a pair of vertices in the graph. For a
network to be reliable, it is desirable to have multiple paths
between nodes in order to establish an alternative path upon
route breakage or congestion. Since a(G) is the smallest
multiplier in Theorem 4, a(G)n−1

n serves as a lower bound
of t(G). In Theorems 5 and 6, there are more edges in the
edge cut if a(G) is larger, which implies that a network with
a larger algebraic connectivity is not likely to be partitioned.
In addition, a larger cut would lead to a higher flow capacity
according to the max-flow min-cut theorem. That is, in a
flow network, the maximum amount of flow passing from
the source to the sink is equal to the minimum capacity
that needs to be removed from the network so that no flow
can pass from the source to the sink. It has been shown
that the network capacity heavily depends on the min-cut
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set in [22].
Some recent discoveries by Mohar [14] indicate that

a(G) has close relationship with routing problem.
Theorem 7: diam(G) ≤ 2d

√
λn

λ2

α2−1
4α + 1edlogα

n
2 e,

where α > 1.
Theorem 8: diam(G) ≤ 2d∆+λ2

4λ2
ln(n− 1)e.

Theorem 9: ρ ≤ n
n−1d∆+λ2

4λ2
ln(n− 1)e.

These theorems provide the upper bound for the graph
diameter and average distance, and the upper bound reduces
as the algebraic connectivity increases. This property is very
important for network design as it is highly desirable to
bound the distance or the number of hops between two
network nodes.

In addition to serving as an index for network reliability,
algebraic connectivity can also reflect network stability and
robustness, as the effect of the dynamics of a node is
averaged out rapidly and thus has a minor influence on the
stability of a network with a large algebraic connectivity
[20].

In summary, algebraic connectivity is a good metric for
measuring the network performance. Compared to conven-
tional connectivity measures such as vertex connectivity
and edge connectivity, it has a continuous value and pro-
vides a fine metric to measure the network connectivity
level. It not only captures the network connectivity, but also
to some extent, reflects the network stability and gives a
lower bound on the performance of the network bottlenecks.
The latter impacts the overall network capacity. Addition-
ally, algebraic connectivity controls the upper bound of the
network routing distance. Therefore, algebraic connectivity
can capture some important features of the network, includ-
ing robustness, capacity, and routing efficiency. As a result,
algebraic connectivity can serve as a good design metric
for mobile wireless networks, and the network performance
can be improved by constructing a network with a larger
algebraic connectivity. We demonstrate through our perfor-
mance studies in Section VIII that algebraic connectivity
can help to effectively improve the network reliability while
not significantly reducing the capacity, and could also help
to reduce the routing distance.

IV. PROBLEM FORMULATION

In light of above discussions, the objective of our work
is to exploit the use of algebraic connectivity in backbone
design to improve backbone network robustness, capacity,
and routing efficiency. Additionally, we incorporate a cost
function into the design metric to capture some other de-
sired network features. The backbone design will compro-
mise between increasing network algebraic connectivity by
including more nodes into the backbone and reducing total
network cost by removing nodes that incur high cost. As
different backbone features would be needed by different
applications, to make our algorithm general, we will not
constrain the format of cost functions but will use a general
cost function C(·) during our algorithm introduction.

Based on node capabilities, we divide wireless nodes
in the network into two types. The first type of nodes is
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Fig. 1. Example Backbone Construction

called backbone capable nodes (BCNs), which generally
have higher capacity and can transmit at longer range. The
second type of nodes is called regular nodes (RNs), which
normally have lower capacity and transmit at shorter range.
In a pervasive computing environment, the regular nodes
can be simple sensors, or low power wireless devices, while
the backbone capable nodes can be devices with more en-
ergy such as devices plugged in the outlets of offices or cars,
with more capacity such as laptops and wireless gateways,
and/or transmitting at larger range such as 802.11 nodes (as
compared to 802.15.4-based sensor nodes) and WiMAX
nodes. We focus on the construction of more robust and
efficient backbone network by properly selecting backbone
nodes among BCNs. As this work focuses on backbone
construction, we assume all the nodes are backbone capable
nodes, i.e., BCNs. For the convenience of presentation, we
do not specially identify BCNs in the remaining of the
paper.

We first introduce some concepts and terminologies to
be used in the remaining of the paper. For a graph G =
(V, E), define the cost of a node i as ci for ∀vi ∈ V , i =
1, 2, · · · |V |, and the total cost of the graph G as C(G) =∑

vi∈V ci. Based on the analysis of Section III, to improve
the robustness, capacity, and routing efficiency of a graph
G while reducing its total cost, we define a new metric
called connectivity efficiency (CE) as

γ(G) =
a(G)
C(G)

. (1)

A subset D of the vertices in graph G is a dominating
set (DS) if each node in the graph is either an element
of D or is adjacent to some element of D. Dominators
are elements in the set D and dominatees are not in it. A
connected dominating set (CDS) is a dominating set whose
elements induce a connected graph.

The backbone network construction problem considered
in this work is to find a subset of network nodes that
can form a connected dominated set with the objective of
maximizing the connectivity efficiency. We call the problem
efficient connected dominated set building problem, or
ECDS. Our backbone construction problem can be formally
presented as follows.

Problem Statement 1: ECDS: For a graph G = (V, E),
find a sub-graph G∗ = (D,E∗) induced by dominating set
D that maximizes γ(G∗).

TABLE I
EXAMPLE NODE COST.

Node 1 2 3 4 5 6 7 8 9 10
Cost 2 2 4 2 4 2 3 3 7 2
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Before presenting the details of the problem, we will
show the significance of our problem through an example.
A backbone needs to be constructed for the example
network in Fig.1A, with the cost of each node randomly
set as in table IV. A backbone is considered functional if
it covers all the nodes in the network and is connected,
and not fully functional if it does not meet either of the
requirements. If a backbone network does not meet the
second requirement, it is considered disconnected.

For backbone construction, the low-cost algorithm (e.g.
[13]) will, for example, select {2, 6, 7, 8} as backbone
nodes (marked dark in figure) with the minimum cost of
10. If any of the four nodes is down, the network will not be
completely covered. If node 7 or 8 is down, the backbone
will be disconnected. Therefore, the backbone constructed
by only minimizing the cost is vulnerable to failure.

In ECDS, reliability is one of the important consideration
factors and the backbone set selected (Fig. 1C) is {2,
3, 4, 6, 7, 8} with the highest connectivity efficiency of
0.0625. A failure of any of the six nodes will not impact
the functionality of the backbone. Considering all possible
scenarios of two-node failure, with the probability of 0.27
and 0.4, simultaneous failures from two nodes will not
impact the function and connection of the backbone net-
work respectively. This indicates that a backbone network
constructed using ECDS can tolerate better to the node
failure.

From Fig. 1B, we also observe that the worst routing
path between two nodes, e.g. the one between node 3 and
node 5, has 5 hops while the shortest path between these
two nodes has only 2 hops. The average routing distance
between all pairs of vertices is 2.38 hops, with a 0.31 hop
increase from that of the original topology. While in ECDS
case, the longest routing distance is 4 hops, which is equal
to the diameter of the original network. The average routing
distances is 2.07 which is the same as that of the original
one. The low cost algorithm also has several critical edges
and nodes. In ECDS case, the minimum cut has two edges
or two nodes. This example demonstrates that it is impor-
tant to construct a more reliable backbone network with
higher bottleneck capacity and routing efficiency. ECDS
is designed to facilitate the construction of a backbone
network with the desired features.

As mentioned earlier, our backbone construction al-
gorithm is not constrained by a specific cost function.
For evaluating the efficiency of our backbone construction
algorithm, in this work, we choose node delay as cost and
consider a node cost model that incorporates the following
factors in order to balance network traffic and reduce
transmission delay.

Node Capacity. We define a Transmission Delay Factor
of a node i, (f i

t ) as f i
t = 1

W i = 1∑
ij∈E Wij

, with Wij being
the link transmission rate between node i and its neighbor
node j. The higher the transmission rate on a node, the
lower the delay.

Retransmission. Retransmission due to packet loss and
error increases the delay of a packet. The packet loss is
impacted by network load. With the loss and error rate pi

e

of a link measured, the expected number of transmissions
can be calculated as 1

1−pi
e

, and used as the retransmission
delay factor f i

r.
Node Distribution. When nodes share the transmission

medium, the competition among nodes leads to extra delay.
Assuming in a neighborhood there are Nc active nodes
which have packets to send and share the same channel,
if each node i is given a transmission weight wi for a
relatively long period, the transmission opportunity for
node i can be represented as: pi

c = wi∑Nc
k=1 wk

. If CSMA
based scheme is used, the delay factor (fc) due to node
distribution and competition can be estimated as fc = 1

pi
c
,

which can be estimated based on the network topology and
traffic.

By combining all major delay factors mentioned above,
the cost of a node is defined as

Wi = f i
t · f i

r · f i
c =

1
W i

· 1
1− pi

e

· 1
pi

c

(2)

Generally, reducing the transmission delay would help
improve network throughput. In a wireless network, a
higher number of nodes in a neighborhood could potentially
increase the collision, and reduce the network throughput.
On the other hand, increasing algebraic connectivity helps
to improve bottleneck throughput and reduce the path
length, which will help improve network throughput. With
the use of both algebraic connectivity and the above cost
model in the backbone metric, our backbone construction
algorithm intends to build a more reliable backbone net-
work while achieving a higher network throughput and
routing efficiency.

V. PROBLEM HARDNESS

The objective of ECDS is to find a connected dominating
set of a network graph that has the maximum connectivity
efficiency. The search of the optimal solution only involves
the selection of vertices (i.e., nodes), not any edge. In
the following, we will first prove that ECDS is NP-hard,
and we will then propose a centralized and a distributed
approximation algorithms in Section VI and VII to build
the backbone network, by selecting an appropriate set of
nodes from the network to form the CDS with maximum
connectivity efficiency.

We use Kn to represent a complete graph with n vertices.
A clique is a complete sub-graph of G, and the Maximum
Clique (MC) problem is to find in G a clique with the max-
imum number of vertices. We begin with the introduction
of several lemmas. We will show that a special instance of
ECDS problem is a maximum clique (MC) problem, which
is known to be NP-hard.

Lemma 2: For a graph G = (V, E), |V | = n, if G 6=
Kn, then the algebraic connectivity of the graph a(G) < n.
Proof: For a graph G 6= Kn, we have v(G) < n. The
relationship a(G) < n directly follows due to Theorem 3,
where a(G) ≤ v(G). 2

Lemma 3: For a graph G = (V,E), |V | = n ≥ 3,
assume the cost value associated with node k is ck = 1,
and for a node vi ∈ V and i 6= k, the cost is ci = ε < 1
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with ε ; 1. Then γ(G) < n
(1−ε)+nε if G 6= Kn, and

γ(G) = n
(1−ε)+nε ; 1

ε if G = Kn.
Proof: According to Lemma 2, if G = (V, E), |V | = n is
not a complete graph, a(G) < n. As C(G) =

∑
i ci = (1−

ε) + nε, so γ(G) = a(G)
C(G) < n

(1−ε)+nε . If G = Kn, i.e., G

is a complete graph, a(G) = n, so γ(G) = n
(1−ε)+nε ; 1

ε ,
with ε ; 1. This shows that a complete graph will
maximize the connectivity efficiency of a uniform-cost
graph.

In what follows, we show that the maximum clique under
a special instance is an induced solution of ECDS. This
observation will be used to construct a special example to
show MC problem is Turing reducible to ECDS in Theorem
10.

Lemma 4: For a graph G = (V,E), assume the cost
value associated with node k is ck = 1, and for any other
nodes vi ∈ V and i 6= k, the cost is ci = ε < 1 with ε ; 1.
If node vk must be selected to construct the dominating set
and the maximum clique denoted by Qk

M containing vk is
a dominating set of V , then the CDS containing vk and
constructed based on ECDS will induce Qk

M .
Proof: As Qk

M is assumed to be the maximum clique con-
taining vk and a dominating set of V in the special instance
we construct here, according to Lemma 3, its connectivity
efficiency is γ(Qk

M ) = |Qk
M |

(1−ε)+|Qk
M |ε

; 1
ε , where |Qk

M |
is the cardinality of its vertex set. Note that, in general,
the maximum clique may not be a dominating set. Assume
another sub-graph containing vk and denoted by Sk is the
induced graph of ECDS, i.e., the connected dominating set
that has the maximum γ. If Sk = K|Sk|, i.e., Sk is a com-

plete graph, then γ(Sk) = |Sk|
(1−ε)+|Sk|ε <

|Qk
M |

(1−ε)+|Qk
M |ε

=
γ(Qk

M ), as |Sk| < |Qk
M | due to the maximum clique Qk

M

and the function x
(1−ε)+xε is monotonically increasing. If

Sk 6= K|Sk|, based on Lemma 3, γ(Sk) < |Sk|
(1−ε)+|Sk|ε < 1

ε

while γ(Qk
M ) = |Qk

M |
(1−ε)+|Qk

M |ε
; 1

ε for large enough |Qk
M |,

so γ(Sk) < γ(Qk
M ). In either case, γ(Sk) < γ(Qk

M ),
which violates the assumption that the set Sk is the CDS
with a maximum γ. So Qk

M must be the induced graph by
running ECDS.

Theorem 10: ECDS problem is NP-hard.
Proof: We will prove that the maximum clique problem
is Turing reducible to ECDS by constructing a system in
which MC can be solved in polynomial time if we can
solve ECDS in polynomial time.

Consider the well-known maximum clique problem.
Given a graph G = (V, E), find a clique with the maximum
number of vertices, where a clique is a sub-graph with all
its vertices pairwise adjacent. Now we will construct the
system to reduce MC to ECDS.

Given a graph G = (V,E), a complete graph based on
G can be defined as G+ = (V,E+ = E ∪ Ea), where
Ea is the set of edges that need to be added to make
the original graph G complete. As every vertex in G+ is
pairwise adjacent to others, any clique selected from the
constructed complete graph G+ will be a CDS. This will
affect the result of the execution of ECDS in the following

steps.
Now we want to find the maximum clique using the

following algorithm. The algorithm first finds the maximum
clique containing a specific vertex while avoiding using the
edges that are not from the original graph G. Once the set of
maximum cliques that contains every vertex is constructed,
the maximum clique of the original graph can be figured
out, e.g., the one with the maximal number of vertices in the
set of maximum cliques. The algorithm works as follows.

1) Set S = V, G = (V,E), Q = Φ;
2) Construct G+;
3) Pick a vi ∈ S and let the dominating set D = {vi}

and S = S − {vi};
4) Run ECDS on G+, and construct the dominating

set D. Assume ci = 1. For ∀k 6= i, set ck = ∞
if ∃vk, vj ∈ D, (vk, vj) ∈ Ea, i.e., we want to
avoid selecting a node that does not have the edge
connection to the constructed D in the original graph
G to form D; otherwise let ck = ε ; 1;

5) Let the graph Qi be the graph induced by D after
the execution of step 4, let Q = Q ∪ {Qi};

6) Go to step 3 until S = Φ.

According to Lemma 4, the resulting graph Qi by
running ECDS over the constructed graph G+, which is
a part of the original graph when the cost is set to avoid
selecting nodes that do not have an edge connection in the
original graph G to the constructed dominating set D, is
the maximum clique of G that contains the vertex vi. As
Q is a clique set, with each element being a maximum
clique containing a specific vertex of the original graph G,
the element in Q that has the largest number of vertices
is the maximum clique of G. As all steps in the above
algorithm can be executed in polynomial time based on a
solution for ECDS, the NP-hard Maximum Clique problem
is polynomial reducible to ECDS, which proves that ECDS
is NP-hard.

VI. CENTRALIZED ALGORITHM

To obtain an approximate solution for the ECDS prob-
lem and construct a reliable and cost effective backbone
network, we first consider a centralized reverse greedy
(CRG) algorithm as a possible solution to find a CDS of
the network graph that has heuristically large connectivity
efficiency (CE) γ.

Algorithm 1 CRG

1: BN ← V
2: for do
3: if ¬∃ removable v that γ(BN−v) > γ(BN) then
4: return BN
5: else
6: find removable v to max γ(BN−v)
7: BN ← BN −v
8: end if
9: end for



7

In Algorithm 1, CRG forms the backbone network by
removing unnecessary nodes from the candidate backbone
set, and in each round a node whose removal leads to the
maximum increase of CE is removed. The node removing
process is repeated until no removal of node could lead to
the increase of CE.

Although CRG always removes the node that could
lead to the maximum increase of CE in each round, as
other greedy algorithms, it may not lead to a globally
optimal performance. CRG tends to terminate early at
a local optimal point. We further develop a randomized
centralized reverse greedy algorithm (RCRG) based on the
rules in generic probabilistic meta-algorithm [40]–[42]. The
performance shown in Fig. 2 demonstrates the effectiveness
of using RCRG. The throughput of RCRG doubles or triples
that of CRG at the highest node density and moving speed
studied.

In RCRG algorithm shown in Algorithm 2, we introduce
a pseudo connectivity efficiency ζ(D) = aβ(D)

c(D) to enhance
the performance of γ(BN) globally. The parameter β is
used to control the tradeoff between algebraic connectivity
and cost. Generally, we set β ≥ 1 to provide a higher
weight to algebraic connectivity. The selection of β also
depends on the value ranges of cost c(D) and algebraic
connectivity α(D).
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Fig. 2. Simulation comparison between CRG and RCRG: (a) network
throughput versus node density; (b) network throughput versus node
movement speed.

The algorithm first looks for a candidate set, where a
candidate node is the one whose removal from or addition
to the current backbone set does not change the connected
and dominating property of the backbone set. Let Di be
a graph generated by removing/adding a candidate node i
along with the edges incident to it from/into the current
graph D. To help better select the backbone nodes, we
introduce a facilitating function, θi = e

1− ζ(D)
ζ(Di) .

The index m indicates the test round and the algorithm
begins when the backbone network consists of all the
network nodes. In a round, instead of directly removing
or adding a node i whose removal or addition leads to the
maximum increase in ζ(D), the backbone node set change
has a probability P (i, T ) = max{min{(θ

1
T
i − 1

2 ), 1}, 0} of
being made, with T = 1√

m
. This probability is designed

to increase with the facilitating function θi and decrease
with the time function T . The node i whose removal or
addition leading to a larger pseudo connectivity efficiency
ζ(Di) would result in a larger θi, and therefore has a higher
probability of being removed or added. For more stable
performance, we constrain that only one backbone node set

change can be made in one round. The reason of removing
or adding a ’worse’ node i (not leading to the maximum
ζ(Di)) with a probability is to allow the system to move
to a new state to prevent the method from being stuck in
a local optimum. Based on our definition of P (i, T ), the
probability of removing or adding in a less optimal node
in a round reduces and tends to reach zero when the round
index m becomes large. Therefore, RCRG algorithm will
converge and become a greedy algorithm (CRG) after a
sufficient number of rounds.

Algorithm 2 RCRG

1: D ← V , D′ ← V
2: for m ← 1:mmax do
3: if ¬∃i as a candidate then
4: return D′

5: else
6: pick i from candidates
7: calculate ζ(Di)
8: if ζ(Di) > ζ(D′) then
9: D′ ← Di

10: end if
11: calculate P (i, T )
12: if P (i, T ) > uniform() then
13: D ← Di

14: end if
15: end if
16: end for
17: return D′

VII. DISTRIBUTED ALGORITHM
With complete network information, a centralized al-

gorithm could provide a better performance. However, a
distributed algorithm would be more efficient when the
network size is big or the network is more dynamic. In
this work, we introduce a distributed algorithm for ECDS
problem by leveraging our RCRG algorithm in a distributed
environment to form a more reliable and cost effective
backbone network. The algorithm can be decomposed into
two steps.

Step I. Find Dominating Set.
Our algorithm constructs a dominating set through the

finding of maximal independent set (MIS) which selects
nodes based on the cost factor, as shown in Algorithm 3.
WHITE nodes are the ones that do not belong to any set.
In lines 2 to 5, a node with the lowest cost among WHITE
neighbors selects itself as a Dominator and announces its
status to its one-hop neighbors. In case that more than one
neighboring WHITE nodes have the same cost, the one
with the highest ID will be selected as the Dominator. In
lines 6 to 12, a node receiving the dominator announcement
becomes the Dominatee and broadcasts the Dominatee
status to its one-hop neighbors, which update the list of
WHITE neighbors. A random delay is introduced before
each node sends a message to reduce collisions.

Step II. Find Relays.
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Algorithm 3 MIS

1: V ← WHITE
2: if c(u) is min in WHITE neighbors or multiple WHITE

nodes have the same cost c(u) but u has the largest ID
then

3: u sends MsgDominator up to 1-hop
4: u.status ← Dominator
5: end if
6: if v receives MsgDominator then
7: v.status ← Dominatee
8: v sends MsgDominatee up to 1-hop
9: end if

10: if w receives MsgDominatee from v then
11: w.neighbor(v).status ← not WHITE
12: end if

In order to form a CDS of the graph, we need to find
some relay nodes to connect the independent set obtained
from the first step. Based on [10], if the original graph
is connected, a graph V irtG that connects all pairs of
elements of a dominating set is a connected graph if there
is a path of at most 3 hops in the original graph. Therefore,
we connect each pair in the independent set that is within 3-
hop distance to form the backbone network by using RCRG
algorithm. The CDS formulation procedures are described
in Algorithm 4.

For convenience, denote the maximal independent set
found in Step I as D.

In lines 1 to 3, each node v in D runs RCRG over
the nodes in its 2-hop neighborhood and selects some of
the nodes as backbone nodes (BNs), while the remaining
nodes are backbone capable nodes (BCNs). A node v
announces the results through an RLA message up to two
hops, and a node u receiving the message changes its status
according to the assignment. If a node u receives conflicting
assignments (Bn or BCN) from multiple dominator nodes,
it will set its status to BN and announce its status up to two
hops. In lines 12 to 16, a node w in ¬D first checks if all
the Dominators within its two-hop distance have completed
the RCRG calculations. If this process is completed, w
checks if two Dominators within 3-hop distance are not
connected by backbone nodes, and will change its status
to backbone node if there are no-connected Dominators. In
lines 17 to 21, unnecessary nodes are removed from the
backbone to improve the connectivity efficiency. A higher
algebraic connectivity generally helps to improve network
stability upon dynamics. In addition, in lines 22 to 26, if a
BCN node x finds it loses the connection with all backbone
nodes but there is a backbone node two-hops away, it will
run RCRG and send other nodes the results through an RLA
message. The steps in lines 12 to 16 will also be run by a
BCN node to maintain the backbone network connectivity.
If there is a significant topology change in a neighborhood,
the algorithm may be re-run by resetting all the relevant
nodes to white.

Algorithm 4 RELAY

1: if v ∈ D then
2: v runs RCRG over two-hop nodes and sends RLA

(BNs, BCNs) up to 2 hops after a random delay
3: end if
4: if u receives a RLA then
5: u.status ← BN/BCN based on the assignment in

RLA
6: u.neighbor(v).status ← assigned
7: end if
8: if u receives more than one RLA with conflicting status

assignment then
9: u.status ← BN and u sends RLA with its status

up to 2 hops after a random delay
10: u.neighbor(v).status ← assigned
11: end if
12: if w 6∈ D and ∀ Dominator in 2 hop assigned then
13: if there are non-connected Dominators then
14: w.status ← BN and w sends RLA up to 2

hops after a random delay
15: end if
16: end if
17: if x is BN and y is in x’s 2 hop then
18: if neighbor(x) ⊂ neighbor(y) then
19: x.status ← BCN and x sends RLA with its

status up to 2 hops after a random delay
20: end if
21: end if
22: if x is BCN and ¬∃x’s 1 hop BN neighbor then
23: if ∃x’s 2 hop BN neighbor then
24: x runs RCRG and sends RLA up to 2 hops

after a random delay
25: end if
26: end if

VIII. PERFORMANCE EVALUATION

In this section, we study the backbone performance by
comparing our centralized backbone construction algorithm
RCRG and distributed backbone construction algorithm
DCRG with two other backbone construction algorithms,
(MR-)TSA [7], [23] and k-Coverage [24]. (MR-)TSA is a
backbone topology synthesis algorithm based on an abstract
weight to construct and maintain a wireless backbone while
k-Coverage is an algorithm to construct a wireless backbone
which is k-connected and k-dominating. The algorithms
are implemented using the network simulator NS2 [16],
and the node movement follows the improved random way
point model [43]. IEEE 802.11 MAC layer and physical
layer models are used, and the transmission range is set
at 250 meter. AODV [6] is used as the routing proto-
col, with the path searching messages RREQ forwarded
only by backbone nodes. Each simulation lasts for 180
seconds, and the results are obtained by averaging over
five runs. Unless when studying the impact of different
parameters, 120 nodes are used in a 1500m x 1500m
network area, with the average node moving speed set at
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5 m/s. Sixty CBR flows are generated between random
sources and destinations, each transmitting at 200 bps. Four
main performance metrics, namely throughput, delivery
ratio, average end-to-end delay and routing distance, are
examined in this study. Throughput is obtained by dividing
the total number of packets received at end users by the
simulation time, and delivery ratio is calculated by dividing
the number of packets received at end users by the total
number of packets sent out. Average end-to-end delay is
the average duration between the time a packet is sent
out and the time the packet is received at the destination,
while routing distance is the average number of hops
that a packet traverses before it reaches its destination. In
implementing (MR-)TSA, BN Neighbor Limit is set to 12,
h is set to 1. Short Timer and Long Timer are 1 and 3
seconds respectively. Generally, the number of backbone
nodes will increase significantly when the enforced degree
of each node, k, increases. This would lead to higher
number of transmission collisions and packet losses, thus
reduced network capacity and routing delay. Therefore, in
k-Coverage algorithm, k is set to 2 to ensure robustness
without including an excessive number of backbone nodes.
We study the impact on performance due to network size,
node density, network load, and node moving speed. Spe-
cific parameter setting will be described in each simulation.
In these simulations, as the reference algorithms do not
have clear cost models, the cost of each node is randomly
generated for both our algorithms and the reference algo-
rithms. We have performed additional simulations to show
the benefit of including the cost into backbone control
metric using the cost model described in Section IV.

A. Impact of backbone network

We vary node density and movement speed to compare
the throughput between a network with and without back-
bone infrastructure. In Fig. 3(a), the AODV is run over the
original network, the throughput is higher when the network
is sparse and has a low control overhead, but the throughput
reduces dramatically when the node density increases. The
use of backbone infrastructure greatly reduces the number
of path discovery messages and collisions, and DCRG gains
more than double the throughput of AODV at the maximum
node density tested. From Fig. 3(b), we can see that a
network with backbone has much more stable through-
put when node mobility increases, and the throughput of
DCRG is about three times that of AODV at node speed
20m/s. This is because the backbone network proposed is
constructed to improve algebraic connectivity, and a higher
algebraic connectivity would ensure more reliable trans-
missions in a dynamic environment [20]. Additionally, the
higher probability of link failure due to mobility would lead
to an increase of route recovery messages and thus a larger
number of collisions and higher throughput reduction.

B. Impact of Metric

A good metric is important for backbone construction
and quality. The objective of our backbone algorithm is to

optimize the connectivity efficiency, which is a function
of algebraic connectivity and cost. We introduce a cost
model in Section IV, to help improve network performance
by selecting backbone nodes based on node distribution,
traffic load and hence errors, and node capacity. Due to
the page limit, we only show the impacts due to node
distribution and load, with the unbalance level of each
controlled through a standard deviation from 0 to 4. The
results in Fig. 4 (a) and (b) show the performance of using
the metric with algebraic connectivity and a random cost
(RCRG, DCRG), and the metric with algebraic connectivity
and the cost model introduced (RCRG-C, DCRG-C). Our
results show that using an effective cost model could lead
to an increased throughput, about 20% in this simulation.
The performance improvement is higher when the net-
work is moderately unbalanced, while the improvement
reduces if the unbalanced level is too big, as the later
dominates the network performance. Improvements are also
observed when varying the node density and speed in
Fig. 4 (c) and (d). In the next several sections, we are going
to show the performance using a relatively balanced topol-
ogy and random cost, to mainly evaluate the performance
impact due to algebraic connectivity.

C. Impact of network size

We vary the network size from 1000m x 1000m to
2000m x 2000m, while fixing the network density at 53
nodes / km2. In Fig.5 (a) and (b), both network throughput
and delivery ratio decrease with network size for all the
algorithms, as the increase of average path length (Fig.5 (d))
results in a higher probability of packet collision and
therefore loss. Both RCRG and DCRG are seen to perform
much better than TSA and k-Coverage at all network sizes.
Compared to k-Coverage, RCRG has up to 100% higher
throughput and delivery ratio, while DCRG has up to 60%
performance improvement. TSA has the lowest throughput
and delivery ratio as a result of backbone bottlenecks. In
Fig.5 (c) and (d), both average end-to-end delay and average
routing distance are observed to increase with network size.
RCRG and DCRG have lower end-to-end delay with the
use of more efficient routing paths. DCRA has up to 60%
lower delay as compared to k-Coverage, and up to 70%
lower delay as compared to TSA.

TSA intends to have a backbone network with a smaller
number of nodes and lower cost to reduce transmission
collisions and increase network throughput, however, this
can create bottlenecks in the backbone network. As the
network size increases, this probability also increases, and
the performance is greatly impacted by these bottlenecks.
On the other hand, targeted for a higher reliability, k-
Coverage is too conservative by ensuring 2-connectivity
for each backbone node, which leads to a larger number of
backbone nodes and hence more collisions in transmissions.
Both RCRG and DCRG use algebraic connectivity as
part of the design metric to ensure the backbone network
to be more robust and to increase bottleneck capacity,
and the routing path to be more efficient. As a result,
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Fig. 3. Impact of Backbone Network: (a) network throughput versus node density; (b) network throughput versus node movement speed.
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Fig. 4. Impact of Metric: (a) network throughput versus standard deviation of node distribution; (b) network throughput versus standard deviation of
load distribution; (c) network throughput versus node density; (d) network throughput versus node movement speed.

these two algorithms have shorter transmission distance,
lower transmission delay, higher delivery ratio and higher
throughput.

D. Impact of Network Load

We evaluate the impact of network load on the perfor-
mance by varying the number of flows from 30 to 90
with each flow transmitted at 200 bps. In Fig.5 (a), the
throughput of all the algorithms is observed to increase
with the network load initially and then goes down after
the network is saturated by the load. RCRG and DCRG
can support about 30% higher network load compared to
TSA and k-Coverage, with a higher backbone capacity
and more balanced transmissions. In Fig.6 (b), the delivery
ratio drops quickly with the increase of load as a result
of collision and congestion. The throughout improvement
of RCRG and DCRG compared to TSA and k-Coverage
increases as the load increases, and DCRG has about
50% higher throughput at the highest load tested. TSA
has a relatively lower throughput compared to k-Coverage
when the load is low due to the bottleneck impact of the
backbone network, but outperforms k-Coverage when the
collision begins to dominate at a high network load. For
all the algorithms, the average end-to-end delays are seen
to increase as the load becomes heavier in Fig.6 (c), while
the average routing distances remain stable in Fig.6 (d).

The end-to-end delays increase because of the increase
in the number of retransmissions and queuing delay. As
the network load does not have a significant impact on
the topology, the average routing distances do not have
big changes. The slight reduction of routing distance at
high load is due to the higher probability of dropping
the packets that have a longer transmission path. With the
consideration of algebraic connectivity, RCRG and DCRG
have shorter routing paths and hence lower delay than TSA
and k-Coverage, which do not consider the bounding of
the routing path. The lower delays of RCRG and DCRG
are also due to their higher backbone capacity and their
considerations of load balancing.

E. Impact of Node Density

We keep the network size at 1500 m x 1500 m, and vary
the number of nodes from 60 to 180. In Fig.7 (a) and (b),
the throughput and delivery ratio reduce as the node den-
sity increases, due to a larger probability of transmission
collisions. Although there is only a small increase in the
number of backbone nodes, the transmissions from regular
nodes also create collisions. We observe that RCRG and
DCRG outperform k-Coverage by 40% and 30% respec-
tively on average, and outperforms TSA by 45% and 35%
respectively on average. In a relatively low density net-
work, k-Coverage performs well due to the 2-connectivity
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Fig. 5. Impact of Network Size: (a) network throughput; (b) delivery ratio; (c) average end-to-end delay; (d) average routing distance.
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Fig. 6. Impact of Network Load: (a) network throughput; (b) delivery ratio; (c) average end-to-end delay; (d) average routing distance.

2-dominating robustness. However, when the density of
the network increases, the transmission collisions of k-
Coverage become serious due to its larger number of
backbone nodes, which makes its throughout and delivery
ratio drop quickly and even below TSA at high node
density. In Fig.7 (c) and (d), we can see that the delays
of RCRG and DCRG are about 40-50% lower than that of
TSA and k-Coverage. At very low density, k-Coverage has
a short delay, but the delay quickly increases as the network
density increases. With the increase of network density, the
routing distances of RCRG and DCRG remain stable, while
the average path lengths of TSA and k-Coverage increase
quickly. This again shows the effectiveness of exploiting
the algebraic connectivity to control routing distance.

F. Impact of Node Mobility

One of the major goals of our algorithms is to improve
network reliability. In this simulation, we study the impact

on performance due to mobility and the resulting topology
change. We vary the average node moving speed from
2.5 m/s to 20 m/s. Fig.8 shows that TSA and k-Coverage
have similar throughput and delivery ratio, which reduce
quickly as the nodes move faster. RCRG and DCRG have
much more stable performance. The difference between
the throughput and delivery ratio of RCRG/DCRG and
TSA/k-Coverage increases as the node mobility increases.
At the maximum speed tested, DCRG has about 60% higher
throughput and delivery ratio than that of TSA and k-
Coverage. TSA attempts to maintain the backbone network
when the network topology changes, and k-Coverage is
designed to support higher backbone reliability. The sig-
nificant performance improvements of RCRG and DCRG
demonstrate the effectiveness of using algebraic connec-
tivity to support more robust network design. With the
increase of mobility, the end-to-end delay of TSA and
k-Coverage increase much faster than that of RCRG ad
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Fig. 7. Impact of Node Density: (a) network throughput; (b) delivery ratio; (c) average end-to-end delay; (d) average routing distance.

(a)
5 10 15 20

20

30

40

50

node speed (m/sec)

th
ro

ug
hp

ut
 (

pa
ck

et
/s

ec
)

 

 

RCRG
DCRG
TSA
k−Coverage

(b)
5 10 15 20

0.2

0.4

0.6

0.8

1

node speed (m/sec)

de
liv

er
y 

ra
tio

 

 

RCRG
DCRG
TSA
k−Coverage

(c)
5 10 15 20

1

2

3

4

node speed (m/sec)

av
er

ag
e 

de
la

y 
(s

ec
)

 

 

RCRG
DCRG
TSA
k−Coverage

(d)
5 10 15 20

4

5

6

7

8

node speed (m/sec)

av
er

ag
e 

ro
ut

in
g 

di
st

an
ce

 (
ho

p)

 

 

RCRG
DCRG
TSA
k−Coverage

Fig. 8. Impact of Node Mobility: (a) network throughput; (b) delivery ratio; (c) average end-to-end delay; (d) average routing distance.

DCRG due to the increase of link breakages, retransmis-
sions, and routing path re-establishments. The routing dis-
tances of TSA, k-Coverage and DCRG all reduce, as a long
path transmission has a much higher probability of failure
than a short path transmission. RCRG and DCRG both have
relatively lower delay and shorter routing distance.

IX. CONCLUSIONS

With the increasing demand of wireless network appli-
cations, it is critical to develop more effective communi-
cations paradigm to enable new and powerful pervasive
applications. To cope with the increase in the number of
communication devices, many efforts have been made in
recent years to improve network throughput by constructing
a minimum-size backbone network to reduce total network
transmissions and hence collisions. However, wireless net-
work throughput is also impacted by bottleneck network
flow rate, and transmission distance. It is also important to
consider backbone reliability, stability, and load balancing.

In this work, we exploit the use of algebraic connectivity
to capture the spectral characteristics of the network graph
in our backbone design to simultaneously improve back-
bone network robustness, capacity, stability, and routing
efficiency. In order to meet different application needs,
we introduce a general cost function to incorporate other
desired network features. We define a new metric, con-
nectivity efficiency, to tradeoff algebraic connectivity and
cost during backbone formulation. As a design example,
we provide a cost function to capture the impact of node
bandwidth and transmission errors, and to balance the
network load based on node distributions. This is the
first work that comprehensively considers all the desired
network features in constructing the backbone.

We formally formulate our backbone construction prob-
lem as the connected dominating set (CDS) problem by
selecting a subset of nodes from backbone capable nodes
to form a connected dominating set, with the objective of
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maximizing network connectivity efficiency. We prove that
the connectivity efficiency maximization problem is NP-
hard, and propose a centralized and a distributed approxi-
mation algorithms to solve the problem. Finally, we perform
simulations to compare the performance of our algorithms
and algorithms proposed in the literature. Our performance
studies demonstrate the effectiveness of using algebraic
connectivity as the performance metric in constructing
the backbone network. Compared to peer algorithms, our
algorithms have much higher throughput and delivery ratio,
and much lower end-to-end delay and routing distances
under all test scenarios, including the network size, node
density, network load, and node mobility.
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