IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 16, NO. 1, FEBRUARY 2008

Measurement and Analysis of LDAP Performance

Xin Wang, Member, IEEE, Henning Schulzrinne, Fellow, IEEE, Dilip Kandlur, Fellow, IEEE, and
Dinesh Verma, Fellow, IEEE

Abstract—The Lightweight Directory Access Protocol (LDAP) is
being used for an increasing number of distributed directory ap-
plications. We describe a tool to analyze the performance of LDAP
directories, and study the performance of a LDAP directory under
a variety of access patterns. In the experiments, we use a LDAP
schema proposed for the administration of Service Level Specifica-
tions (SLSs) in a differentiated services network. Individual mod-
ules in the server and client code are instrumented to obtain a de-
tailed profile of their contributions to the overall system latency
and throughput. We first study the performance under our de-
fault experiment setup. We then study the importance of the fac-
tors in determining scalability, namely front-end versus back-end
processes, CPU capability, and available memory. At high loads,
the connection management latency increases sharply to dominate
the response in most cases. The TCP Nagle algorithm is found to
introduce a very large additional latency, and it appears beneficial
to disable it in the LDAP server. The CPU capability is found to be
significant in limiting the performance of the LDAP server, and for
larger directories, which cannot be kept in memory, data transfer
from the disk also plays a major role. The scaling of server perfor-
mance with the number of directory entries is determined by the in-
crease in back-end search latency, and scaling with directory entry
size is limited by the front-end encoding of search results, and, for
out-of-memory directories, by the disk access latency. We investi-
gate different mechanisms to improve the server performance.

Index Terms—Benchmark, diffServ, directory service, LDAP,
measurement, performance, policy.

1. INTRODUCTION

HE Lightweight Directory Access Protocol (LDAP) is

being used for an increasing number of directory applica-
tions. Applications include personnel databases for administra-
tion, tracking schedules [1], address translation databases for IP
telephony, network databases for storing network configuration
information and service policy rules [2]-[4], and storage of
authentication rules [5], [6]. The H.350 series of ITU describe
a Directory Services architecture for multimedia conferencing
using LDAP and was finalized at the last meeting of ITU-T
Study Group 16 in May 2003. H.350-based directory services
can provide automated configuration of endpoints, association

Manuscript received April 6, 2004; revised January 8, 2007; approved by
IEEE/ACM TRANSACTIONS ON NETWORKING Editor A. Greenberg.

X. Wang is with the Department of Electrical and Computer Engineering,
State University of New York at Stony Brook, Stony Brook, NY 11794 USA
(e-mail: xwang@ece.sunysb.edu).

H. Schulzrinne is with the Department of Computer Science, Columbia Uni-
versity, New York, NY 10027 USA (e-mail: hgs@cs.columbia.edu).

D. Kandlur is with the IBM Almaden Research Center, San Jose, CA 95120
USA (e-mail: kandlur@us.ibm.com).

D. C. Verma is with the IBM T. J. Watson Research Center, Hawthorne, NY
10532 USA (e-mail: dverma@us.ibm.com).

Digital Object Identifier 10.1109/TNET.2007.911335

of persons with endpoints, searchable white pages, clickable
dialling, and user authentication based on authoritative data
sources.

In many of these cases, such as the use of LDAP directories
for storage of personnel information and authentication rules,
the data is relatively static, so that caching can be used to im-
prove performance. In some situations, the database information
needs to be updated frequently. For example, in IP telephony,
every time a subscriber uses a different terminal or is at a dif-
ferent location, his account information may need to be updated.
Despite the growing importance of LDAP services, there has
been little work on how LDAP servers behave under different
workloads, and in different operating environments. In partic-
ular, the performance of LDAP in a dynamic environment with
frequent searches has not been closely examined.

In this paper, we report on the development of a tool to bench-
mark LDAP server performance, and analyze results derived
using this tool. In addition, we have instrumented the server and
LDAP client API codes to allow detailed profiling. These re-
sults include the contribution of various system components to
the overall performance in terms of latency and throughput, the
scaling of performance with directory size, entry size, and ses-
sion reuse, and the importance of various factors in determining
scalability. We also investigate modifications and usage patterns
that improve server performance.

Given the growing use of LDAP in applications, it is useful
and convenient to carry out the performance experiments using
data based on an existing LDAP schema proposed for a real
directory application. In this work, we use a schema proposed in
[3] and [4] for the administration of Service Level Specifications
(SLSs), which are used to configure networks for supporting
different levels of services. In this application, it is envisioned
that the administrative policies embodied in the LDAP schema
will be stored on directories and downloaded to devices such as
hosts, routers, policy servers, proxies. If the SLS is allowed to
be dynamically negotiated [7], the LDAP service must deal with
frequent directory queries. In these respects, this application is
representative of many current or proposed LDAP applications
[2], [5] [8]. The results reported in this work should be generally
applicable to many of the applications cited earlier; aspects of
the work that are specific to SLS administration will be pointed
out where appropriate.

The rest of this paper is organized as follows. In Section II,
we first provide general background on the LDAP directory ser-
vice, and then provide a very brief introduction to differentiated
service networks and service level specifications, as well as the
LDAP schema proposed for this application. The experimental
set-up is discussed in Section III, followed by a discussion of
the test methodology in Section IV. Experiments are described,

1063-6692/$25.00 © 2008 IEEE

c=US

0=Columbia Univ

(cn = foo \1

cn: foo
mail: foo@cs.columbia.edu

[o=IBM |
mail:info@ibm.com
fax:(914)784-7000

Fig. 1. Example of organization of data in a LDAP directory.

and the results are presented and analyzed in Section V, and re-
lated work is presented in Section VI. Finally, we summarize
our results and present some conclusions in Section VII.

II. BACKGROUND

In this section, we first provide a brief introduction to the
LDAP directory service. We then provide background on the
use of LDAP in the administration of differentiated services
networks. In this context, we also describe the LDAP directory
structure used in our experiments.

A. The LDAP Directory Service

A directory service is a simplified database. Typically, it does
not have the database mechanisms to support transactions. Di-
rectories allow both read and write operations, but are intended
primarily for high-volume, efficient read operations by clients.

LDAP is a distributed directory service protocol, and is based
on a client-server model and runs over TCP/IP. It can be used
to access standalone directory servers or X.500 directories.
Today, LDAPvV2 is an Internet standard as defined by the IETF
standards process. The standards document, RFC 1777 [9],
dates back to March 1995. A newer specification, LDAPv3
[10] has also become a standard. Information is stored in an
LDAP directory in the form of entries arranged in a hierarchical
tree-like structure (Fig. 1). An LDAP entry is a collection of
attributes; for example, an entry corresponding to a person may
have as its attributes the name of the person, organization, and
e-mail address. Each attribute has a type, which is an identifying
mnemonic (for example, the e-mail attribute may have type
“mail”) and an attribute can take one or more values (the e-mail
attribute might have “foo@cs.columbia.edu” as a value).

LDAP defines operations for querying and updating the direc-
tory. Operations are provided for adding and deleting an entry
from the directory, changing an existing entry, and changing the
name of an entry. Most of the time, though, LDAP is used to
search for information in the directory. The LDAP search op-
eration allows some portion of the directory to be searched for
entries that match some criteria specified by a search filter. In-
formation can be requested from each entry that matches the
criteria.

B. Using LDAP for SLS Administration

As mentioned earlier, although we assume a LDAP directory
intended for storage of SLS policies, most of the experimental
results presented in this work apply to LDAP services in general,
and a detailed understanding of differentiated service networks

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 16, NO. 1, FEBRUARY 2008

and Service Level Specifications is not required to follow the
rest of this paper. However, a brief background may be of in-
terest to some readers.

1) Service Level Specifications: The current Internet op-
erates on a best-effort basis, in which all packets are treated
equally. Recently, there has been much interest in network
service models with mechanisms to provide multiple service
levels to users. The two main approaches under discussion are
the integrated service model, which supports quality of service
(QoS) levels by allowing per-flow resource reservation using
RSVP [11] signaling, and the differentiated service model
[7], [12], which provides multiple service classes which are
served using different per-hop behaviors. In either model, the
network provider negotiates a service level specification with
a customer, defining aspects of network behavior such as the
type of service user packets will receive, and the constraints
the user traffic must adhere to. The SLS may be dynamically
renegotiated, based on changes in the customer requirements
or network conditions.

The network access points and internal routers implement
the classification, resource control, and administrative policies
associated with SLSs. Researchers in the DiffServ community
have proposed storing these policies in a central or distributed
policy repository administered and accessed using a directory
service such as LDAP [3], [4], [13]. In the proposed scenario, the
policy repository is updated when the network provider negoti-
ates new SLSs, or renegotiates existing contracts, and also when
the policies need to reflect changes in network topology or traffic
levels. Network elements frequently access the policy database,
and download the current set of rules according to which cus-
tomer traffic is served.

In addition, the network provider provisions the network in
order to provide the service contracted to customers. The pro-
visioning is physical (adding or removing network elements)
and logical (partitioning or configuring network elements). The
network configuration information may be maintained in LDAP
directories, and downloaded periodically by routers. This al-
lows the network provider to adjust configurations (for example,
buffer space, or packet drop precedences) with a finer granu-
larity in response to network usage feedback.

2) Architecture of Network QoS Control Using LDAP: A pre-
liminary schema using LDAP for configuration of DiffServ net-
works has been proposed in [3]. The various aspects of a service,
such as the traffic profile the user traffic must conform to in order
to receive the service, and the forwarding rules for conforming
traffic, are captured in a set of policies. The generic architecture
that is envisioned consists of a management tool, a policy repos-
itory, a policy decision entity, and a policy enforcement entity.
Fig. 2 shows the functional relations between these different en-
tities.

In the context of the service environment under consideration,
the management tools are used by the network administrator to
populate and maintain the LDAP directory with policies. Man-
agement tools may or may not reside on the same host as the
directory server. Enforcement entities apply policy rules.

A decision entity and enforcement entity are usually assumed
to reside at each edge device, or network access point. The edge
device is referred to by its location and would most likely be

WANG et al.: MEASUREMENT AND ANALY SIS OF LDAP PERFORMANCE

. - .
Policy Repository

Policy Decision

Management Tool
LDAP Client

LDAP Server

Policy Enforcement

LDAP Client

Fig. 2. Architecture for network QoS control using LDAP.

placed at the access point between a local subnet and the back-
bone network, or at the boundary between backbone networks
of two service providers. The decision entity downloads policy
rules from the repository, through a LDAP client. The enforce-
ment entity queries rules from the decision entity and carries
out packet handling and monitoring functions. The decision en-
tity may either download the entire policy repository all at once,
or may query the directory when needed—for instance, when
triggered by events such as an RSVP message or an IP packet
bearing a TCP connect request.

A customer attaches to the network at one or more interfaces
belonging to an edge device. Each interface is identified by an IP
address. At each interface, one or more policies may be defined,
and customer packets are monitored and processed according
to these policies. Each policy is associated with a service level
which defines actions on the part of network elements in han-
dling customer packets. A policy may be applied on the basis of
source/destination IP addresses, transport protocols, source/des-
tination ports, and other parameters such as default port, URLSs,
etc.

Policy rules are stored in the LDAP directory as SLSPol-
icyRules objects (derived from the Policy class described in
[3]). SLSPolicyRules objects may have attributes specifying the
policy name, priority level of the rule, and the network interfaces
to which the rule may be applied, as well as references to ob-
jects which specify the traffic profile, period of validity of the
rule, type of RSVP service or DiffServ action, etc.

At initialization, the edge device identifies its interface ad-
dresses. It determines the set of policies required for these in-
terfaces, and downloads the corresponding classification policy
rules from the LDAP server, as well as the service specifications
referred by the policies. Subsequently, the edge device may poll
the server periodically to learn of modifications to the directory,
and download its set of policy rules if the directory is modified.
If asynchronous mode operations are supported by the directory
service, the downloading of policy rules could also be triggered
upon changes in the policy rules.

III. EXPERIMENTAL SETUP

In this section, we describe our experimental testbed, in-
cluding the hardware we use, the LDAP server software
structure, the LDAP client load generation and the bench-
marking setup.

A. Hardware

The LDAP server ran on a dual-processor Ultra-2 machine
equipped with two 200 MHz Sun UltraSPARC CPUs, and
256 MB of main memory. The LDAP server process was
bound to one of the two CPUs. The LDAP clients ran on a
number of Sun Ultra 1 models with 170 MHz CPU, 128 MB
main memory, and two Sun Ultra 10 machines with 299 MHz
CPU and 256 MB main memory. The server and clients were
connected via 10 Mb/s Ethernet.

LDAP Client
Config/control Parame/ter" LDAP Client
Bench Master a -7
%—,4
LDAP Client
. 7

D - = LDAP Client
Config

Request

f———
LDAP Server

Statistics, -~ Response
, -

Fig. 3. LDAP benchmarking testbed architecture.

B. LDAP Server

There are a number of commercial LDAP servers, including
Netscape Directory Server, and Novell LDAP Services. We
chose OpenLDAP 2.1.24 [14]. OpenLDAP is a complete open
source suite of client and server applications derived from
University of Michigan LDAP v3.3. The main reasons for our
using OpenL.DAP is its open source model, and its rapidly
increasing user population. The open source model allowed
us to perform detailed profiling of individual server modules
and examine some modifications of the basic implementation
instead of treating the server as a black box. The server is based
on a standalone LDAP daemon (slapd) for directory service.
Replicated service is also supported through a UNIX daemon
slurpd. In this work, the goal is to study the performance and
scalability of the server, and we restrict the LDAP clients to
connect to one slapd. Slapd consists of two distinct parts: a front
end that handles protocol communication with LDAP clients;
and a backend that handles database operations. Slapd comes
with three different backend databases to choose from. They
are LDBM, a high-performance disk-based database; SHELL,
a database interface to arbitrary UNIX commands or shell
scripts; and PASSWD, a simple password file database. The
LDBM backend relies on a low-level hash or B-tree package
for its underlying database. In this work, we used an LDBM
backend, namely the Berkeley DB version 2.4.14 package [15]
hash database.

LDBM has two important configuration parameters: cache-
size, the size in entries of an in-memory cache that holds LDAP
directory entries, and dbcachesize, the size in bytes of the
in-memory cache associated with each open index file. In our
experiments, dbcachesize was set equal to 10 MB, sufficiently
large to keep all index files in-memory. The cachesize varied
according to specific experiments.

C. LDAP Client

The overall client-server architecture used in our experiments
is shown in Fig. 3. A collection of client machines are connected
to a server machine. There can be more than one LDAP process
running on a client or server machine. The client machines used

Client

Idap_open(host, port

1. Initializes the LDAP library p-open(port)
connects to a directory server|
returns a session handle

session_handle 1d
Idap_bind (1d, DN, passwd)

bind_success
3. Searches for directory entries

from the portion of the tree
relative to the base object

search result
ldap_unbind (1d)

unbind success

Fig. 4. Sequence of steps in a simple LDAP search operation.

had sufficient CPU capability that the delay at client sites could
be ignored when measuring server performance.

A Bench Master process coordinates the client processes and
generates an overall performance report. The setup parameters
are defined in config files, which contain the hostname and port
of the LDAP server, the number of clients to run, and trans-
action scripts for different clients. The Bench Master forks the
LDAP clients remotely on the designated machines and passes
each client the name of its transaction script. Each of the LDAP
clients performs the operations specified in its script, and starts
up communication with the Bench Master. After all the LDAP
clients have been initialized, the Bench Master instructs the
LDAP clients to commence the benchmarking. It then waits for
the end of the experiment. Each LDAP client starts its LDAP
operations and accesses the LDAP directory according to the ac-
cess pattern as specified in its transaction script. An LDAP client
reports its performance metrics back to the Bench Master when
finished. Finally, the Bench Master organizes the data from the
clients into the benchmark report.

IV. TEST METHODOLOGY AND MEASURES

Common LDAP operations are modify, add, delete, compare
and search. In the directory application considered for our
experiments, the service specifications should remain relatively
static during normal operation, while the policies defined by
customer-provider SLSs would be updated much more often,
as customers negotiate new SLSs and renegotiate old SLSs.
Search operations are therefore likely to dominate the server
load. In general, this is true for most LDAP applications.
Accordingly, for most of our experiments the server workload
consisted of search requests for downloading of policy rules
(SLSPolicyRules objects) from the LDAP directory (Fig. 5).

A simple LDAP search involves a sequence of four opera-
tions: Idap_open, ldap_bind, one or more ldap_search opera-
tions, and /dap_unbind (Fig. 4). ldap_open initializes the LDAP
library, opens a connection to the directory server, and returns
a session handle for future use. The Ildap_bind operation is re-
sponsible for client authentication. The bind operation allows a
client to identify itself to the directory server by using a Dis-
tinguished Name and some authentication credentials such as
a password or other information. LDAP supports a variety of
authentication methods. In our experiments, password authenti-
cation was used. When a bind operation has completed success-
fully, the directory server remembers the new identity until an-

ldap_search (ld, base, scope, filter, attr, atrronly, result

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 16, NO. 1, FEBRUARY 2008

2. Initializes a LDAP bind operation to
authenticate to the directory server
using a Distinguished Name (DN) and
passwd

4. Disposes of a LDAP session

Freeing all associated resources

Customer

[Interface} [Policyj [Channels j
[Pacersj [Local Topolog}J [Policy]

Fig. 5. LDAP tree structure in tests.

Services

other bind is done or the LDAP session is terminated by calling
Idap_unbind. The identity is used by the server to make deci-
sions about what kind of changes can be made to the directory.
The Idap_search operation initiates an LDAP search by speci-
fying the criteria that entries fitting in the associated filter could
be returned. Finally, an LDAP session is disposed of by using
ldap_unbind.

The LDAP directory structure used in our tests is a simpli-
fied version of the directory used to develop the LDAP schema
for supporting SLS [3], [4], [13], and is shown in Fig. 5. Each
Customer entry has a set of associated Interface entries. The
Policy entry directly under the Customer specifies policy rules
common to multiple interfaces belonging to the customer, while
the Policy entry for each Interface specifies the policy rules spe-
cific to customer traffic at that Interface. In general, the Policy
entry refers to one or more of the Service entries in the direc-
tory to specify the service to be received by the corresponding
traffic. The other entries shown in the LDAP directory include
Channel and Pacer entries. A channel is a virtual pipe between
an ingress edge device and an egress edge device. A pacer is the
abstraction that limits the total amount of traffic that can be sent
out into the backbone network at an access point.

The search filter for the search operation was constructed
from the Interface address of interest, and the corresponding
Policy object. The search filters were randomized in our exper-
iments to avoid search results being cached. The default entry
size for most experiments was 488 bytes with random and re-
alistic values in each data item, and the default directory size
was 10000 entries. Note that the default entry size and direc-
tory size are set so that we can perform the scalability studies
later under our system constraint. The actual sizes of the entry
and the directory will depend on the user application need and

WANG et al.: MEASUREMENT AND ANALY SIS OF LDAP PERFORMANCE

be constrained by the systems resources. Each experiment lasted
two hours, and each result was the average of those from 20 ex-
periments.

In our experiments, each search operation involved all four
of the above steps, Idap_open, ldap_bind, ldap_search, and
ldap_unbind. In a real application, a client performing multiple
searches may prefer to leave the connection open and only
do an unbind at the end. In this sense, the total response time
data in the experiments represents a worst-case scenario. In
Section V-D, we consider the effect on performance by leaving
the connection open for multiple searches or for the duration of
the experiment.

In addition to the search experiments, the performance of the
LDAP server for database updates is studied in Section V-E,
using a workload consisting of ldap_add requests for adding
SLSPolicyRules objects. In this case, the client must construct
a new entry with a set of attributes before calling the ldap_add
routine. The performance measures used in our experiments are
latency and throughput for the common LDAP operations. The
latency is the time it takes for an operation to be completed,
measured in milliseconds. The throughput is the number of op-
erations completed over a unit of time. The latencies that reflect
the performance of the LDAP service are the connect time, pro-
cessing time and response time. Referring to Fig. 4, we define
the latency measures as follows: the connect time is defined as
the time from the sending of ldap_open request until ldap_bind
operation is successful; the processing time is defined as the
time required for an LDAP operation as well as the data transfer
time (e.g., in Idap_search operation, the time for ldap_search
and the transfer time for the retrieved results to be returned to
the clients); the response time is defined as the total time re-
quired for an LDAP operation, from Idap_open to ldap_unbind.

V. ANALYSIS OF RESULTS

Our experiments have three main purposes: identify the con-
tributions of various system components towards the overall
LDAP performance; study the limits of LDAP performance, and
what determines these limits; and finally, to suggest measures to
improve performance.

We organize the experimental results as follows. The overall
performance with respect to throughput and latency is intro-
duced in Section V-A. The various components of the total
search latency are studied in Section V-B, followed by mea-
sures to improve LDAP performance. Some important limita-
tions on LDAP performance are studied in Section V-C. We
then discuss the effect of session reuse on server performance in
Section V-D. Finally, performance of update operations is com-
pared to the performance of search operations in Section V-E.
All the results shown in the performance studies are average
values obtained throughout the simulation period.

A. Overall LDAP Performance

The general variation in the LDAP latency and throughput as
a function of server load are shown in Fig. 6. The load was gen-
erated by 1000 clients querying periodically, with each client
request retrieving a 488 byte SLAPolicyRules entry from a data-
base with 10000 entries. Fig. 6(a) shows the variation in con-
nect, processing, and response latencies as a function of the

Time (ms)

— resp.
-©- conn.
—%— proc.

1 3

10 10° 10
(a) Avg. request rate (regs/s)

120

“»n 100

80

60

40

Thrupt. (conns/s

20

0

0 100 200 300 400
(b) Avg. request rate (regs/s)

Fig. 6. (a) Average connection time, processing time and response time and (b)
average server throughput shown as a function of the average request rate at the
server. The directory had 10000 entries and entry size was 488 bytes.

average request rate at the LDAP server, and Fig. 6(b) shows
the variation in throughput, or number of queries served per
second, as a function of the average request rate. Below a load
threshold corresponding to a request rate of 105 per second, re-
sponse latency remains fairly constant at approximately 64 ms,
and is dominated by the processing time of 60 ms. Above this
threshold, the response time increases rapidly with increasing
load. In this region, the connect time is seen to be the main bot-
tleneck; the processing time also increases with load, but its ef-
fect is less significant. Corresponding to the latency character-
istics, Fig. 6(b) shows that the server throughput saturates at a
rate of approximately 105 requests per second. We now consider
various aspects of this performance in more detail.

B. Improving the LDAP Search Performance

In this section, we first investigate the various components
of the search and connect latency. We then study measures to
improve effective search latency and throughput.

1) Components of LDAP Search Latency: We now consider
the components of the search latency in more detail. These re-
sults were obtained by adding monitoring code to the various
process modules in the slapd daemon. Fig. 7 shows the major
components that contribute to the server and client search la-
tency, under a load of 105 search requests/second, at which the
server is not yet saturated. Surprisingly, while the processing
time as measured at the client is approximately 60 ms, results
obtained from tcpdump and from the monitoring code in slapd
show that out of 60 ms, approximately 50 ms is a waiting time
arising from the Nagle algorithm implemented in TCP. We dis-
cuss this in greater detail in Section V-B3, and consider the com-
ponents of the actual search latency in this section.

At the server, the LDBM back-end uses an index mechanism
to store and retrieve information. Each entry is assigned a unique

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 16, NO. 1, FEBRUARY 2008

Client Server
(LDAP library functions)
1. Initializes the LDAP library | _____ ldap_openthost,porty ~| 2. Open anew connection, initialize states
send open request 0.05 ms -~ ottty 0.8 ms
session_handle 1d
i ldap_bind (1d, DN, passwd
Prepare binding request 0.235ms | _ ____ - - p_bind (I, DN, passwd) > Initializes a LDAP bind operation to
Lo . bind_success authenticate to the directory server
Binding result processing .195ms | _ - ___________________________|] using a Distinguished Name (DN) and
..... Totalcommecttime 3ms | e | passWd L78Tms e,
. P > .
3 . Searches for (%uectory entries 1dap_search_s (1d, base, scope, filter, attr, atrronly, resulk) 4. Execute search operations
from the portion of the tree no cache full cache
relative to the base object build search filter ~ 0.179 ms 0.175 ms
no cache full cache find candidate IDs 1.666 ms 1.663 ms
build search request 0.218 ms 0.218 ms retrieve entries 3.261ms 0135 ms
search data entry filter matching 0.195ms 0.193 ms
ittty ASN.1 encoding 1.163ms 1.163 ms
e o S _ea_r(ih_s_ta_tlis _____________________ send searchresult 0.172ms 0.172 ms
ASN.1 decoding send search status ~ 0.238 ms 0.237 ms
. 0.213 ms 0.213 ms
result construction
L Total server search latency 7.375ms 4.125 ms
.. Total processing time 8.2ms SIS e e
5. Unbind request | _____ lfkip_—yllb_i'ld_qd_) __________________ -] 6. Disposes the LDAP session
e]

unbind success

Freeing all associated resources

Fig. 7. Latency associated with the various server and client process modules in a LDAP search operation.

ID, used to refer to the entry in the indexes. A search for entries
first returns a list of IDs of entries that have the value being
searched; the IDs are then used to retrieve the corresponding
entries. The candidate ID lookup and the data entry retrieval are
seen to take up around 5 ms, 60% of the total processing time
of 8.2 ms.

The main front-end operations at the server are building the
search filter, testing a search filter against an entry, ASN.1 en-
coding of the result entry, sending the search result, and sending
the search status. The front-end operations at the client-side in-
clude building the search request, ASN.1 decoding, and con-
struction of the final search result. In all, the front-end oper-
ations take around 3.16 ms, 40% of the total response latency.
36.8% of the front-end latency is contributed by ASN.1 data en-
coding, followed by sending status information, 7.5%, building
the search request, 7%, ASN.1 decoding, 6.7%, testing a search
filter against an entry, 6.2%, forming the search filter, 5.7%,
and sending the search result, 5.4%. The remaining operations,
including the ASN.1 encoding and decoding of the query and
other information, occupy the remaining 25% of the front-end
latency. Profiling of the slapd daemon also showed that at heavy
loads, the increase in the total response time is due to the CPU
contention among competing threads.

2) Components of LDAP Connect Latency: The connect la-
tency has two components, corresponding to the ldap_open and
ldap_bind steps of the LDAP search operation shown in Fig. 4.
ldap_open initializes the LDAP library, opens a connection to
the directory server, and returns a session handle for future use.
Thus, the open time mainly consists of the session set up time
and the TCP connection time, as shown in Fig. 7.

In version 2 of the LDAP protocol, the ldap_bind step (client
authentication) is a mandatory requirement. As mentioned pre-
viously, LDAP supports different authentication methods, and
simple password-based authentication was used in the experi-

—e— conn.
—— bind
—— open

Time (ms)

Avg. re;quest rate (reduests/s)

Fig. 8. Variation of the open time and bind time components of the average
connection time with average request rate at the server. The directory had 10 000
entries and entry size was 488 bytes.

ments reported here. Fig. 7 shows that the server takes 80% of
the binding time, and the client takes 20% of the time.

Fig. 8 shows the open time and authentication time compo-
nents of the connect time, as a function of the request rate. At
small loads, the authentication time is more than twice the open
time and dominate the connect latency, which is consistent with
the profiling results. The increase in connect time beyond a re-
quest rate of 105 per second is largely dominated by the increase
in open time.

3) Effect of the Nagle Algorithm on Search Latency: The
Nagle algorithm [16] has been proposed for use with TCP to
restrict sending of packets when the segment available to send
is less than a full MTU size, in order to reduce transmission
of small packets and thus improve network utilization. The al-
gorithm works as follows: if all outstanding data has been ac-
knowledged, any segment is sent immediately. If there is unac-
knowledged data, the segment is only transmitted if it is a full

WANG et al.: MEASUREMENT AND ANALY SIS OF LDAP PERFORMANCE

10
— resp., w/ Nagle
—%— proc., w/ Nagle _
— - resp., w/t Nagle =
“@ 10} . =*_proc., wit Nagle !
3 7
/
2 P
[Tk
=10 MR KK — o
0
10
10° 10’ 10° 10°
(a) Avg. request rate (reqs/s)
120
100

Thrupt. (conns/s)
[}
o

40
20 — w/ Nagle
— - w/t Nagle
0
0 100 200 300 400

(b) Avg. request rate (reqs/s)

Fig. 9. Comparison of the server performance with and without Nagle
algorithm: (a) average processing time and response time; (b) average server
throughput. The directory had 10 000 entries and entry size was 488 bytes.

MTU size. Otherwise, it is queued in the hope that more data
will soon be delivered to the TCP layer and then a full MTU
can be sent. Fig. 9 shows that when the Nagle mechanism is
disabled by enabling the TCP_NODELAY socket option, the
LDAP search time is reduced from 60 ms to around 8 ms, while
the throughput remains unchanged.

Slapd responds to a search request from the client side LDAP
library functions in two steps: it first returns the data entries; it
then sends the search and transmission status. The client side
LDAP library functions then construct the final results and
makes them available to the LDAP client. The results from
tcpdump indicated that the sending of search status information
(14 bytes) was delayed about 50 ms until an acknowledgment
message was received from client side.

Researchers have presented evidence [17], [18] that the Nagle
algorithm should be disabled in order to reduce latency and to
protect against unforeseen interactions between TCP and HTTP
with persistent connections. We believe Nagle algorithm should
also be turned off in the LDAP application, since the delay of
the last segment of the response was shown to be unnecessary
from the tcpdump results. To avoid consequent extra packets on
the network, functions such as writev() can be used as have been
used in WWW servers such as Flash and JAWS.

4) Effect of Caching LDAP Entries: The LDBM backend can
be configured to keep a cache for each index file (dbcachesize)
and a cache of entries (cachesize) in memory. We compared the
server performance with two different sizes of the index cache,
100 KB and 10 MB. The backend search time was almost iden-
tical for either case, although at the smaller cache size there was
a large increase in the time required to populate the directory.
This indicated that the index cache was large enough to hold
the index files in either case. We studied the impact of the entry
cache size on the server performance by varying the cache size

10
— resp., no cache
—¥— proc., no cache
— - resp., 10,000-cache
";,\102 = ., 10,000-cache
E 7/
(0]
E 10’ Fox
" MO L
100 0 1 2 3
10 10 10 10
(a) Avg. request rate (reqs/s)
150 P ——
/
7‘,,‘ /
5 /
c
£ 100
Q
S
a
5 50
—
o
[l — no cache
— - 10,000-cache

0 100 200 300 400
(b) Avg. request rate (regs/s)

Fig. 10. Comparison of the performance when the server is configured with no
entry cache and 10 000 entry caches: (a) the processing and response latencies;
(b) the throughput.

from O entries (disk directory without any cache) to 10 000 en-
tries (in-memory directory with full cache) while keeping the
index cache size at 10 MB. For a directory with 10000 en-
tries, a cache with 10000 entries results in a reduction in the
back-end entry retrieval latency (shown in Fig. 7) from 5 ms
to 1.8 ms, with little change in the other latency components.
Consequently, the total processing time reduces from 8.2 ms to
5 ms, and the contribution of the back-end processing time to
the total latency reduces from 60% to 36%. When the latency is
plotted as a function of load, we see a 40% reduction in search
processing time due to caching over nearly the entire range of
loads, as shown in Fig. 10(a). Correspondingly, the throughput
increases 25% and reaches 140 requests/second, as shown in
Fig. 10(b). The relatively smaller improvement in throughput
compared with the improvement in processing time is because
the throughput is impacted by the overall response time instead
of search processing time, while at high loads, the connect la-
tency is the dominant component in the total response latency.
Memory usage was observed to increase 9% with the above in-
crease in cache size.

Since we are primarily interested in the performance of the
LDAP server, for the experiments in the remainder of this paper,
the Nagle algorithm was disabled to eliminate the unnecessary
wait before returning search results to the client. Unless other-
wise specified, an LDBM index cache of size 10 MB, and entry
cache equal to the size of the directory were used. Before an
experiment, the cache was first filled up to avoid the extra over-
head due to cache misses at the beginning of the experiment.

C. Performance Limitations

In this section, we study the limitations of the LDAP server
performance in three important areas: server CPU capability,
the scaling of the LDAP directory, and the scaling of LDAP

— resp., 1 CPU
102 -©- conn, 1 CPU
—¥— proc., 1 CPU
m — - resp., 2 CPU
e -O- conn, 2 CPU
71; —%— proc., 2 CPU
£ 10’
'—
10°
10° 10' 10°
(a) Avg. request rate (regs/s)
200

-
[
(=]

N

Thrupt. (conns/s)

- - 2CPU
0 100 200 300 400
(b) Avg. request rate (regs/s)

0

Fig. 11. Effect of using a dual processor server on the response time and
throughput, with a directory containing 10 000 entries, entry size 488 bytes: (a)
connect, processing and response latencies versus request rate; (b) throughput
versus request rate.

entry size. An useful point to consider is that in some cases
network connectivity may significantly influence the perceived
server response. In our case, since clients were connected to the
server over a high-speed LAN, network congestion would not
happen. With default entry size 488 bytes and 10 Mb/s Ethernet,
the transmission time is about 0.4 ms, and the delay effect due
to network connection could be neglected.

1) Server Processor Capability: Single vs Dual Processors:
In this section, we consider the importance of processing ca-
pability in determining the server performance. As mentioned
earlier, all our experiments were carried out on a dual processor
server, but by binding the slapd process to one of the two CPU’s,
it was used in single-processor mode for the experiments in
other sections. To determine the influence of processor capa-
bility, we performed some experiments to compare the perfor-
mance in single-processor mode with the performance in dual-
processor mode.

Fig. 11(a) shows the comparison of latency versus connec-
tion rate characteristics for the two cases, using a load generated
by search operations. The dual processor server shows similar
performance at low loads, and the advantage increases to give
roughly 40% smaller latency at higher loads for the total re-
sponse time. The reduction in latency is observed mainly due to
the reduction in connect time. The processing time due to search
actually increases slightly at heaviest load, which may be due to
the memory contention between the two processors.

Fig. 11(b) shows the comparison of throughput charac-
teristics for single and dual processors. As seen earlier, the
throughput of the single processor server starts to saturate
beyond a load of 105 requests per second, and saturates at 140
requests per second. The dual processor server starts to saturate
beyond a load of 155 requests per second, and does not saturate

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 16, NO. 1, FEBRUARY 2008

200+ /\x_ 1
180+ 4
—
Q«eo- 4
(2] o——b—6—o0—6
c
1401 —— read, 1 CPU 1
8 —— read, 2 CPU
20 -o - write, 1 CPU 1
5; - = - write, 2 CPU
100 1
=}
e o X TR e — = e =
L 80 , x 1
l— 1 S
60 S e 0ol o - 0o g OO 4
K yes Se
40 e 4
<]

60

1‘0 2‘0 3‘0 4‘0 . 51()
Average number of LDAP clients

Fig. 12. Throughput of search and add operations for single and dual processor
servers, with a varying number of LDAP clients generating queries continu-
ously.

completely even at a load of 194 requests per second. Also, at
the highest load, CPU utilization in the single-processor server
reached 98%, while CPU utilization in the dual processor
remained less than 50%.

The above results suggest that the improvement given by the
dual processor server would continue to increase at higher loads
than those used in the experiment. Higher loads were obtained
in an experiment with each client generating requests continu-
ously (a new query upon completion of the previous query) in-
stead of at periodic intervals. Read and write throughput charac-
teristics were generated using LDAP search and add operations
respectively. The results are shown in Fig. 12. Consistent with
trends observed in Fig. 11(a), at low loads the throughput char-
acteristics are similar for dual processor and single processor
servers. Beyond a threshold load of about 8—10 clients, the write
throughput saturates at around 60 connections per second for the
single processor server and 85 connections per second for dual
processor operation, an improvement of roughly 40%. A similar
effect is observed in the read throughput, which reaches satura-
tion with just 4 clients and gives 150 connections per second for
single processor server and 211 connections per second for dual
processor server, an improvement of roughly 40%, the same im-
provement rate as the write operation.

There is a second load threshold in write throughput of about
36 clients for single processor and 48 clients for dual proces-
sors beyond which the throughput decrease with increase in
load, while the read throughput remains constant within the load
range of the experiments. The reduction in throughput of write
operations may be due to the increasing contention of system
resources among children processes and the increase in the net-
work delay when the server loads increase. These experiments
also show the throughput of search operations is roughly 2.5
times that of add operations in both the single processor and
dual processor case.

Overall, processor capability plays a major role in limiting
system performance for an in-memory directory, and using a
dual processor server gives a significant performance benefit.

2) Scaling of Directory Size: In this section, we study the
scaling of LDAP performance with the directory size, and dis-
cuss the limitations on performance at large directory sizes.
We first consider scaling up the directory when the directory is

WANG et al.: MEASUREMENT AND ANALY SIS OF LDAP PERFORMANCE

10
— proc, 10,000 fc
-— proc, 50,000 fc %
—%— proc, 100,000 hc *
% 102+ — — conn, 10,000 fc 7
g€ {| - com, 50000fc | ¥,
; —*—_conn, 100,000 hc | Jkx—%
r.. .
£
i= 10
100 0 1 2 3
10 10 10 10
(a) Avg. request rate (regs/s)
150
w
0
2
£ 100
Q
)
S 50
—
< — 10,000 fc
L —- 50,000 fc
—— 100,000 hc
0
0 100 200 300 400

(b) Avg. request rate (regs/s)

Fig. 13. Effect of directory size on the server connect and processing times (a)
and the server throughput (b) with different directory size and cache size.

in-memory. Fig. 13(a) compares the average response latency of
a 50 000 entry directory with 50 000 entry cache, with a 10 000
entry directory with 10 000 entry cache (i.e., the directories are
fully cached). The increase in the total response time with di-
rectory size is due primarily to the increase in the processing
time, which increases by 60%, from 5 ms to 8 ms. Profiling at
the server shows that the increase in the processing time is, as
expected, due to increase in back-end processing. Specifically,
it is mainly due to the increase in the entry retrieval time (by
2.6 ms), and a slight increase in the ID search time (by 0.2 ms).
Fig. 13(b) shows that the throughput decreases 21% and satu-
rates at 110 requests/second with the increase in directory size.

As the directory size increases, the database cache size is
eventually limited by the available system RAM, and the di-
rectory can no longer be kept in-memory. In our system, when
the cache size was increased beyond 50 000, performance de-
graded progressively due to lack of memory. When the direc-
tory is out-of-memory, performance scaling is limited both by
the database search time, and by the disk access time. Fig. 13
shows that further increasing the number of directory entries
from 50 000 to 100 000 while keeping the cache size at 50 000
entries (i.e., the directory is half cached) causes the average re-
sponse time to increase another 7 ms (87.5%) and the total pro-
cessing time reaches 15 ms. Correspondingly, the throughput
reduces from 110 requests/second to 85 requests/second (23%).
Since the connect latency dominates the response at high loads,
the reduction in throughput is relatively small compared to the
increase in processing time.

To summarize, there was a moderate decrease in latency and
throughput with directory scaling up to 50 000 entries, due to
an increase in database search time. Further scaling was con-
strained by system memory leading to a disk directory, and the
deterioration in processing latency was significantly sharper,
due to increasing disk access time and database search time.

—%— proc, 488 B
—¥— proc, 4880 B
—— conn, 488B Phe
‘@ 102} —_— conn, 4880 B /
E /
)] *
E sprikk— *K 7
= 10 /
100 0 1 2 3
10 10 10 10
(a) Avg. request rate (regs/s)
200
w
% 150
[
[
Q
Li0of S
a
3
£ 50
[— 4888
— - 4880 B
0

0 100 200 300 400
(b) Avg. request rate (reqs/s)

Fig. 14. Effect of directory entry size on (a) the server connect and processing
times and (b) the server throughput for 5000 entry directory with 5000 entry
cache.

3) Scaling the Directory Entry Size: In this section we study
the scaling of performance with the size of the LDAP entry. In
our experiments, we compared the performance of LDAP di-
rectories with 488 byte entries, and with 4880 byte entries. For
the larger entry size, the availability of system RAM limited the
maximum database cache size to 5000 entries, beyond which the
performance degraded rapidly. We first performed the compar-
ison for an in-memory directory, using a 5000 entry directory
and 5000 entry cache for both entry sizes. Fig. 14(a) shows the
processing latency, and Fig. 14(b) the throughput, as a function
of load. At light and moderate loads, the total response latency
increases by about 8 ms with increase in entry size, while the
throughput remains the same. Profiling at the server shows that
the increase in response time comes mainly from the increase in
the ASN.1 encoding time, from 1.2 ms to 7 ms. In addition, the
filter matching step took around 0.8 ms at the larger entry size,
up from 0.2 ms at the smaller entry size. These results are un-
derstandable, since both ANS.1 encoding and the filter matching
process depend on the number of attributes in the LDAP entry,
which increases as the entry size increases. The latency of the
other front-end processing steps, and back-end processing steps
increase by much smaller amounts. Under heavy loads, when
the server saturates, Fig. 14(b) shows the maximum throughput
at 4880 bytes is 30% smaller.

The comparison between the two entry sizes was also per-
formed with a directory of 10000 entries, the cache size re-
maining at 5000 entries. Fig. 15(a) shows the processing latency,
and Fig. 15(b) the throughput, as a function of load. The in-
crease in total response time with increase in entry size is now
40 ms at low and moderate loads. The much larger deteriora-
tion in response time with entry size is due to the increased data
transfer time from the disk in addition to the increased front-end

—%— proc, 488B

—- proc, 4880 B
10°}| — conn, 488B
— — conn, 4880 B — —=

Time (ms)

-
o
o

@
o

Thrupt. (conns/s)
5 3

n
o

o

0 100 200 300 400
(b) Avg. request rate (reqs/s)

Fig. 15. Effect of directory entry size on (a) the server connect and processing
times and (b) the server throughput for a 10 000 entry directory with 5000 entry
cache.

processing time. The increase in front-end processing time re-
mains at about 8 ms, confirming that the front-end processing
is not influenced greatly by the increase in directory size, and
the increase in data handling time at the back-end is 32 ms.
Also, for the larger entry size, the processing time is compa-
rable with the connect latency even at high loads (unlike pre-
vious experiments in which the connect latency dominated the
total response at high loads). Consequently the increase in pro-
cessing time with entry size strongly influences the maximum
throughput, which decreases sharply from 110 requests/second
to 30 requests/second.

To summarize, for an in-memory directory the scaling of the
total processing latency with entry-size is determined by the
front-end processing, specifically, by the ASN.1 encoding and
filter matching. For out-of-memory operation, the increase in
processing latency is dominated by the increased back-end data
retrieval time. The maximum throughput also decreases sharply
in this case.

D. Session Reuse

In the experiments so far, the client requested a single
search or add operation, and then closed its connection. We
now study the change in performance when a client performs
multiple searches in a LDAP session. We varied the degree of
session reuse from 0% to 100%, with 0% corresponding to a
new connection being established for every search, and 100%
corresponding to the connection being left open during the
duration of the experiment.

Fig. 16(a) shows that the search time increases at heavy loads
as the session reuse rate increases from 0% to 100%. This is be-
cause the actual server load for searching operations increases
with the increase in session reuse, while the total connect latency
decreases because fewer connect requests are received. At the

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 16, NO. 1, FEBRUARY 2008

— no reuse
- -6~ 25% reuse
N 102} | = 50% reuse /
E —+— 75% reuse I
P — - 100% reuse [
I l
=
4]
S
Q. 10
107 107 10° 10’
(a) Avg. request rate (reqs/s)
250
% 200 -
g
S 150
e
5 100 — no reuse
2 -©- 25% reuse
£ 50 —%— 50% reuse
- —— 75% reuse
— - 100% reuse
0

0 100 200 300 400
(b) Avg. request rate (regs/s)

Fig. 16. Effect of session reuse rate on (a) the server processing times and (b)
the server throughput.

same time, the total response time decreases as can be deduced
from the increase in the throughput shown in Fig. 16(b) from
105 request/second to 155 requests/second at the onset of con-
gestion, and from 140 requests/second to 223 requests/second
under the heaviest load, an improvement of 60%.

E. Performance Under Update Load

The experiments described so far measured the performance
under loads generated by search requests. In order to compare
these results with the performance under update operation, a
set of experiments was performed with clients each periodically
querying the server with add requests. Fig. 17 shows that the
processing time for add operations dominates the total response
time not only at low loads, but also when the server saturates.
This is unlike the search scenario, in which the connect time
dominates the total response time when the server is under heavy
load. This is probably because the latency due to locks gener-
ated by competing write() requests becomes significant under
heavy load. At low loads, the add latency is about four times
the search latency, and the difference between the two decreases
at high loads, as the connect latency becomes more important.
Fig. 17(b) shows that the add throughput begins to saturate be-
yond a threshold of 60 requests per second and finally satu-
rates at 65 requests per second, about 55% less than the search
throughput.

The LDAP modify operation was not directly investigated. A
modify operation involves searching and retrieving an existing
entry, modifying it, and then writing it back to the LDAP direc-
tory. Consequently, one would expect the processing latency in
this case to be roughly the sum of the search and add processing
latencies.

VI. RELATED WORK

Benchmarking of LDAP server performance has been re-
ported recently by Mindcraft [19]. The certified results of

WANG et al.: MEASUREMENT AND ANALY SIS OF LDAP PERFORMANCE

Time (ms)

10°
(a) Avg. request rate (reqs/s)

Thrupt. (conns/s)

% 100 200 300 400
(b) Avg. request rate (reqs/s)

Fig. 17. Comparison of latency and throughput characteristics for search and
add operations: (a) variation of connect, processing and response latency with
server load, and (b) variation of server throughput with server load. (Directory
had 10 000 entries, entry size 488 bytes.)

Mindcraft’s work were from the performance comparison
of three servers: Netscape Directory server 3.0 (NSDS3),
Netscape Directory Server 1.0 (NSDS1) and Novell LDAP
Services (NDS). In their work, the performance for a 10000
entry personnel directory was measured on a 200 MHz Intel
Pentium Pro with 512 MB RAM. The throughput for NSDS3,
NSDSI1, and NDS were found to be 183 requests/second,
38.4 requests/second and 0.8 requests/second respectively.
The size of the LDAP entry was not specified. The directory
was in-memory in all cases, and the performance with larger,
out-of-memory directories (or large entry sizes) was not con-
sidered. Since the directory was in-memory, CPU capability
was found to be the bottleneck.

In the above work, the LDAP server was generally treated
as a black box. Our work differs significantly in our objectives
and approach. We have determined the scalability of the perfor-
mance particularly with respect to directory size and entry size,
determined the contribution of different system components and
parameters to the server performance and scalability, and pro-
vided suggestions for improving system performance. The de-
tailed nature of this work also dictated the choice of OpenLDAP
instead of a commercial server, as explained earlier.

VII. CONCLUSION

In this paper, we have discussed the performance of the LDAP
directory service in a dynamic, distributed environment, with
frequent directory accesses. The LDAP directory structure used
in the experiments is based on a proposed LDAP schema for
administration of Service Level Specifications in differentiated
service networks, and a brief explanation of the use of LDAP

11

in this context has been provided. However, the experimental
results are applicable to LDAP directory applications in general.

We have shown that under our default operating condi-

tions—a directory with 10000 488-byte entries, and a cache
size of 10000 entries—the LDAP server has an average re-
sponse latency of 8 ms at loads up to 105 search requests per
second, and a maximum throughput of 140 search requests per
second. Out of the total response latency of 8 ms, 5 ms comes
from the processing latency, 36% of which is contributed by
back-end processing (entry retrieval from the database), and
64% by front-end processing. In general, at high loads, the con-
nect latency increases sharply to dominate the overall response,
and eventually limits the server throughput. Consequently, a
change in the processing time due to changes in system parame-
ters has a relatively smaller effect on the maximum throughput.

In addition to this basic performance specification, we have

obtained a detailed profile of contributions of various system
components to the overall performance; studied the scaling of
performance with directory size, entry size, and session reuse;
and determined the relative importance of various factors in
determining scalability, namely front-end versus back-end
processing, CPU capability, and available memory. We have
also identified an important required modification to the basic
OpenLDAP implementation in order to obtain the above per-
formance. We now briefly summarize our important findings.

* Disabling of Nagle algorithm. The Nagle algorithm was
observed to contribute an additional wait time of roughly
50 ms to a search operation. Disabling the Nagle algorithm
results in a reduction in response time by a factor of 7 under
normal operation.

» Entry caching. For a directory with 10000 entries, an
in-memory directory (cache size 10000) has a 40% im-
provement in processing time and 25% improvement in
throughput over a directory without a cache.

* Scaling with directory size. The scaling of performance
with the number of entries in the directory is determined by
the back-end processing. Up to 50 000 directory entries can
be kept in-memory in our system, and the server processing
time and throughput deteriorate by about 60% and 21%
respectively when directory size increases from 10000 to
50000. Beyond this limit, the directory is out-of-memory
due to system RAM constraints, and increasing the direc-
tory size from 50 000 to 100 000 entries results in a sharper
increase in processing time of another 87.5%, and a de-
crease in throughput by 23%.

* Scaling with entry size. When the directory is in-memory,
the scaling of performance with the entry size in the di-
rectory is determined by the front-end processing, mainly
an increase in the time for ASN.1 encoding of the re-
trieved entry. An increase in entry size from 488 bytes
to 4880 bytes for a 5000 entry directory results in an in-
crease in processing time of 8 ms at moderate load, 88%
of which is due to the increased ASN.1 encoding time, and
a throughput deterioration of about 30%. However, for a
directory with 10000 entries, the cache size is still lim-
ited to 5000 by the system RAM, and a similar increase in
entry size results in a much larger throughput deterioration

of about 70%, mainly due to the increase in data transfer
latency from the disk.

* CPU capability. For an in-memory directory, the CPU is
a significant bottleneck. Using dual processors improves
performance by 40%.

» Session reuse. In general, higher session reuse leads to im-
proved performance. A 60% gain in performance is ob-
tained when the session is left open during the duration
of the experiment, relative to when a connection is opened
and closed for each search request.

In conclusion, we believe that the results show that
OpenLDAP slapd is a potential candidate for supporting
policy administration in the differentiated service environment
as well as in other network applications that need dynamic
directory access support. In future, we plan to evaluate other
LDAP servers based on the criteria developed in this paper,
which may run on different platforms and with different imple-
mentations.

REFERENCES

[1] T.Small, D. Hennessy, and F. Dawson, “Calendar attributes for VCard
and LDAP,” RFC 2739, Internet Engineering Task Force, Jan. 2000.

[2] B. Aboba, “Lightweight directory access protocol (v3): Schema for
the Routing Policy Specification Language (RPSL),” Internet draft, In-
ternet Engineering Task Force, Nov. 1997.

[3] E. Ellesson, D. Verma, R. Rajan, and S. Kamat, “Schema for service
level administration of differentiated services and integrated services in
networks,” Internet Draft, Internet Engineering Task Force, Feb. 1998.

[4] R. Rajan, J. C. Martin, S. Kamat, M. See, R. Chaudhury, D. Verma,
G. Powers, and R. Yavatkar, “Schema for differentiated services and
integrated services in networks,” Internet Draft, Internet Engineering
Task Force, Oct. 1998.

[5] B. Aboba, “Extension for PPP authentication,” Internet draft, Internet
Engineering Task Force, Nov. 1997.

[6] L. Bartz, “LDAP schema for role based access control,” Internet draft,
Internet Engineering Task Force, Oct. 1997.

[7] S. Blake, D. L. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss,
“An architecture for differentiated service,” RFC 2475, Internet Engi-
neering Task Force, Dec. 1998.

[8] L. Bartz, “LDAP schema for role based access control,” Internet Draft
(Work in Progress), Internet Engineering Task Force, Oct. 1995.

[9]1 W. Yeong, T. Howes, and S. E. Kille, “Lightweight directory access
protocol,” RFC 1777, Internet Engineering Task Force, Mar. 1995.

[10] M. Wahl, T. Howes, and S. E. Kille, “Lightweight directory access
protocol (v3),” RFC 2251, Internet Engineering Task Force, Dec. 1997.

[11] “Resource reservation protocol (RSVP)—Version 1 functional specifi-
cation,” RFC 2205, Internet Engineering Task Force, Sep. 1997.

[12] K. Nichols, S. Blake, F. Baker, and D. L. Black, “Definition of the
differentiated services field (DS field) in the Ipv4 and Ipv6 headers,”
RFC 2474, Internet Engineering Task Force, Dec. 1998.

[13] M. Beigi, R. Jennings, S. Rao, and D. Verma, “Supporting service level
agreements using differentiated services,” Internet Draft, Internet En-
gineering Task Force, Nov. 1998.

[14] The Open Source LDAP Suite. OpenLDAP [Online]. Available: http://
www.OpenLDAP.org

[15] The Berkeley Database. Sleepycat Software [Online]. Available: http://
www.sleepycat.com

[16] J. Nagle, “Congestion control in IP/TCP Internetworks,” Comput.
Commun. Rev., vol. 14, pp. 11-17, Oct. 1984.

[17] J. Heidemann, “Performance interactions between P-HTTP and TCP
implementations,” Comput. Commun. Rev., vol. 27, pp. 6573, Apr.
1997.

[18] H. F. Nielsen, J. Gettys, A. Baird-Smith, E. Prud’hommeaux, H. W.
Lie, and C. Lilley, “Network performance effects of HTTP/1.1, CSS1,
and PNG,” Boston, MA, Note 970214, W3C, Feb. 1997.

[19] Directory Server Certified Performance Reports. Mindcraft [Online].
Available: http://www.mindcraft.com/perfreports/ldap/

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 16, NO. 1, FEBRUARY 2008

Xin Wang (M’01) received the B.S. and M.S.
degrees in telecommunications engineering and
wireless communications engineering from Beijing
University of Posts and Telecommunications, Bei-
jing, China, and the Ph.D. degree in electrical and
computer engineering from Columbia University,
New York, NY.

She is currently an Assistant Professor in the De-
partment of Electrical and Computer Engineering of
the State University of New York at Stony Brook,
Stony Brook, NY. Before joining Stony Brook, she
was a Member of Technical Staff in the area of mobile and wireless networking
at Bell Labs Research, Lucent Technologies, New Jersey, and an Assistant Pro-
fessor in the Department of Computer Science and Engineering of the State
University of New York at Buffalo, Buffalo, NY. Her research interests include
analysis and architecture design in wireless networks and communications, mo-
bile and distributed computing, infrastructure design and performance enhance-
ment across network layers, applications and heterogeneous networks, network
and mobility management, QoS, signaling and control, as well as support for
advanced network services and applications.

Dr. Wang has been a member of the Association for Computing Machinery
(ACM) since 2004.

Henning Schulzrinne (M’86-SM’04-F’06) re-
ceived the undergraduate degree in economics and
electrical engineering from the Darmstadt University
of Technology, Darmstadt, Germany, the M.S.E.E.
degree as a Fulbright scholar from the University
of Cincinnati, Cincinnati, OH, and the Ph.D. degree
from the University of Massachusetts, Amherst, MA.

He was a Member of Technical Staff at AT&T Bell
Laboratories, Murray Hill, NJ, and an associate de-
partment head at GMD-Fokus, Berlin, Germany, be-
fore joining the Computer Science and Electrical En-
gineering Departments at Columbia University, New York, NY. He is currently
chair of the Department of Computer Science. He serves as Chief Scientist for
SIPquest Inc. and Chief Scientific Advisor for Ubiquity Software Corporation.
His research interests encompass real-time, multimedia network services in the
Internet and modeling and performance evaluation. Protocols which he co-de-
veloped are now Internet standards, used by almost all Internet telephony and
multimedia applications.

Dr. Schulzrinne is an associate editor of /EEE Internet Computing and the
ACM Transactions on Multimedia Computing and Communications, and Ap-
plications (TOMCCAP). He serves as vice chair of ACM SIGCOMM and is
a member of the steering committee for the IEEE/ACM TRANSACTIONS ON
NETWORKING. He also was a member of the IAB (Internet Architecture Board).
He has received the New York City Mayor’s Award for Excellence in Science
and Technology and the VON Pioneer Award.

Dilip D. Kandlur (M’91-SM’03-F’04) received the
B.Tech. degree in computer science and engineering
from the India Institute of Technology, Bombay, the
M.S. degree from the University of Michigan, Ann
Arbor, and the Ph.D. degree in computer science from
the University of Michigan in 1991.

He joined IBM in 1991. He is currently the Di-
rector of the Storage Systems group at IBM’s Al-
maden Research Center. He is responsible for devel-
oping new technologies in storage systems, storage
management, file systems and server software, and
also facilitating IBM’s use of these technologies in its products and services.
The Storage Systems Research group is well-known for its pioneering research
in the areas of RAID, parallel file systems, storage virtualization, and enter-
prise backup and restore. It has contributed to major storage industry prod-
ucts and innovations, such as IBM® RAMAC®, IBM 9337 RAID subsystem,
Tivoli® Storage Manager (previously known as ADSTAR Distributed Storage
Manager), General Parallel File System (GPFS) and, most recently, to IBM To-
talStorage products, SAN Volume Controller and Productivity Center. Previ-
ously, he was the Senior Manager of Networking Software and Services at the
IBM T. J. Watson Research Center, Hawthorne, NY, where he led IBM’s direc-
tion in edge-of-network computing. His team made numerous contributions in

WANG et al.: MEASUREMENT AND ANALY SIS OF LDAP PERFORMANCE

networking performance and quality of service, scalable web infrastructure and
policy-based computing and service-level agreements.

An internationally recognized expert in quality of service and performance for
networks and network servers, Dr. Kandlur shared the IEEE Communications
Society’s 2003 William R. Bennett Award for the best original paper published
in the IEEE/ACM TRANSACTIONS ON NETWORKING. He is an IEEE Fellow and
has served as vice-chair of the IEEE Technical Committee on Computer Com-
munications. In addition, he has received several IBM awards for his technical
achievements, inventions and innovations.

13

Dinesh C. Verma (M’93-SM’03-F’06) received the
B.Tech. degree in computer science from the Indian
Institute of Technology, Kanpur, India, in 1987, and
the Ph.D. degree in computer science from the Uni-
. versity of California at Berkeley in 1992.

Since 1992, he has worked at the IBM T. J. Watson
Research Center and Philips Research Laboratories.
He is currently a Research Manager at the IBM T.
=~ J. Watson Research Center, Hawthorne, NY, and
\ manages the Autonomic Systems and Networking
Department at the center. He is the Program Manager
for the International Technology Alliance. He also oversees research in the
area of edge networking. His current work interests include topics related to
wireless and sensor networks, policy-based management, and next-generation
networks. Other topics he has worked on include policy-enabled networks,
caching and content distribution networks, service differentiation and service
level management, adaptive control of web servers, and the exploitation of

Java-based technologies for distributed web-based computing.

