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Abstract—With the protiferation of high-speed networks and networked
services, prov~loning dfierentiated serviees to a d]verse user base with het-
erogeneous QoS requirements has beeome an important ]problem. The tra-
ditional approach of resouree reservation and admiksion control provides
both guarantees and graded serviee+%however, at the cost of potentially
underutilized resources and tindted sealabltity. In thu paper, we describe
a WAN QoS prov~]on areMtecture that adaptively organizes be-at-effort
bandwidth into stratified services with graded QoS properties such that the
QoS needs of a diverse user base ean be effectively met.

Our mdriteetu~BS (Stratitied Best-effort Service)--pmmotes a simp-
le user/shnple network reatkation where neither the user nor the network
is burdened with complex comprrtationat responsibitities. SBS is scalablq
efficient and adaptive, and it complements the guaranteed service archL
teeturq sharing a common network substrate comprised of GPS routers.
It is also a functional complemen~ pmvi&oning QoS efficiently commensu-
rate with user needs, albt4t at the cost of weaker pmteetilon. SBS is suited
to noncooperative network envimnrnerrts where users belhave seltishly and
resouree contention reaohrtion k m~rated by the principle of competitive
interaction. A principat feature of SBS is the transformation of user-centric
QoS prevision mechanisms—a defining characteristic of competitive inter-
action entaiting intimate user control of internal networlk rmourees-into
network.eentrie mechanisms while preserving the former’s resouree atlo-
eation ptwad@n.

End-to-end QoS control is facihted by decentralized control based on
Lagrarrgian optirnkation-achieve a target end-to-end QoS at minimum
cost or resource usage-which, in turn, is amenable to dliitributed imple-
mentation. SBS achieves per-flow QoS control with zem per-flow state at
muters and a packet header whose size is independent of hop count. SBS,
in spite of foregoing both reaoume reservation and admission control, is
able to provision stablq graded QoS.

I. INTRODUCTION

A. Motivation

With the advent of global network infrastructures and its

emerging role as an important enabling platfonm for services

spanning commerce, entertainment, education,, and a com-

pendium of everyday activities, building an efficient network ar-

chitecture capable of supporting diverse user nee(ds has become

a critical problem.

The traditional approach to QoS provision uses resource

reservation and admission control such that a traffic stream’s

data rate and burstiness can be suitably accommodated by a net-

work. Although research abounds [1], [2], [3], analytic tools

for computing QoS guarantees rely on shaping of input traffic
to preserve well-behavedness across switches which implement

some form of packet scheduling discipline such as generalized
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processor sharing (GPS), also known as weighted fair queu-

ing [4], [5]. Real-time constraints of multimedia traffic and the

scale-invariant burstiness associated with self-similar network

traffic [6] limit the shapability of input traffic while at the same

time reserving bandwidth that is significantly smaller than the

peak transmission rate. Thus QoS and utilization stand in a

trade-off relationship with each other [7] and transporting ap-

plication traffic over reserved channels, in general, incurs a high

cost.

This makes it important to organize today’s best-effort band-

width, as exemplified by the Internet, into stratified services

with graded QoS properties such that the QoS requirements of

a compendium of applications can be effectively met. This is

particularly useful for applications that possess diverse but—

to varying degrees—flexible QoS requirements. It would be

overkill to transport such traffic over reservedl channels. On the

other hand, relying on homogeneous best-effort service, charac-

teristic of today’s Internet, would be equally unsatisfactory. A

dual architecture capable of supporting reserved and stratified

best-effort service is needed which, in turn, helps amortize the

cost of inefficiencies stemming from overprovisioned resources

for guaranteed traffic.

Another important consideration when designing QoS provi-

sion mechanisms are issues surrounding fairness, stability, and

optimality. With respect to fairness, a principal question cen-

ters on “who should get what and how much.” Resource con-

tention resolution must address the normative issue of networks

with users possessing diverse QoS requirements where users

should receive unequal share of resources cc~mmensurate with

their QoS requirements or other well-definedl criteria. From a

network efficiency perspective, how to induce users to consume

just enough resources to satisfy their QoS needs and thus leave a

maximal pool of resources for others to use is a problem of cen-

tral import. Intimately tied to fairness is the issue of stability. A

resource assignment deemed fair by some criterion may not be

sustainable unless there is a form of consensus, and even if so, it

may not be reachable from all initial configurations. Instability,

in general, has an adverse effect on QoS—a user’s end-to-end

QoS may jump from one value to another—and providing sta-
ble, predictable service is an important task.

B. New Contribution

In [8], we give a game-theoretic analysis of the multi-class

QoS provision system for noncooperative single-switch network
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systems showing when Nash equilibria exist and under what

conditions they are Pareto and/or system optimal. In [9], we ad-

vance a multi-class QoS provision architecture for many-switch

systems which extends the single-switch system to the many-

switch case using single-switch reduction based on the notion

of selfishness emulation.

In this paper, we focus on the distributed QoS control prob-

lem associated with noncooperative many-swilch systems by

formulating the many-switch QoS assignment problem as a con-

strained optimization problem—which is NP-hard even for a

single user—and transforming the optimization problem into an

unconstrained form using the framework of Lagrangian multi-

pliers. The main advantage of the Lagrangian formulation is

its decoupled form-i.e., across switches—modlulo a confined

dependence introduced by Lagrangian multipliers which leads

to an approximation procedure that is amenable to efficient de-

centralized implementation. Distributed control consists of two

parts, one, local optimization at every switch which chooses a

service class that meets the local QoS responsibility while mini-

mizing resource usage, and two, global optimization via an end-

to-end feedback loop that adjusts the Lagrangiau multipliers—

shared across all switches—to satisfy a target end-to-end QoS

at minimum cost. Interestingly, the solution procedure obtained

using the Lagrangian framework turns out to be isomorphic to

the distributed QoS control proposed in [9] which is based on

single-switch reduction, an approach that achieves QoS control

by generalizing an optimal solution procedure :For the single-

switch case to the many-switch case.

We demonstrate the efficacy of our many-switch QoS archi-

tecture and its distributed control by simulating a WAN en-

vironment based on a vBNS-like topology with multiple traf-

fic flows possessing diverse QoS requirements. We compare

the performance of our architecture-SBS (Stratified Best-effort

Service)-against a reservation scheme that a priori allocates

fixed service classes based on assumed knowledge of all traf-

fic flows-their traffic characteristics and QoS rcquirements—

as well as FIFO packet scheduling and random service class as-

signment. We show the robustness of our architecture by gener-

ating problem instances with varying problem clifficulty from

the space of probability distributions over user QoS require-

ments falling into three categories-’’easy,” “intermediate,” and

“difficult: We show that our architecture perfonms favorably

when compared to the aforementioned QoS provision schemes.

C. Related Work

Significant work has been carried out in formulating resource

allocation problems spanning a number of different domains

using tools from macroeconomics and game thec)ry [10], [11],

[12], [13], [14], [15], [16], [17], [18], [19]. The models and ap-

proaches proposed in the literature differ along several dimen-

sions, some of the important ones being whether applications

or users are assumed to be cooperative or selfish, whether pric-

ing is used or not, and how much computing responsibility is

delegated to the user. Several papers have addressed the issue

of multi-class QoS provision in high-speed networks [10], [20],

[21], [18], [17]. Some of the works employ a cooperative frame-

work or place significant computing responsibilities on the part

of the user [21], [17], some investigate the effect of pricing in-

centives [10], and others represent flow/congestion control and

routing models [20], [16], [18] that partially address the quality

of service provision problem whose essence is users possess-

ing diverse QoS requirements. QoS provision architectures for

noncooperative W~ environments is still in its infancy with

the Smart Market [22] and our previous work in noncoopera-

tive many-switch QoS provision based on single-switch reduc-

tion [9] representing two instances. In [22], pricing—in the form

of packets carrying bids—is used to resolve scheduling conflicts

of packets at switches inside a network implementing priority

queues. With respect to its core features, the Smart Market is

similar to a simplified version of our many-switch architecture

where instead of QoS indicators—used to dynamically select

different service classes at every switch—afied priority or ser-

vice class label is propagated to every switch.

A related development are efforts directed at designing net-

work architectures with the aim of delivering differentiated ser-

vice with “soft” or weak forms of guarantees using aggregate—

traffic control [23], [24]. Of particu-as opposed to per-flow—

Iar interest are Assured Service [23] and Premium Service [241

which affect weak protection through traffic shaping/marking

and support from routers. In both cases, it is assumed that

service Ievel—i.e., QoS—is computed using admission control,

and the core task revolves around providing protection from ill-

behaving flows that exceed their contract specifications. This

is done through 2-state (in/out) marking with the help of RIO
gateways (a form of RED gateway with dual thresholds) [231,

or through leaky bucket traffic shaping with gateways imple-

menting priority queuing [24]. Our own wc~rk ([25], [8] and

present), couched in the context of providing graded QoS provi-

sion with weak guarantees, takes a different approach. Whereas

[23], [24] concentrate on providing protection through explicit

traffic shaping/policing, our architecture concentrates on pro-

viding graded QoS with protection handled by implicit admis-

sion control through usage pricing. An important objective of

SBS is the elimination of explicit admission c,ontrol~xcept in

the provision of guaranteed services-as a mechanism for per-

flow QoS control, an impediment to scalability as detrimental

as maintaining per-flow state at routers. SBS is a scalable QoS

provision architecture that uses neither resource reservation nor

admission control when organizing best-effort bandwidth into

graded service commensurate with user needs.

The rest of the paper is organized as follows. In the next

section, we define the many-switch multi-class QoS provision

problem leading to a resource allocation problem in the nonco-

operative context. This is followed by a decryption of the many-

switch QoS provision architecture based on the Lagrangian for-

mulation, its properties, and decentralized implementation. Sec-

tion IV shows performance results depicting the behavior of

SBS. We give a comparative evaluation in the context of reserva-

tion, FIFO, and random service class assignment schemes, and

for problem instances of varying difficulty.

II. MULTI-CLASS QoS PROVISION PROBLEM

A. Network Model

Assume a network comprising of a set of routers and end sta-
tions connected via some topolow. The router!$ implement GpS
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packet scheduling [4], [5] where packets labeled by their ser-

vice class number receive service commensur:lte with the re-

sources allocated for that service class and the traffic impinging

on that service class. If every application flovv is mapped to

a unique service class at every switch, then thle service class

number is synonymous with flow ID and the system can be

viewed as implementing per-flow QoS control. If the mapping

is many-to-one, QoS control is exercised on an aggregate flow

basis. Other things being equal, the larger the service weight

or the smaller the aggregate traffic flowing into a service class,

the better the QoS-e.g., as measured by delay, packet loss rate,

jitter—rendered by that class’.

Assuming fixed routes, the end-to-end QoS experienced by

an application flow is determined by the service levels received

at each of the routers along a path which, in turn, is determined

by the service class assignments-possibly diffet-ent-at each of

the routers. There is a calculus for computing endl-to-end QoS in

terms of the QoS rendered locally at each of the switches, e.g.,

with packet loss behaving multiplicatively and delay behaving

additively. For example, if Ck denotes the packet loss rate at

switch k ~ [1, r] on an r-hop path, then the endl-to-end packet

loss rate is given by 1 – ~~=1 (1 – Ck). Assuming there are m

(in general, rnk) service classes at every switch k E [1, T], then

to flow i there correpond T choice variables <~ (s [1, m] which

determine which service class application flow i is assigned to

at hop k. This is shown in Figure 11.1.

11 l-1
m cinkes m cbmca m choices m dukes

r choice vanabks

Fig. H. 1. End-toad QoS-given a fixed route—is determined by the local

QoS rendered at each of the r switches which, in turn, is determined by the

service class assignment at each switch.

Routing introduces a new set of decision variables; in this

paper, we will confine ourselves to the case where routing is

handled by a separate subsystem, i.e., is given.

B. User Model

Assume n users or applications where each user i 6 [1, n]

has a traffic demand given by its mean data rate Ai. The most

important property associated with a user in the QoS provision

context is its QoS requirement which may be different for each

user. For example, if QoS requirements were represented by

bounds on packet loss rate, delay, and jitter, then a user i with a

bound 13i = 33ms on end-to-end delay would have a more strin-

gent QoS requirement than a user i’ who has a more relaxed

delay bound of @i’ = 200ms. In general, a user’s QoS require-
ment can be represented by a utility function f.J~which captures

the “satisfaction” experienced by user i when receiving a cer-

tain QoS. Utility functions area tool to represent heterogeneous

I The~ i5 ~ subtle Q& ordering effect with respect to jitter which is dkcuss.d
in [26].

user preferences and facilitate reasoning about the bahavior of a

system.

Fixing a switch k c [1, r-], user i’s flow ,X$ (note A: = Ai

and A: > A: > .-. > A;) can be chosen by the user-or by

the network—to be assigned to one or more of the m different

service classes at k. This assignment of “where and how much”

is represented by user i’s service class assignment vector A: =

(Afl, A:2,... , A~m)T where A$ ~ O and ~j A$ = A!. Thus,

the aggregate flow entering into service class j E [1, m] is given

by q; = xi A:j . In this paper, we will be interested in the

unsplittable case where A$j c {O, A: }, for all j c [1, m]. For the

unsplittable case, the choice variables ~$ defined in Section II-

A completely determine the QoS that a flow will receive at the

routers. Both the splittable and unsplittable case for the single-

wvitch network (i.e., r = 1) are studied in [8].

One last item to define is the behavioral mode of a user—

selfish or cooperative. Selfishness, in our context, will mean that

each application i E [1, n] will try to take actions-i. e., setting

~i = (f~,(~,... , &~)T assuminghis allowed to do so-so as
to maximize its individual utility Ui.

Remark II. 1 The network substrate described in Section II-

A, can be used to provide both guaranteed and graded services

through resource reservation and admission {control. Guaran-

teed here means the protection —i.e., from interference by other

flows-afforded to a flow by GPS through resource reservation

and admission control. Stratified best-effort service, by adopt-

ing a weaker form of protection, consequently also exports QoS

to the user that is, in general, more variable and subject to the

other flows’ potentially detrimental influence.

C. Noncooperative QoS Prevision Game

C. 1 Many-Switch Network Game

Fix user i E [1, n] and assume its traffic is assigned a route

with T ~ 1 hops or switches. We will use k c [1, r] as the switch

index. The user has a choice of r selection variables @ E [1, m]

where <~ = j indicates that user i has selected to channel his

traffic through service class j at switch k. Let & denote user

i’s service class assignment vector and let ~ denote the service

class assignment of all users.

The end-to-end QoS received by user i, :Ei c R’ (s de-

notes the number of QoS indicators), is a function of < =

(cl, --- >GJT,

d = xi (f),

and given i’s traffic demand Ai, we arrive at thle individual util-

ity U~(Ai, Zi), consistent with the single-switch formulation [8],

[9]. Nash equilibria, Pareto optima, and system optima can be

defined with respect to iYi(A;, Zi).

Remark 11.2 A configuration is a Nash equilibrium if each

user cannot improve his individual lot through unilateral actions

affecting his traffic allocations. Thus if every player finds him-
self in such a “local optimum,” then from the noncooperative

perspective, the system is at an impasse-i.e., stable rest point.

A configuration is a Pareto optimum if in order to improve the

lot of some player, the lot of others must be sacrificed. A con-

figuration is system optimal if the sum of the individual lots is

maximized. A formal definition can be found in [8].
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C.2 Network Game with Pricing .— . . . . . . . . . . . .

Pricing is introduced as a mechanism for monitoring relative

resource usage by imposing the relation

where c; is the QoS rendered in service class j at switch k and

P$ is its price. I.e., the superior the QoS, the higher the price.

Other things being equal, for GPS switches, c% ~ C$ iff the rela-

tive resource consumption per unit flow is higher in service class

a than service class b. Notice the difference with congestion-

based pricing schemes where high demand—i.e., congestion—

leads to a higher price irrespective of the actual QoS rendered.

Our pricing scheme is$ne-granular in the sense that pricing oc-

curs at every switch on a per-flow basis.

The cost or relative resource usage accrued tc~user i’s traffic

flow can be defined in a number of ways including the following

~~+1 denotes the net flow arriving at the receiver. By mono-

t&icity, we have

Relation (11.4) collapses into a single expression when packet

loss is zero. Assuming the above expressions are used to com-

pute the ultimate cost exported to a user via composition with a
monotone price function p : & + I&, & ~~=1 p& can be

interpreted as being the most “service provider-friendly” mea-

sure whereas A~+l ~~=1 p~k is the most “user-friendly one.”

For thre.dzofd utilities, o;e version of the noncooperative

many-switch QoS provision game with pricing is given by

r

(11.5)

subject to xi(~) < f?i. That is, the user seeks a minimum cost

assignment that satisfies the user’s QoS requirement. This prob-

lem, even for a single user is NP-hard-it can be reduced to

a version of multiple choice knapsack—and approximate solu-

tions need to be sought.

Theorem 11.6 (Many-Switch QoS Assignment) Theper-user

constrained many-switch QoS assignment problem given by

(11.5) is NP-hard.

III. MANY-SWITCH QoS PROVISION ARCHITECTURE

The noncooperative QoS provision game is defined by solv-

ing the constrained optimization problem (11.5) for each user (or

player) i c [1, n]. In a user-centric realization of the game,

each user is assumed to have direct control over its choice vari-
~ble~ .#, k < [1, ~]. In a rzetwodc-centric realization of the

game, the network solves (11.5) on behalf of each user, result-

ing in an equivalent outcome. The advantage of the latter is that

users need not have access to detailed network state—an unre-

alistic assumption in WAN environments comprised of numer-

ous switches—and users are shielded from engaging in complex

computahons. kimulahon ot selhsh user behawor 1salso the net-

work’s contract to the user with respect to its modus operandi

thus preserving noncooperativeness.

The primary user-network interface is a QoS requirement vec-

tor 0’ c W which represents user i‘s bounds on desired end-

to-end QoS. The network system takes Oi as input and tries to

deliver end-to-end QoS Xa such that xi <0’, at least cost.

A. Distributed QoS Control: Lagrangian Formulation

A. 1 Transformation to Normalized Constrained Form

The Lagrangian method starts from the abstract optimization

formulation (11.5). It transforms the constra~ined optimization

problem into an equivalent unconstrained form. This transfor-

mation leads to a set of independent optimization problems—

one for each switch—which are coupled only by a set of com-

mon Lagrangian multipliers. The latter have a simple interpreta-

tion: the larger the multipliers’ value, the more stringent the QoS

rendered by the system. Nonuniformity in the QoS rendered

at different switches is facilitated by local optimization which

is modulated by the coupling constants, i.e., multipliers. The

decoupled form lends itself to efficient distributed implementa-

tion: the same local optimization procedure–-parameterized by

the multipliers—is executed at all switches.

The first task is to transform the minimization problem (11.5)

into an equivalent maximization problem and, in tandem, trans-
form the end-to-end QoS constraints Zi (<) < t? into an additive

form. Let u~ = ~ –p~, j c [l, m], k c [I, r], wherepo is a

positive constant such that p. > m~j,k p$. For packet loss rate

and delay, Zi (i$) < ei takes on the forms

r

k=l

~(dc, +-L, +TJ < L9j,

k=l ‘

respectively. Using the following change of variables,

W}I = –ln(l – c$), b! = –ln(l – 13~),

W~2 = dj +Lk +T..7 b; = t~j,

the constraint components for packet loss rate and delay can be
< b;, h = 1,2.written in an additive form as ~~=1 w~~~ —

The end-to-end expression for jitter vt~ M more complex de-

pending on its precise definition. We employ the strong form

maXk V(+ < e; which is equivalent to r constraints Vcf s O:,

one for ~ach k E [1, r-].

Thus the network game given by (11.5) can Ibe rewritten as

r

(111.1)

< b~, h 6 [1,1], where u;, W$h, b~subject to ~~=1 w~f ~ –

are positive, and 2 is the number of constraints. The normal–

ized constrained optimization problem represents the multidi-

mensional multiple-choice knapsack problem (MMKP). A spe-

cial case of MMKP is the multiple-choice knapsack problem

(MCKP) which has only a single constraint, i.e., 1 = 1. Both

MCKP and MMKP are known to be NP-complete.
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A.2 Transformation to Unconstrained Form ) k 6 [l, m],For given p$ ‘s, the terms (u~~ – ~~=1 P$w~~ ~ !

Transformation of the normalized constrained optimization are independent of each othe~ and can be solved separately. In

problem (III. 1) into an equivalent unconstrained optimization other words, the sum is maximized iff each individual term is

problem is facilitated by the next theorem which has been maximized. Thus the solution is given by

adopted from [27] to fit our context.

Theorem 111.2 (Lagrangian Optimization) Let p:,... , p: be t:= argrnaxj{uj - ~ ~~w$h }. (111.5)

1non-negative Lagrange multipliers and <~ a solution of h=l

The decentralized approximation procedure consists of two

y? {k “:, -k .?kw:,h).

parts, one, the local optimization carried out at every switch k

based on (111.5), and two, the global optimization carried out
k=l h=l k=l

via an end-to-end feedback loop that exploits Proposition 111.4.

Then, ~~ is a solution to First, with respect to computing (111.5), u; and w~h are Vfiables

depicting the state of switch k hence locally avadable. Thus the
r

E

only nonlocal information needed for computing (111.5) are the
max

& “:! p~’s. This can be done by inscribing p! in the packet header.
k=l The packet header is shown in Figure III. 1.

subject to ~~=1 w~kh < b~ where bt = x~=l w$t. /S.
t

To understand the above theorem, we can consider (III. 1) an ~1
optimization problem parametrized by b:. Theorem 111.2 al-

lows us to solve an unconstrained optimization problem to ob-
Fig. 111.1.Packet header format for Lagrangiao method.

tain an optimal solution to a constrained optimization problem The SC (service class) Index field is used to enscribe the
with parameters b~ which are not necessarily equal to b~, the service class label computed by (111.5) which is then forwarded
parameters of the original constrained problem (III. 1). Differ- to the GpS switch proper. me charge field is used to accrue

ent values of b: are obtained when we vary the multipliers p:’s the relative resource usage cost according to (11.4). Figure 111.2
and thus b~ is a function of the p; ‘s. If the multipliers p! are shows the structure of a GPS switch augmented by the procedure
known such that bp coincides with the original QoS require- for computing (111.5).

ments, i.e., b~ = b~ for all h, the original optimization problem

is solved. Since for fixed p?, the conditional of Theorem 111.2 old SC n,w:C
payload index

can be solved exactly in polynomial time, the hardness of the h

problem comes into play via p!.

A.3 Approximation Procedure for Computing p,

For MCKP, pi can be perturbed systematically so that a global

,m -R~~,- m

maximum of the objective function is obtained. This is possible P

because of the following simple fact.
Fig. 111.2.GPS switch augmented by QoS agent. The latter intercepts incoming

Proposition 111.3 As pi increases in the interval [0, +cm], bi” packets, chooses a service class assignment for the packet, and forwards it

decreases monotonically.
to the GPS scheduler.

In a centralized algorithm, we could find the range of Pi and Now to the update of pi. The Lagrangianl multiplier is ad-

use binary search to make bi’ as close to bi as desired. A spe- justed in an end-to-end feedback loop using Proposition 111.4.

cial form of MMKP-i.e., QoS vectors are in total order—also Specifically, the receiver of the end-to-end control measures the

possesses the monotonicity property. The is given by the next end-to-end QoS rendered at the receiver and compares this value

proposition. with the target or desired end-to-end QoS which is available at

the receiver. If the rendered end-to-end QoS is excessively good
Proposition 111.4 Let the QoS vectors w~h at every switch vis-il-vis the target QoS, then pi is decreased tct affect a deprove-

k obey a total ordez Then as p? increases in the interval ment in QoS. If the achieved QoS is unsatisfactory vis-h-vis the

[0, +00], b? decreases monotonically for all h. target QoS, then Pi is increased to affect an improvement in QoS

except when doing so has proved futile—i.e., a feasible solution
A.4 Decentralized Implementation of Lagrangian Optimization may not exist.

The unconstrained optimization problem, for fixed p!, is
Let E = (bi – hi*)/bi. The update rule for ~i is given by

straightforward to solve. To see this, notice that the uncon-

{

ifpe ~ E ~p+,
strained optimization problem can be rewritten as W ~

max{p~ – ~, O}, if~ < pw,
Pi ~

r

k

pi +0, if e > p“ and d~/dPi <0,

mt~ ~ (u~f – p:w;;h).
. l%>

k=l h=l
otherwise,
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where O < pw ~ p“ and ~ > 0 are fixed parameters. A fur-

ther refinement that sets the magnitude ~ adaptively is omitted

here due to space constraints. In the case when there are two or

more QoS requirements, we update the Lagrangian multiplier

corresponding to the QoS indicator experiencing the worst per-

formance. The end-to-end part of the decentralized QoS control

is depicted in Figure 111.3.

1 2 r

...............................................................

etd(o-eadfeea%ack

Fig, 111.3. Dkributed QoS control over an r-hop path.

B. Desirable Properties

Following is a summary of some of SBS’ desirable architec-

tural properties:

● Simple UserNetwork Interface The user’s interface with the

network system is narrow and well-defined. The user conveys

its QoS requirement vector to the network and the network tries

to deliver the target end-to-end QoS at least cost-—i.e., resource

consumption—to the user. A service provider may use the re-

source usage signature maintained by the networlk to set the ser-

vice price exported to the use~ alternatively, it may override it.

. Zero Per-Flow State at Routers SBS exercises per-flow QoS

control with zero per-flow state at routers. This is conducive to

scalability. SBS packet headers are of constant size independent

of hop count.

. Fine Granular Resource Usage Signature The network, as a

by-product of its protocol, maintains a fine granular account of

resource usage by each tlow. This information can be used by

the service provider to set its service price advertised to the end

user or it may be used as an internal tool to track resource usage.

. Compatibility with Guaranteed Service Architecture SBS

runs on top of generic’ GPS-based internetworks, and its trans-

parent handling of traffic flows makes it compatible with guaran-

teed service provisioning through resource reservation and ad-

mission control.

It is interesting that the distributed QoS control obtained from

the Lagrangian formulation is isomorphic to the one arrived at

using the single-switch reduction approach. We omit its discus-

sion due to space constraints.

IV. PERFORMANCE EVALUATION

A. Simulation Set-Up

A. 1 Network Configuration

We use the LBNL Network Simulator ns (version 2) as the

basis of our simulation environment. We have modified ns in
order to model our multi-class QoS provision architecture. This

entailed, among other things, implementing the QoS Agents

as separate modules invoked by the routing agent, and imple-

menting a GPS packet scheduler module with extended func-

tionalities. We show results for a vBNS-based network topol-

ogy which is depicted in Figure IV. 1. In the current vBNS—

an NSF-sponsored backbone network designated for networking

and high-performance computing research--the backbone runs

at OC- 12 (~622Mbps) with link latency ranging from 3ms to

15ms. Some of the links that connect member institutions to

the backbone are OC-3 (N 155Mbps) with link latency of about

lms, whereas others are DS-3 (e.g., Purdue University). We

make two simplifications: one, we only consider OC-3 drops

from the backbone to institution nodes, and two, we scale down

all bandwidths uniformly by a factor of 10 to reduce simulation

overhead.

Fig. IV. 1. vBNS-like wide area network topology.

A.2 Traffic Configuration

llte traffic configuration is shown in Table I. There are in to-

tal 15 individual flows of which 11 are application traffic with

various QoS constraints (shown in separate QoS requirement

configuration tables), and 4 are background traffic which are

used to inject further resource contention and system variability.
This particular traffic configuration has been engineered to cre-

ate a number of localized hot spots where several connections

are multiplexed onto the same output link thereby potentially

causing severe contention. There are two main bottlenecks. The

first one is from nll to nO and has a load factor or utilization of

0.97. The second one is from rtl to n17 and has a load factor of

1.03. Both are shown highlighted in Figure IV. 1.

TRAFFIC CONFIGURATION
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Flow Pls. Req.
Lagmng]an SWR Fixed Class

pk.. V1O charge UIP 1 Vlo, charge UP pk. uiP
1

V1O

.05 .0347 .07 49.65
charge

.0187 .:3:5 .03 49.64 .0195 .0487 .43 4951 .0115
2 .05 .0321 .00 39.68 .0252 .0341 .00 3966 .0252 .0321 .00 39.68 .0252

3 .05 .0319 00 59.68 .0168 .0338 00 59.66 .0168 .0316 .(KI 59.68 .0168
4 .01 .0004 .01 60.00 .0165 .c002 .01 60.00 .0165 .Oooo .00 60.00 .0167

5 .01 .oc03 .01 6CI.CX3 .0165 .00Q3 .01 60.IM .0165 .eooi3 .00 6(3.(X3 .0167
6 .05 .0322 .00 49.68 .0201 .0341 .00 49.66 .0201 .0320 .00 49.68 .0201

7 .01 .0C03 .01 301.CQ .0330 .0cQ4 .01 30.00 .0330 .OoQo .00 30.00 .0330

8 .05 .0355 .08 49.65 .0185 .0363 .11 49.65 .0179 .0490 .43 49.51 .0115
9 .01 .Oooo .00 50.00 .0200 .COoo .00 50.00 .0200 .Ooco .00 50.00 .02co
10 .05 .0272 .01 29,74 .0333 .0264 .m 29,74 .0336 .0175 .00 29.83 .0335
11 .001 .Oooo .00 60.00 .0167 .00oo .(N 60.00 .0167 .Oooo .00 60.00 .0167

~ U/P = .235 ~ U/P= .235 ~ u/P = .222

TABLE 11

LAGRANGIAN METHOD, SINGLE SWITCH REDUCTION, AND THE FIXED ALLOCATION SCHEME.

A.3 Problem Instance Generation

To test the robustness of our algorithm and compare its perfor-

mance against that of reservation- and FIFO-based schemes, we

employ a problem instance generator that takes Table I as input

and outputs the QoS requirements associated with the applica-

tion flows. We use a random service class assignment method

for this purpose whereby for each flow, at every switch, the flow

is randomly assigned (permanently) to a fixed service class. We

then let the system evolve in time and observe the measured end-

to-end QoS received by each application flow. These values—

mean packet loss, mean delay, and jitter—are then chosen as

“handles” in generating final problem instances.

They are handles in the sense that they are subsequently used

to generate three separate problem instances which we chis-

sify as resource-plentljid (alternatively “easy”), resource-scarce

(alternatively “difficult”), and in-between. Since we can al-

ways shift or translate the QoS requirement indicators to make

the QoS assignment problem easier (upwards shift) or harder

(downwards shift) given a fixed resource configuration, by the

shifting operation we are able to identify instances where the

problem instance changes its character from insfiinsically easy

to intermediate to difficult. For the “easy” and “difficult” prob-

lem categories, we choose (by trial-and-error) instances that are

as close to the intermediate stage (i.e., transition) as possible

to avoid generating trivial instances for which no algorithm can

find a feasible QoS assignment or almost all algorithms can do

so.

B. Lagrangian Method, Single Switch Reduction and Fixed

Reservation-Based Allocation

Table II shows the performance of Lagrangian method, single

switch reduction and a fixed service class assignment scheme at

delivering end-to-end QoS given the flows’ QoS requirements.

All switches possess three service classes of which one is set

aside for the background traffic. The user population consists

of 0.05-,0.01-, and 0.00 l-packet loss rate applications (column

2), and the end-to-end packet loss rate they received is shown in
the column marked pls.. vie. denotes the fraction of instances,

over time, that a QoS requirement is violated, and charge de-

notes the total cost accrued by all packets belonging to the same

connection. Comparing Lagrangian method and single switch

reduction, we observe that the QoS requirements of all flows are

satisfied. In terms of minimizing cost, they achieve comparable

~ U/P, a measurement of how well the optimization problem
is solved.

The Fixed Class algorithm is a static, fixed service class allo-

cation scheme where the service class assignment, once picked,

is held invariant during a connection’s lifetime. It is an off-line,

centralized QoS allocation scheme that assigns a strict prior-

ity ordering based on a connection’s QoS requirement, giving

higher precedence to stringent-QoS applications over less strin-

gent ones. A service class assignment is then chosen such that

this precedence condition is satisfied at every switch for every

flow. The Fixed Class algorithm is used as a reference point in

evaluating the relative performance. We observe that the former

satisfies the end-to-end packet loss rate requirements for all con-

nections. However, one noticeable difference with Lagrangian

method and single switch reduction is the high violation penalty

flows 1 and 8 incur under the Fixed Class assignment.

C. Dynamical Propefiies of Lugrangian Method

Flow 10 is one of the connections that goes through one of

the two bottleneck links, (nl, rt17). Figure IV.2 (top) show the

trace of the end-to-end QoS experienced by flow 10. We can see

that flow 10’s QoS requirement 0.05 is satisfied without a single

violation. Figure IV.2 (bottom) shows flow 10’s service class

assignment at bottleneck switch rtl. We observe that flow 10 is

assigned to class 2 stays there throughout.

o! , t t , , , I
O2O4O6OWJ1OO12U w3EQ180~

Tills (s)

~----l

~——L——.J
020406080103 120 160 180 m

lime (s)

Fig. IV.2. Dynamics of flow 10. Top: Trace of end-to-end packet loss. Bottom:
Trace of service class assignment on nl.
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Flow 1 is one of the connections that travels through both

of the two bottleneck links. Figure IV.3 (top) shows the end-

to-end packet loss trace of flow 1. We observe that there are

four brief instances when the QoS requirement is violated. Fig-

ure IV.3 (middle) shows that on switch nl 1 flow 1 is assigned

to service class 2. Figure IV.3 (bottom) shows the service class

assignment trace for flow 1 on switch nl. We c)bserve that al-

though flow 1 is most of the time assigned to the superior service

class (here it is class 1), occasionally there are excursions to ser-

vice class 2 which, in turn, are correlated to the elevation in the

end-to-end packet loss rate.

ims (s)
nll

‘“’~--l

~ 1.5

1
t

~so~-.——.l
loa 120 140 160 180 200

Xme (s)

nl
2.5 t

‘-’a

F-W1:SFJ

jj 1: -

t -

0.51 1
0s0406080100 120 140 160 1s0 204

iTme (s)

Fig. lV.3. Dynamics of flow 1. Top Packet loss trace. Middle Service class

assignment trace on (nl 1, no ). Bottom: Service class assignment trace on

(n~,nl,).

The reason for the temporary excursions is that when the QoS

Agent at nl notices that the end-to-end QoS delivered is overly

good for flow 1, then service class 2 becomes the locally optimal

choice for flow 1, but this reassignment is not sustainable in

the long run without violating flow 1‘s QoS requirement. Thus

the switch back to service class 1 momentarily thereafter. We

omit the description of the behavior of other flows due to space

constraints.

D. Robustness and Comparative Pe~ormance

In this section, we show the robustness of our algorithm on

three classes of problem instances—resource plentiful (“easy”),

in-between, and resource scarce (“difficult’’)----with six in-

stances in each category generated using the random service

class assignment scheme with shifting. We also compare the
performance of our algorithm against the fixedl reservation-

based scheme as well as a FIFO-based scheme and random

(fixed) allocation scheme. On average, we expect the random

fixed allocation scheme to perform similar to the lFIFO scheme

due to the uniform nature of the service weights. Table III sum-

marizes the comparative QoS performance results. The numbers

inside the table indicate the number of application flows whose

QoS requirements are violated. Thus “O’ means that QoS re-

quirements of all applications were satisfied.

We observe that for instance in the “easy” problem class,

our algorithm (Lagrangian) performs perfectly with the fixed

reservation-based scheme close behind. However, both FIFO-

and random service class assignment-based schemes exhibit vi-

olations in the range 2–5. This is so since although we clas-

sify this problem class as “easy”, the resource plentiful and re-

source scarce instances were chosen to be as close to the inter-

mediate problem instances as possible. Thus what is easy to

Lagrangian method and the fixed reservation-based scheme is

not necessarily easy for the FIFO and random schemes. For the

in-between instances we observe violations occurring even for

Lagrangian (O-2 range) and for the resource scarce instances.

Overall, we observe that Lagrangian is superior to the fixed

reservation-based scheme and both are superior to the FIFO and

random schemes. For the in-between cases, Lagrangian method

performs much better than the single switch reduction scheme.

On the other hand, for the resource plentiful and resource scarce

instances, they have achieved almost the same results.

E. Comparison of Single Switch Reduction and Lagrangian

Method

Table IV shows the same comparative performance results on

three of problem type—resource plentiful, in-between, and re-

source scarce-for three-dimensional QoS requirement vectors

containing packet loss rate, delay, and jitter. The numbers in the

table show the number of flows whose QoS requirements were

violated. We observe that the Lagrangian method performs com-

parably with single switch reduction.

Instance Resource Plentifid In-between Resource Scarce

Lagr. SWR Lagr. SWR Lagr. SWR
1 0 0 3 4 6 4

2 0 0 1 1 3 2

3 0 0 2 2 3 6
4 0 0 3 0 3 3

5 0 0 2 2 6 2

6 0 0 3 2 4 4

TABLE IV

THREE-DIMENSIONAL QoS VECTOR: PACKET LOSS RATE, DELAY, AND

JITTER.

E User Population QoS Diversity

Table V shows a user pool with diverse QoS requirements

with packet loss bounds of 0.001, 0.005,0.008, 0.01, 0.02, and

0.05, and the QoS rendered by the system. All QoS require-

ments are being met for both Lagrangian method and the Fixed

Assignment scheme. This is in the context of a 2-service class

system. In general, for a diverse user population make-up more

service classes are needed to provide refined services.

V. CONCLUSION

We have presented an architecture for noncooperative multi-

class QoS provision in many-switch systems. End-to-end QoS

control is facilitated by decentralized control based on La-

grangian optimization which, in turn, is amenable to distributed
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Instaace
Resource Plentiful In-between Resource Scarce

Lagr. SWR fix. fifo ran, Lagr. SWR fix. fif ran. Lagr. SWR fi fif

1 0 0
ran.

o 4 4 0 2 1 2° 1 5

2 0
5 : 4° 5

0 0 2 2 0 1 2 2 2 2 3

3 0
7 3 5

0 0 3 2 1 1 0 5 2 4 4

4 0
3 5 4

0 0 5 2 1 3

5

0 3 3 3 3 3 3 4
0 0 I 4 3 3 0

6

1 5 3 4 3 3 5 4

0 0 0 4 3 2 2 1 4 3 3 5 4 4 3

TABLE 111

COMPARATIVE PERFORMANCE WITH RESPECT TCI THREE CLASSES OF PROBLEMS—RESOURCE PLENTIFUL, IN-BETWEEN, AND RESOURCE

SCARCE—\NITH SIX PROBLEM INSTANCES INEACHCATEGORY.

implementation. An appealing property ofour architecture is

that selfish user mode is preserved without burdening the user

with complex resource allocation computations. ‘I’his imparts

our system with a well-defined and practical resource allocation

paradigm-selfishness-on which resolution off resource con-

tention conflicts are based.

Flow Pk. Req. Lagraagian

1

1 1

- 1!

Fixed class
pk.. V1O. charge pk. V1O. c arge

1 .05 .0347 .07 49.65 .0487 .43 49.51
2 .05 .0321 .00 39.68 .0321 .00 39.68
3 .05 .0319 .00 59.66 .0316 .00 59.68
4 .005 .0004 .01 60.00 .Ooc+l .00 &l.oo
5 .02 .0003 .01 60.@J Moo .00 60.00
6 .05 .0322 .00 49.68 .0320 .00 49.68
7 .008 .0003 .01 29.99 .OeOo .OQ 30.00
8 .05 .0355 .08 49.65 .0490 .43 49.51
9 .01 Oonn .N 50.04 .Oix)o .00 50.00

.“-. - .01 29.74 .0175 .00
ii I .&-l I ,OQoo .00

29.83
60.00 .Oooo .00 60.00

TABLE V

I , . ..-
I-n I n5 rr977

DIVERSE QoS REQUESTS

Complementing the simple user- approach, our distributed

control protocol is easily implementable as a preprocessing step

in routers with GPS packet scheduling. Pricing and account-

ing are performed at a tine-granular level (per packet) where

usage-based pricing is efficiently achieved. This leads to a sim-

ple network realization. SBS is scalable, efficient, and adaptive,

and it complements the guaranteed service architecture, shar-

ing a common network substrate comprised of GPS routers. It

is also a functional complement, provisioning QoS efficiently

commensurate with user needs, albeit at the cost of weaker pro-

tection.
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