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Abstract—Matrix completion has emerged very recently and
provides a new venue for low cost data gathering in WSNs.
Existing schemes often assume that the data matrix has a known
and fixed low-rank, which is unlikely to hold in a practical
monitoring system such as weather data gathering. Weather data
varies in temporal and spatial domain with time. By analyzing
a large set of weather data collected from 196 sensors in Zhu
Zhou, China, we reveal that weather data have the features of
low-rank, temporal stability, and relative rank stability. Taking
advantage of these features, we propose an on-line data gathering
scheme based on matrix completion theory, named MC-Weather,
to adaptively sample different locations according to environ-
mental and weather conditions. To better schedule sampling
process while satisfying the required reconstruction accuracy, we
propose several novel techniques, including three sample learning
principles, an adaptive sampling algorithm based on matrix
completion, and a uniform time slot and cross sample model.
With these techniques, our MC-Weather scheme can collect
the sensory data at required accuracy while largely reduce the
cost for sensing, communication and computation. We perform
extensive simulations based on the real weather data sets and
the simulation results validate the efficiency and efficacy of the
proposed scheme.

Index Terms—matrix completion; wireless sensor network;
data gathering;

I. INTRODUCTION

Continuous weather data gathering is important for weather

reporting and a typical application of wireless sensor networks

(WSN). In the traditional data gathering approach [1], each

sensor node senses and sends data to a sink periodically, which

leads to a large amount of traffic and high sensing cost. Since

the sensor nodes usually have limited computing ability and

power supply, a primary goal of weather gathering is to collect

the sensory data at required accuracy with the least energy

consumption.

To reduce the communication cost, some conventional meth-

ods have been proposed in WSN, such as distributed source

coding techniques [2]–[4], in-network collaborative wavelet

transform [5], [6] and clustered data aggregation [7]–[10].

These methods exploit the spatial correlation in sensory data at

sink or sensor nodes, but they may bring extra computational

and communication overheads. Recently the compressive sens-

ing (CS) theory provides a new paradigm for data gathering

in WSNs [11]–[17]. Although CS-based approaches can save

energy and reduce sensing cost, they are originally designed to

recover the sparse vector such as events. Some applications do

not have clear sparsity features, and in many cases, we need

to get more complete data rather than just events for system

management purpose.

With the rapid progress of sparse representation, matrix

completion [18]–[20], a remarkable new field, has emerged

very recently. According to the matrix completion theory,

a low-rank matrix can be accurately reconstructed with a

relatively small number of entries in the matrix. Matrix

completion brings the benefits of small set of samples at

sensor nodes without introducing excessive computational and

traffic overheads, which meets the limited resource constraint

in WSN. Therefore, matrix completion provides a new venue

for low cost data gathering.

In matrix completion, low-rank is necessary for accurate

reconstruction of measured data and the rank of the matrix

directly impacts the number of samples required to take.

Existing matrix completion solutions often assume that the

data matrix has a known and fixed low-rank, and therefore the

number of measurements to take is fixed and determined by

the relation between the smallest required number of samples

and the rank of the matrix r. Unfortunately, such assumption

is unlikely to hold for real weather data gathering due to the

dynamics of weather data, and our observation on data trace

indicates that rank varies in temporal or spatial domain with

time.

To study the feature of weather data, we have deployed 196

sensors in Zhu Zhou, China, to collect weather data for more

than two years. From large real weather data trace collected,

we find that the rank of weather data may change with time.

Thus existing matrix completion solutions will not perform

well. For example, if the rank of the data matrix increases,

more measurements are needed for accurate reconstruction;

otherwise, the reconstruction may fail. Therefore, to handle

dynamic changes in weather data, it is desirable for the on-

line data gathering system to adapt the number of samples to

take.

In this paper, we first analyze large traces of real weather

data, which reveals that there exist hidden structures in the

data. By taking advantage of these structures, we propose an



on-line data gathering scheme based on matrix completion

theory, named MC-Weather, which can adaptively sample

different locations in response to changes in environment

and weather conditions. We propose several novel techniques

to well schedule the sampling process while satisfying the

required reconstruction accuracy. Because only a subset of

locations are sampled, our MC-Weather scheme can largely

reduce the amount of traffic and computation cost. Our con-

tributions are summarized as follows:

• Based on the trace analysis of the large set of real weather

data collected, we reveal that weather data have the

features of low-rank, temporal stability, and relative rank

stability. We also prove that the observed relative rank

stability is common feature in continuous data gathering

systems.

• Taking advantage of the relative rank stability feature,

we propose three sample learning principles, based on

which we propose an adaptive sampling algorithm to

quickly find an effective sampling set to apply with matrix

completion.

• To take the full advantage of our sample learning princi-

ple, we propose a Uniform Time-slot and Cross Sample

model (UTSCS). Compared with the Bernoulli model, we

prove that our model ensures the matrix to have better

feature for higher matrix completion performance.

• Through comprehensive simulations with real data traces,

we show that our MC-Weather scheme can accurately ac-

quire weather data with very low cost, which significantly

outperforms the competing methods.

To the best of our knowledge, this is the first work that

proposes an adaptive matrix completion algorithm for low-cost

on-line data gathering in dynamic environment. The techniques

proposed in this paper can be applied to other monitoring

systems. The proposed MC-Weather scheme does not depend

on the choice of underlying matrix reconstruction algorithms.

The rest of this paper is organized as follows. We introduce

the related work in Section II. The fundamentals of matrix

completion and problem formulation are presented in Section

III. We present our empirical study with real weather data in

Section IV. The proposed MC-Weather is presented in Section

V. Finally, we evaluate the performance of the proposed MC-

Weather through extensive simulations in Section VI, and

conclude the work in Section VII.

II. RELATED WORK

Structure and redundancy in data are often synonymous

with sparsity. There exist two typical sparsity representation

techniques, compressive sensing and matrix completion.

Compressive Sensing (CS) is a technique that can accurately

recover a vector from a subset of samples given that the

vector is sparse [12], [21] with only a few nonzero elements.

The fundamental works of CS include the introduction of

the l1-minimization method to reconstruct the sparse vector.

Compressive sensing has two features, universal sampling and

decentralized simple encoding, which makes it a new paradigm

for data gathering in sensor networks [11]–[17].

The majority of work on CS consider vectors of data. A

naive approach to deal with matrices might be to transform

these matrices into vectors and then apply vector techniques.

However, some matrices have some inherent structure (i.e. the

weather matrix in this paper), low cost data gathering in WSN

has lots of space to improve. In addition, some applications do

not have clear sparse features, and we may often need to get

more complete data rather than just detect some sparse events.

On the heels of compressed sensing, matrix completion has

emerged very recently [18]–[20], [22]. Candès et al. [18] show

that most n1 ×n2 matrices of rank r (r � min {n1, n2}) can

be perfectly recovered with very high probability by solving a

simple convex optimization program provided that the number

of samples is sufficient. New results show that matrix comple-

tion is provably accurate even when the few observed entries

are corrupted with noises [22]. Matrix completion brings new

opportunities to fully exploit the low-rank property in various

associated applications [23]–[30].

Existing schemes based on matrix completion are mostly

designed for off-line execution and can not apply in on-line

weather data gathering with dynamic environment changes.

Moreover, existing algorithms determine the number of mea-

surements assuming the rank of data matrix is known and does

not change. This makes these algorithms difficult to apply

in a practical system with dynamic environment and rank

variations.

In this work, we propose an adaptive algorithm which can

respond to the environment changes to intelligently determine

the number of samples to take in a specific time slots based

on past monitoring data and matrix reconstruction accuracy

requirement. We propose different strategies to facilitate the

learning process for high quality and low cost weather moni-

toring.

III. PRELIMINARY AND PROBLEM FORMULATION

In this section, we first introduce the fundamentals of matrix

completion, then present our problem formulation.

A. Fundamentals of Matrix Completion

Matrix completion is a new technique which can be applied

to recover a low-rank matrix from a subset of the matrix entries

[18]–[20], [22]. That is, an unknown matrix M ∈ Rn1×n2

with rank r � min {n1, n2} can be recovered if a subset of

its entries Mij , (i, j) ∈ Ω are known. The subset Ω is formed

with randomly selected entries of the matrix, and the sampling

operator PΩ : Rn1×n2 → Rn1×n2 is defined by

[PΩ (X)]ij =

{
Xij (i, j) ∈ Ω
0 otherwise

(1)

If the set Ω contains enough information, there is a unique

rank-r matrix that is consistent with the observed entries and

can be recovered by solving the following rank minimization

problem [18]

min rank (X)

subject to PΩ (X) = PΩ (M)
(2)



where rank(.) denotes the rank of a matrix, X is the variable

matrix.

However, solving this rank minimization problem in (2) is

often impractical because it is NP-hard. Then [18] proves that

most matrices M of rank r can be perfectly recovered by

solving the optimization problem

min ‖X‖∗
subject to PΩ (X) = PΩ (M)

(3)

provided that the number of samples m be sufficient and meet

the following condition:

m ≥ Cn6/5r log n (4)

where C is a numerical constant and n = max{n1, n2}.

In (3), ‖X‖∗ is the nuclear norm of the matrix X , which is

the sum of its singular values. That is, ‖X‖∗ =
∑min{n1,n2}

i=1 σi

and σi � 0 are the singular values of X .

Many approaches have been proposed to solve the con-

vex optimization problem in (3). our proposed MC-Weather

scheme does not depend on the underlying reconstruction

approach. We choose the singular value thresholding (SVT)

approach [31] to reconstruct the matrix.

B. Problem formulation

We propose an innovative and adaptive data gathering

scheme, MC-Weather, which exploits matrix completion tech-

nique and information learnt from existing data to continu-

ously and efficiently collect weather data according to the

environmental conditions. Our goal is to efficiently schedule

the data collection process to significantly reduce the sensing

resources needed while maintaining the sensing quality.

For N weather sensors randomly scattered in a given area,

instead of letting each sensor to periodically collect and report

data to the sink, in each time slot, only a subset of sensors

are scheduled to perform the sensing and reporting functions

based on the matrix reconstruction requirement. We define a

matrix XN×T (t) to hold the weather data, which contains the

data within a T -slot time measurement window starting from

the time slot t. In the weather matrix, a row corresponds to a

sensing location and a column corresponds to a time slot. An

entry represents the weather data on a particular location and

time slot. The first column in the weather matrix of XN×T (t)
represents the weather data collected in the time slot t.

Collecting the weather information in all locations and

time slots is costly. Since weather data normally have strong

correlation between neighboring locations and time slots, the

weather matrix should have low rank. This is confirmed with

our measurement data in the next section. MC-Weather mea-

sures the weather condition only at a subset of the locations in

a given time slot and vary the data collection locations in dif-

ferent time slots. Rather than randomly select the measurement

locations as instructed by conventional matrix completion

theory, we find that the performance can be improved if we

could select the collection points more intelligently based on

the information learnt from existing measurement data.

We use a Binary Sample Vector �B (t) ∈ RN to indicate the
locations that take measurement in a given time slot t, where

[
�B (t)

]
i
=

{
1 if location i at time t is sampled
0 otherwise

(5)

Accordingly, a Binary Sampling Matrix BN×T (t) can be de-

fined as BN×T (t) =
[
�B (t) , �B (t+ 1) , · · · , �B (t+ T − 1)

]
,

and the incomplete sensory matrix MN×T (t) is represented

as

MN×T (t) = XN×T (t) •BN×T (t) (6)

where • represents a scalar product (or dot product) of two

matrices, Mij (t) = Xij (t)Bij (t).
According to the matrix completion technique introduced

in Section III-A, when the number of samples is sufficient,

the weather matrix XN×T (t) can be recovered from sensory

matrix MN×T (t) by solving the following problem

min ‖X (t)‖∗
subject to Xij (t) = Mij (t)

MN×T (t) = XN×T (t) •BN×T (t)

(7)

We denote the matrix reconstructed from (7) as X̂N×T (t).
Obviously BN×T (t) directly reflects the sensing scheduling,

and the key problem in our MC-Weather scheme is to identify

the optimal BN×T (t) (t ≥ 0) so as to minimize the com-

munication cost and sensing cost while satisfying the matrix

reconstruction requirement. The sampling matrix BN×T (t)
indicates which locations need to take samples in a time slot.

Although the literature work on matrix completion provide

some solutions to recovering data with a limited number of

samples, existing schemes mostly assume the rank of the

sensory matrix is low and has a constant rank value. However,

the weather data values (and accordingly the matrix rank) may

vary significantly over time and locations, and the sparsity

level (rank-level) is often not known a priori. It is thus very

challenging to apply matrix completion theory in the practical

weather gathering system.

Before we present our data collection algorithm based on

Intelligent Matrix Completion in Section 5, we first analyze

a large set of weather monitoring data to better understand

the structure and characteristics of weather data in the next

section.

IV. EMPIRICAL STUDY WITH REAL WEATHER

DATA

We have deployed 196 sensors to collect the weather data

in Zhu Zhou, China. Fig.1 shows the map of Zhu Zhou, where

the red dot represents the location of a deployed sensor. Fig.2

shows the deployed sensor node. Each sensor reports its data

once an hour to the weather monitoring center via the cellular

network. We have collected a large amount of weather trace

data from Zhu Zhou. Each data element includes weather data

of rain, temperature, and wind. Specially, we choose rain data

to analyze because Zhu Zhou is in the area prone to flood.

The trace data are collected in the duration of more than two

years from 2011 to 2013. In our experiment, we set N = 196,



T = 168. The trace data reveal the existence of some special

structures.

Fig. 1. Weather sensor deployment in Zhu Zhou, China

Fig. 2. Sensor node deployed in Zhu Zhou, China
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Fig. 3. Fraction captured by top k singular values

Weather data collected over different locations and time slot-

s are not independent. There exists inherent data redundancy.

We first apply singular value decomposition (SVD) to examine

whether the matrix has a good low-rank structure. A weather

matrix XN×T can be decomposed as:

X = UΣV T (8)

where U is an N × N unitary matrix, V is a T × T unitary

matrix, and Σ is a N × T diagonal matrix with the diagonal

elements (i.e. the singular values) organized in the decreasing

order (i.e. Σ = diag (σ1, σ2, · · · , σr, 0, · · · , 0)). The rank of a

matrix X , denoted by r, is equal to the number of its non-zero

singular values. A matrix is low-rank if its r � min{N,T}.

In Eq(8), the singular value σi also indicates the energy of

the i-th principal component. According to PCA (Principal

components analysis), if a matrix has low-rank, its top k

singular values occupy the total or near-total energy
k∑

i=1

σ2
i ≈

r∑
i=1

σ2
i . The metric we use is the fraction of the total variance

captured by the top k singular values:

g (k) =
k∑

i=1

σ2
i /

r∑
i=1

σ2
i (9)

Fig.3 plots the fraction of the total variance captured by the top

k singular values for different weather trace data from different

seasons. We find that the top 20 singular values capture 70%-

90% variance in the real traces. These results indicate that

the data matrix X has a good low-rank approximation in all

the scenarios under investigation. The low-rank feature is the

prerequisite for using matrix completion.

B. Temporal stability
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Fig. 4. Temporal stability feature

Weather data usually change slowly over time. To study

the short-term stability of weather matrix, we calculate the

gap between each pair of adjacent readings at a location.

Specifically, the gap between each pair of adjacent readings

captured in two consecutive time slots (j, and j − 1) is equal

to
gap(i, j) = |xij − xi,j−1| (10)

where 1 � i � N and 2 � j � T . Obviously, gap(i, j) = 0
if the weather data at location i is not changed from time

slot j − 1 to j. The smaller the gap(i, j), the more stable the

sensory readings for location i around the time slot j.

By computing the normalized difference values between

adjacent time slots, we measure the temporal stability at node

i and time slot j according to

Δgap(i, j) =
|xij − xi,j−1|

max
1�i�N,2�j�T

|xij − xi,j−1| (11)

where max
1�i�N,2�j�T

|xij − xi,j−1| is the maximal gap between

any two consecutive time slots in the weather matrix.



We plot the CDF of Δgap(i, j) in Fig.4. The X-axis

represents the normalized difference values between two con-

secutive time slots, i.e., Δgap(i, j). The Y-axis represents

the cumulative probability. We observe that more than 90%
Δgap(i, j) are very small (< 0.05). These results indicate

that temporal stability exists in real environments. In Section

V-D2, we design our cross sample model by utilizing this

feature.

C. Rank-stability
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Fig. 5. Rank feature of weather data

We plot the rank of the consecutive weather matrix in Fig.5

by varying the starting time slot from 0 to 100 to further

investigate the rank feature. Each weather matrix only includes

the sensing data of T time slots. The X-axis represents the

first time slot of a weather matrix. The Y-axis represents the

matrix’s rank of the corresponding T-time-slot measurement

window.

Obviously, the weather matrix does not have a constant rank

and the rank of matrix varies with time slots and seasons,

which contradicts to the assumption in existing work that

the matrix has the constant rank. On the other hand, even

though the rank of weather matrix may change, the rank

between adjacent matrices changes only slightly, thus there

exists relative rank stability. In Section V-B, we will exploit

the relative rank stability in our learning algorithm for more

efficient on-line weather gathering.

V. ON-LINE WEATHER GATHERING BASED ON

MATRIX COMPLETION

In this section, by taking advantage of the weather ma-

trix’s low-rank, temporal stability, and relative rank stability

features, we design an innovative on-line weather gathering

scheme (MC-Weather) based on matrix completion to effi-

ciently schedule the data collection at different sensors for

lower sensory cost while ensuring accurate XN×T reconstruc-

tion. Compared to sampling at each location and time slot, this

leads to a variety of benefits, including low power consumption

and long lifespan of sensors, and reduced data transmissions

in the network.

A. Rank of adjacent matrices

To support continuous weather gathering and reduce the

computation cost for reconstructing the weather matrix, our

Fig. 6. Slide window based weather gathering

MC-Weather is implemented based on the sliding window

model, where the oldest time slot in the window is removed

when a new time-slot is added to the window. We apply

matrix completion technique to reconstruct the weather matrix

from the sensory matrix obtained in a window, and we call

the window which contains the current time slot the active
measurement window.

Fig.6 shows an example of our sliding window model, with

10 sensors in the system. The size of the sliding window is

T=6, and the current time slot is 9. There are two adjacent

measurement windows in this figure. The first window in-

cludes time slots from 3 to 8, and the second one includes

time slots from 4 to 9. The active measurement window in

this example is the second window. The two adjacent weather

matrices corresponding to these two windows are denoted by

X10×6 (3) and X10×6 (4).

From the matrix completion theory, the rank of the matrix

has direct impact on the number of samples required to accu-

rately reconstruct the weather matrix from partial sensory data.

In a dynamic environment, however, it is difficult to determine

the number of samples needed in a new window because the

rank of an active measurement window is unknown.

As shown in Fig.6(b), obviously, most columns of these

two matrices are the same except one column. Therefore, there

exists a strong relationship between these two matrices. Before

we discuss the relationship of these two adjacent matrices

in Theorem 2, the following Theorem presents the rank

relationship of two matrices with the same number of rows.



Let (A,B) be a matrix formed with A and B concatenated.

Theorem 1: Given two matrices A ∈ Rm×n and B ∈
Rm×k, the rank of matrix A, B and (A,B) satisfies

max{rank(A), rank(B)} � rank(A,B) � rank(A) + rank(B)
(12)

Specially, if B is a non-vanishing vector and B ∈ Rm, we
have

rank(A) � rank(A,B) � rank(A) + 1 (13)

Proof : Due to the limited space, the proof is omitted.

Theorem 2: Given two weather matrices of adjacent win-

dows XN×T (t) , XN×T (t+ 1) and rank (XN×T (t)) = r ,

the rank of the matrix XN×T (t+ 1) satisfies

r − 1 � rank(XN×T (t+ 1)) � r + 1. (14)

Proof : Due to the limited space, the proof is omitted.

Theorem 2 verifies the relative rank stability feature which

we have observed from real weather data traces in Section

IV. Based on this feature, we will design our learning-based

scheduling scheme for sensor data collection in the following

section.

B. Sample learning principle

Fig. 7. Different sample learning principle.

As proven in Theorem 2, the rank difference of adjacent

weather matrices is no more than 1. Based on this feature, the

number of samples to take in a new time slot t can be learnt

from the last window. Accordingly, we propose three learning

principles to identify the initial sampling number to use in the

new time slot:

• LearningFirst. The number of samples to take in a new

time slot t is learnt and set to the same as that in the time

slot t−T . In Fig.7, the initial number of samples to take

in slot 9 is set to 2, the same as that in slot 3.

• LearningEnd. The number of samples to take in a new

time slot t is learnt and set to the same as that in the time

slot t− 1. In Fig.7, the initial sampling number in slot 9

is learned from slot 8 and set to 4.

• LearningMean. The number of samples to take in a new

time slot t is learnt and set to be the average sampling

number of those from time-slots in the last window. In

Fig.7, the initial sampling number in slot 9 is set to 3.

Obviously, if two adjacent windows have the same rank,

LearningFirst is the most effective principle. As shown in

Fig.7, there are three parts in the two continuous measurement

windows, part1 (slot 3), part 2 (slots 4, 5, 6, 7, 8) and part 3

(slot 9). When time slot 9 starts, the samples in part 1 and part

2 remain the same. If the number of samples in the previous

measurement window ranging from slots 3 to 8 are sufficient

to reconstruct the weather data, it is also sufficient to set the

number of samples in slot 9 to 2, the same to that in slot 3.

If two adjacent windows have different ranks and the ranks

vary with time, the last time slot can better approximate the

rank from the previous window, therefore, LearningEnd may

be more effective.

In a practical data gathering process, the sink node can apply

a learning principle according to the environmental conditions.

In the simulation part, we will compare the performance of

different learning principles.

C. Adaptive sampling

We propose our adaptive sampling algorithm based on the

matrix completion and learning principles below.

Algorithm 1 The matrix completion based adaptive sampling

algorithm

1: Based on a learning principle selected, identify the initial sam-
pling number to use in the new time slot t, denoted as C.
According to the cross sampling principle in Section V-D2, select

sampling locations and initialize �B(t) with
∣∣∣ �B(t)

∣∣∣ = C. The

sink announces the sampling schedule according to �B(t).
2: Once the receiving C measurements, the sink runs the matrix

reconstruction algorithm to obtain data in the active window
X̂N×T (t− T + 1) and calculate the reconstruction error ε as

ε =

√∑
i,j,Bij(t)=1

(
Mij (t)− X̂ij (t)

)2

√∑
i,j,Bij(t)=1 Mij(t)

2
(15)

3: while |ε− εb| > β do
4: if ε− εb > 0 then
5: Add αC(ε − εb) extra measurements according to cross-

based sampling principle in Section V-D2, and update �B (t)
and C = C + αC(ε− εb).

6: else
7: Delete αC(εb−ε) out of measurements at the sink to look

for the appropriate number of samples to take in future

time slots. and update �B (t) and C = C − αC(εb − ε).
8: end if
9: Based on the updated �B (t), calculate the reconstruction error

ε according to Eq(15).
10: end while
11: The sink stores �B (t) to indicate the effective sampling in time

slot t.



In step 1, the sampling number in a new time slot t, C,

is determined following the learning principle of choice. With

C new samples taken in the slot t, the sink runs the matrix

reconstruction algorithm to obtain data in the active window

X̂N×T (t− T + 1) and calculate the reconstruction error ε
according to Eq(15).

If the error is low so the reconstruction can reach the accu-

racy requirement, we consider X̂ as a successful recovery and

our algorithm goes to step 7 to reduce the extra measurements

and find the number of samples needed in future time slots;

otherwise, our algorithm goes to the step 5 to determine the

number of supplemental measurements to take.

The large recovery error can be due to the variation of

environmental conditions thus the rank change of the matrix.

In our MC-weather system, each time slot is one hour. If

the sink finds sample scheduled in the current time slot

is not sufficient to reconstruct the matrix, it can instruct

sensors to take additional samples. Without knowing the actual

number of samples needed, the sink could schedule sensors to

take additional samples in multiple rounds until the recovery

accuracy is reached. A straight-forward approach is to take

additional samples at a given rate in each round at the cost

of extra computational and communication cost. To reduce

the overhead, we propose to adapt the sampling number

according to the recovery error ε and the error bound εb. We

add αC(ε− εb) extra measurements according to cross-based

sampling principle to present in Section V-D2, and update

C = C + αC(ε − εb) until the error gap is smaller than β.

The larger the error gap is, the higher probability the rank

increases. Additional measurements are needed to capture the

rank variation to more accurately reconstruct the matrix.

In step 7, if the recovery error ε is below the error bound

εb, it indicates that the current reconstruction with C samples

already satisfies the accuracy requirement. When the rank

of the weather matrix in an active measurement window

decreases, the number of samples to take can also be reduced.

Similar to step 6, we propose to adapt the sampling number

according to the recovery error gap. Among C measurements,

we delete αC(εb − ε) out of measurements at sink to look

for the number of samples needed in future slots and update

C = C − αC(εb − ε) until the error gap is smaller than β.

When the updating process above stops, the resulting C
is the number of effective samples needed in the time slot

t. From step 3 to step 10, our adaptive sampling algorithm

attempts to identify the effective number of samples to take

in future time slots based on the rank of the data matrix in

the active measurement window, which will guide the future

weather monitoring based on the learning principles proposed

in Section V-B.

D. Sampling initiation and scheduling

Our adaptive sampling algorithm provides a guide on the

number of samples to take in a new time slot based on the

information from the previous measurement window and the

recovery error. However, at the beginning of the data gathering

procedure, there are not enough history measurements to

guide the sampling process. We introduce a training phase in

Section V-D1 to initialize the sampling process based on data

collected from the first T-time slots, and a scheme to determine

the sampling locations in each time slot in Section V-D2.

1) Uniform Time-slot Sampling
In the training phase, each sensor senses and reports data

to the sink. The key problem to solve in this phase is to

identify the effective sampling set among all measurement data

to initialize the sampling schedule for future time slots.

As all locations are sensed in the training phase, the sink

knows the exact weather data XN×T (1) and the rank of r =
rank (XN×T (1)) . Therefore, the sink can infer the effective

sampling number m according to Eq(4).

Obviously, the sample distribution has direct impact on the

reconstruction accuracy. To reconstruct the matrix, the samples

should be taken randomly to avoid matrix completion failure

when a row or a column is un-sampled.

In [32], the authors analyze two models to obtain the sample

set, the Bernoulli model and the uniform model. Under the

Bernoulli model, each entry in the matrix is sampled with

a probability p = m/ (n1 × n2) (where n1 and n2 are the

number of rows and columns of the matrix, respectively).

Under the uniform model, Ω is taken uniformly at random

from the matrix with the cardinality of Ω being m. The two

models were shown to have the equivalent performance.

In our adaptive sampling algorithm, the samples taken in

a time slot t can guide the sample-taking process in future

time slots. If applying the uniform model or the Bernoulli

model, we cannot guarantee that every time slot has samples.

When there is no sample in a column, we cannot know the

number of samples to take in later time slots. Neither of the

existing sample models is suitable to apply in our MC-weather

gathering scheme. We propose our uniform time slot sampling

model as follows.

The desired sampling model in MC-weather gathering

scheme should be simple to implement, and have an equal

number of samples in each time slot in the training window so

that every time slot has sampling data and can reflect the rank

of the training window. Accordingly, we propose a uniform

time-slot sampling model so that the number of samples taken

in each time slot within the training window is equal and set

to
⌈
m
T

⌉
.

With the number of samples to take in each column deter-

mined, we still need to identify the locations to take sample

in each time slot. In the following subsection, we propose our

cross sample principle to achieve this goal.

2) Cross sampling principle
Due to the temporal stability of sampling data, the desired

sampling principle in MC-Weather scheme should avoid sam-

pling the same location in adjacent time slots. To achieve the

objective, we divide the locations into two parts, and different

time slots have different priority to sample one of the parts.

We call this cross sampling principle.

Fig.8 shows an example of our Uniform Time-slot and

cross-based sampling model. The training measurement win-

dow is X10×10 (1) and the required sampling number is



Fig. 8. UTSCS Sampling model.

m = 30. According to the model, each time slot should have

30/10=3 effective samples. Moreover, to implement uniform

sampling by avoiding sampling the same location in adjacent

time slots, the locations are divided into two parts, white part

and jacinth part. In time slot 1, effective samples have high

priority to take in jacinth part, while in time slot 2, effective

samples have high priority to take in white part.

3) Sample model analysis
The key difference between our Uniform Time-slot and

cross based sampling model (UTSCS) and the other two

models is that under the UTSCS model, every column is

guaranteed to be sampled at least once and the same location

is avoided to take samples in adjacent time slots. It is clear that

if we fail to observe at least one entry in a row (or a column)

of the matrix, we have no way of recovering the matrix. In

Theorem 3, we will show that the probability of missing an

entire row under our UTSCS model is smaller than that under

the Bernoulli model.

Let F be the event that an entire row is missed to sample.

Under the Bernoulli model, as each sample is taken inde-

pendently, the probability of event F is PBernoulli (F ) =(
1− m

N×T

)T

=
(

N×T−m
N×T

)T

, where m
N×T is the probability

of each entry in the matrix is sampled.

Under the UTSCS Sampling model, the probability of event

F is PUTSCS (F ) =

(
C

N/2−1

m/T

C
N/2

m/T

)T/2

=

[(
N×T−2m

N×T

)1/2]T

.

Theorem 3: When N � 2
ln 10T , the ratio of probability

PBernoulli(F )
PUTSCS(F ) =

(N×T−m
N×T )

T

⎡
⎣(N×T−2m

N×T )
1
/2

⎤
⎦

T satisfies

1 <
PBernoulli (F )

PUTSCS (F )
< e

1/2 (16)

Proof : Due to the limited space, the proof is omitted.

From [32], we know that sampling according to Bernoulli

model has been analyzed and shown to be able to recover the

matrix satisfactorily. From the Theorem 3, we can conclude

that compared with Bernoulli model, our UTSCS sample

model has better performance for matrix completion.

E. Complete MC-weather gathering scheme

The whole MC-weather gathering scheme can be summa-

rized as follows.

(1)In the training phase at the beginning of the first T time

slots, every node senses and sends weather data to the sink.

Then the Uniform Time-slot and cross Sampling model is

applied to identify the effective sample sets within the training

window.

(2)In each new time slot t after (T − 1)th time slot, the

sink node first identifies the initial sample number following

the proposed sample learning principle, and then identifies

an initial sample set in this new time slot according to the

cross sampling principle. It then adapts the sampling set

following the adaptive algorithm in Section V-C to accurately

reconstruct the weather matrix in the presence of the change

of environmental conditions and accordingly the rank of the

weather data matrix.

VI. PERFORMANCE EVALUATIONS

In this section, we first introduce the methodology and

simulation setup, and then analyze our performance results.

A. Methodology and experimental setup

To evaluate the performance of our MC-Weather scheme,

we have performed extensive simulations driven by real weath-

er traces collected by our deployed 196 sensors. Specifically,

we chose the rain traces gathered from July 1 to August 31st,

2012.

We implement four weather gathering schemes in our simu-

lations. The first scheme is our MC-Weather scheme in which

the effective samples in the training windows are obtained

according to our UTSCS Sampling model proposed in Section

V-D and the effective samples in each new time slot is set

according to Algorithm 1. Especially, according to [18], to

well control the reconstruction error of matrix completion, the

low bound error and the error gap in Algorithm 1 are set to

εb= 0.4%, β= 0.05%. According to the result of Theorem

3, we take data from one week for training purpose with

the training windows set to 196 × 168(168 = 24 × 7). The

second scheme is a uniform random sample scheme. Given a

fix sampling ratio, the sensors in each location take samples

according to uniform sampling model with three different

sampling ratios, 0.6, 0.7 and 0.8, denoted as Uniform 0.6, U-

niform 0.7, and Uniform 0.8, respectively. In the third scheme,

uniform-time slot sampling model proposed in Section V-D1

is applied in the training windows, while for each new time

slot, the uniform sampling with a given sampling ratio (0.6) is

applied, denoted as TimeUniform-0.6. Different from the third

scheme, in the fourth scheme, our cross sampling principle

proposed in Section V-D2 is applied to identify the sample set

in new time slot, denoted as TimeUniformCross-0.6.

B. Simulation results

1) Estimation error
In Fig.9, we compare the reconstruction errors of the four

weather data gathering schemes. The reconstruction errors of



three peer schemes fluctuate over the time period simulated,

while the errors of our MC-weather remain low and stable.

This is because that the rank of the weather data varies

with time, and sampling with a fixed ratio is not suitable

for dynamic weather data gathering. Even for Uniform-0.8

(sampling with the largest ratio), the error rate around time

slot 1300 raises up to three times higher, which is much

larger than the error bound. In contrast, the error rate in MC-

weather can be well controlled to be around the error bound,

which demonstrates that MC-weather can successfully adapt

the sampling rate in response to change of data in a dynamic

environment.

Compared to Uniform-0.6 scheme, TimeUniform-0.6 has

lower error even though both schemes have the same sam-

pling ratio. This indicates that the sampling model taken by

TimeUniform-0.6 is better to apply with matrix completion

to recover data. Moreover, compared to TimeUniform-0.6, the

TimeUniformCross-0.6 has lower error rate by following our

cross sampling principle to avoid taking samples from the

same location in adjacent time slots. These results demonstrate

that our uniform time slot and cross sampling model helps

achieve better data gathering performance.
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Fig. 9. Reconstruction error.

2) Sample number
Fig.10 and Fig.11 compare the number of samples and

the accumulative number of samples taken under different

schemes. In consistence with the results shown in Fig.9, the

curves in all the schemes in Fig.10 are parallel to the X-axis

except our MC-scheme. This is because the other schemes

utilize a fixed sampling ratio while MC-weather can adjust

the sampling ratio according the rank variation to accurately

recover data matrix while reducing the sampling overhead. We

observe higher sampling number change around time 1300.

Fig.11 also demonstrates that our uniform Time slot and

cross sample model is a good for matrix completion. The

accumulative sample number of MC-Weather is not larger

than the other three schemes (Uniform-0.6, TimeUniform-0.6,

TimeUniformCross-0.6) while the error rate of MC-Weather

is much smaller (Fig.9).

3) Impact of sampling learning principles
To evaluate the performance with different sample learn-

ing principles proposed in Section V-C, we calculate the

gap between the learned initial sample number (denoted by
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Fig. 10. Adaptive sample number.
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Clearning[i] for time slot i) and final effective sampling

number (denoted by Ceffective[i] for time slot i) obtained from

the adaptive algorithm. Specifically, the gap ratio between

these two sample numbers is equal to

Gapratio [i] =
|CLearning [i]− CEffective [i]|

CEffective [i]
(17)

Obviously, the smaller the resulting Gapratio[i], the better the

learning principle is.

We plot the CDF of Gapratio [i] in Fig.12. The X-axis

presents the gap ratio. The Y-axis presents the cumulative

probability. For the LearningEnd principle, > 90% probability

the values of Gapratio [i] are very small (< 0.01). This

indicates that the LearningEnd principle is more suitable to

apply in data gathering when the environment is dynamic

and the rank of the data matrix varies. Accordingly, we adopt

the LearningEnd principle in our practical weather gathering

system.
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VII. CONCLUSION

The conclusion goes here. this is more of the conclusion

In this paper, we focus on continuous and on-line data gath-

ering in WSNs. Through analyzing datasets of real weather

data in Zhu Zhou, China, we observe that weather data have

the features of low-rank, temporal stability, and relative rank

stability. By taking advantage of these structures, we propose

an on-line MC-Weather scheme based on matrix completion

theory. We prove that the observed relative rank stability is

common feature in continuous data gathering systems. Based

on this important feature and our observations, we propose

three sample learning principles, based on which we design

our adaptive sampling algorithm to quickly determine the

effective sampling set. To take the full advantage of our sample

learning principles, we also propose a Uniform Time-slot and

Cross Sample model (UTSCS). Compared with the Bernoulli

model, we prove that our UTSCS model allows for better

data matrix reconstruction. Trace-driven simulations based on

real weather data traces show that MC-Weather successfully

achieves required high accuracy in data recovery with low

sensing and communication costs in a dynamic environment.
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