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Abstract
We compare the performance of four admission control

algorithms—one parameter-based and three measurement-
based—for controlled-load service. The parameter-based
admission control ensures that the sum of reserved re-
sources is bounded by capacity. The three measurement-
based algorithms are based on measured bandwidth, ac-
ceptance region [9], and equivalent bandwidth [7]. We use
simulationon several network scenarios to evaluate the link
utilization and adherence to service commitment achieved
by these four algorithms.

Keywords: Admission Control, Quality of Service
(QOS), Internet.

1 Introduction
The role of any admission control algorithm is to ensure

that admittance of a new flow into a resource constrained
network does not violate service commitments made by the
network to admitted flows. The service commitments made
could be quantitative(e.g., a guaranteed rate or bounded de-
lay), or it could be more qualitative (e.g., a “low average
delay”). There are two basic approaches to admission con-
trol: the first, which we call the parameter-based approach,
computes the amount of network resources required to sup-
port a set of flows given a priori flow characteristics; the
second, the measurement-based approach, relies on mea-
surement of actual traffic load in making admission deci-
sions. In this paper, we report on an initial comparative
study of four admission control algorithms, one parameter-
based, three measurement-based. The main criterion used
in evaluating any admission control algorithm must be how
well it fulfills its primary role of ensuring that service com-
mitments are not violated. The simplest way to ensure com-
plete commitment conformance is to allocate enough re-

�Part of this work was done while Sugih Jamin was at the University of
Southern California, with equipment support from the NSF small-scale in-
frastructure grant, award number CDA-9216321 and equipment loan from
Sun Microsystems Inc.

sources to meet the worst-case requirements of each flow.
For bursty sources, however, this scheme results in low net-
work utilization. Hence, the second evaluation criterion is
how high a level of network utilization an admission con-
trol algorithm can achieve while still meeting its service
commitments.1 The third evaluation criterion is the imple-
mentation and operational costs of an algorithm. Since ad-
mission control is a session-level, not packet-level, control
mechanism, we do not expect its implementation or opera-
tional cost to be a prohibitive factor and only consider the
first two criteria in this study.

Parameter-based admission control algorithms can be
analyzed by formal methods. Measurement-based admis-
sion control algorithms can only be analyzed through ex-
periments on either real networks or a simulator. We strive
to make the simulation environments under which we in-
vestigate the behavior of the various algorithms as compa-
rable as possible, but this does not mean the operating con-
ditions would not be unfairly disadvantageous to any par-
ticular algorithm. Our intention here is not to pick a win-
ner, but to start a dialog, not only on the evaluation criteria
to be used in comparing different measurement-based ad-
mission control algorithms, but also on the definition of a
meaningful comparison of measurement-based admission
control algorithms given the myriad tunable parameters.

Given the reliance of measurement-based admission
control algorithms on source behavior that is not static in
general, service commitments made by such algorithms can
never be absolute. Measurement-based approaches to ad-
mission control can only be used in the context of service
models that do not make guaranteed commitments, such as
the controlled-load service model. Controlled-load service
is designed for adaptive real-time applications that can tol-
erate variance in packet delays. The controlled-load ser-
vice model, as defined in reference [19], “tightly approx-

1Note that in an environment where there is a large fraction of best-
effort traffic, the secondary goal of the admission control algorithm may
simply be to control the fraction of bandwidth allotted to realtime traffic,
rather than maximizing it.
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imates the behavior visible to applications receiving best-
effort service under unloaded conditions” over the same
path. Furthermore, applications requesting controlled-load
service may assume that its packet loss rate is on the order
of the transmission medium’s error rate and that its typical
experienced delay should be on the order of the path’s trans-
mission and propagation delays. More specifically, average
packet queueing delay should be no greater than the flow’s
“burst time” and there should be minimal loss rate averaged
over time-scales larger than “burst time”—where the “burst
time” is defined as the time required to serve a flow’s maxi-
mum burst at the flow’s reserved rate. For a flow described
by a token bucket filter, the “burst time” is b=r, where b is
the token bucket depth and r its replenishment rate (for such
a flow, the total traffic during any time period of length U
is bounded by rU + b).

The minimal commitment made by controlled-load ser-
vice makes it especially well suited to the decentralized and
heterogeneous Internet. This service model is in the pro-
cess of being standardized by the Internet Engineering Task
Force (IETF). To provide the illusion of lightly loaded net-
work to flows receiving controlled-load service, network
switches and routers must perform admission control at the
call level to ensure that sufficient resources are available to
serve the flows. While the specification of controlled-load
service does not dictate specific target values for quality of
service parameters such as delay bound or loss rate, opera-
tionally the admission control algorithms must be evaluated
based on the levels of delay and loss they produce. In this
paper we investigate four admission control algorithms that
could support controlled-load service.

2 Four Admission Control Algorithms
Simple Sum. The first admission control algorithm sim-
ply ensures that the sum of requested resources does not ex-
ceed link capacity. Let � be the sum of reserved rates, � the
link bandwidth,� the name of a flow requesting admission,
and r� the rate requested by flow�. This algorithm accepts
the new flow if the following check succeeds:

� + r� < �: (1)

We call this the “Simple Sum” algorithm in the rest of the
paper. This is the simplest admission control algorithm
and hence is being most widely implemented by switch
and router vendors. Often, to ensure low queueing delay
called for by controlled-load service, an approximation of
the weighted fair queueing (WFQ) scheduling discipline is
implemented with this admission control algorithm. WFQ

assigns each flow its own queue served at its own reserved
rate, thereby isolating flows from each other’s bursts. In
this paper, we always use the WFQ scheduling discipline
in conjunction with the “Simple Sum” admission control—
incidentally, this setup also satisfies the committed rate ser-

vice model described in [1]. For the other, measurement-
based algorithms, we assume the first-in-first-out (FIFO)
scheduling discipline.

Measured Sum. Whereas the “Simple Sum” algorithm
ensures that the sum of existing reservations plus a newly
incoming reservation does not exceed capacity, the “Mea-
sured Sum” algorithm uses measurement to estimate the
load of existing traffic. This algorithm admits the new flow
if the following test succeeds:

b� + r� < ��; (2)

where � is a user-defined utilization target as explained be-
low, and b� the measured load of existing traffic. We will
explain how load measurement is done in the next section.
Upon admission of a new flow, the load estimate is in-
creased using b�0 = b� + r�. As we pointed out in refer-
ence [11], in a simple M=M=1 queue, variance in queue
length diverges as the system approaches full utilization. A
measurement-based approach is doomed to fail when delay
variations are exceedingly large, which will occur at very
high utilization. It is thus necessary to identify a utiliza-
tion target and require that the admission control algorithm
strive to keep link utilization below this level. In this paper,
we let � = 0:9.

Acceptance Region. The second measurement-based al-
gorithm, proposed in [9] computes an acceptance region
that maximizes the reward of utilization against the penalty
of packet loss. Given link bandwidth, switch buffer space, a
flow’s token bucket filter parameters, the flow’s burstiness,
and desired probabilityof actual load exceeding bound, one
can compute an acceptance region for a specific set of flow
types, beyond which no more flow of those particular types
should be accepted. The computation of the acceptance re-
gion also assumes Poisson call arrival process and indepen-
dent, exponentially distributed call holding times. We refer
the interested readers to [9] for the computation of the ac-
ceptance region. The measurement-based version of this al-
gorithm ensures that the measured instantaneous load plus
the peak rate of a new flow is below the acceptance region.
The measured load used in this scheme is not artificially ad-
justed upon admittance of a new flow. For flows described
by a token bucket filter (r; b) but not peak rate, [7] derives
their peak rates (bp) from the token bucket parameters using
the equation:

bp = r + b=U; (3)

where U is a user-defined averaging period. We have
adopted the same scheme to be used with the acceptance re-
gion algorithm. If a flow is rejected, the admission control
algorithm does not admit another flow until an existing one
leaves the network. In the remainder of this paper, we use
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the terms “utilization target” and “utilization threshold” in-
terchangeably with “acceptance region.”

Equivalent Bandwidth. The third measurement-based
algorithm computes the equivalent bandwidth for a set of
flows using the Hoeffding bounds. The equivalent band-
width of a set of flows is defined in references [7, 10] as
the bandwidth C(�) such that the stationary bandwidth re-
quirement of the set of flows exceeds this value with proba-
bility at most �. We call � the “loss rate” in the remainder of
the paper; however, in an environment where large portion
of traffic is best-effort traffic, realtime traffic rate exceeding
its equivalent bandwidth is not lost but simply encroaches
upon best-effort traffic. In reference [7] the measurement-
based equivalent bandwidth based on Hoeffding bounds
( bCH) assuming peak rate (p) policing of n flows is given
by:

bCH(b�; fpig1�i�n; �) = b� +
r
ln(1=�)

Pn

i=1
(pi)2

2
; (4)

where b� is the measured average arrival rate of existing traf-
fic and � is the probability that arrival rate exceeds the link
capacity. The author of [7] indicates that the measured av-
erage arrival rate may be approximated by measured aver-
age load. We use measured arrival rate in our study, but
keep the same notation (b�) to refer to both measured arrival
rate and measured load for the sake of simplicity. The ad-
mission control check when a new flow � requests admis-
sion is then: bCH + p� � �: (5)

Upon admission of a new flow, the load estimate is in-
creased using b�0 = b� + p�. Again, if a flow’s peak rate is
unknown, it is derived from its token bucket filter parame-
ters (r; b) using Eqn. 3. Similar to the algorithm in [9], if a
flow is denied admission, no other flow of similar type will
be admitted until an existing one departs.

Before moving on to discuss the measurement mecha-
nism in the next section, recall that while the admission
control algorithms described here are based on meeting
quality of service constraints of either loss rate or delay
bound, the specific values used by the admission control al-
gorithms are not advertised to the users of controlled-load
service.

3 Three Measurement Mechanisms
We now describe the measurement mechanisms used in

our study. We note that these may not be the most efficient
nor the most rigorous measurement mechanisms. They are
however, very simple, which help us isolate admission pat-
terns caused by particular admission control algorithm from
those caused by the measurement mechanism. We refer the

interested readers to references [17, 6, 4] for alternate treat-
ments on measurement mechanisms.

Time-window. Following [11], we use a simple time-
window measurement mechanism to measure network load
with the “Measured Sum” algorithm. As shown in Fig. 1,
we compute an average load every S sampling period. At
the end of a measurement windowT , we use the highest av-
erage from the just ended T as the load estimate for the next
T window. When a new flow is admitted to the network, the
estimate is increased by the parameters of the new request
as explained in the previous section. If a newly computed
average is above the estimate, the estimate is immediately
raised to the new average. At the end of every T , the esti-
mate is adjusted to the actual load measured in the previous
T . A smaller S gives us higher maximal averages, result-
ing in a more conservative admission control algorithm; a
larger T keeps longer measurement history, again resulting
in a more conservative admission control algorithm. To get
a statisticallymeaningful number of samples, we try to keep
T=S � 10.

Point Samples. The measurement mechanism used with
the acceptance region algorithm takes an average load sam-
ple every S0 period [12].

Exponential Averaging. Following reference [7] we use
an estimate of the average arrival rate, instead of instanta-
neous bandwidth, to compute admission decisions with the
equivalent bandwidth approach. The average arrival rate
(b�S) is measured once every S sampling period. The aver-
age arrival rate is then computed using an infinite impulse
response function with weight w, which we set to 2e-3 in
this study:

b�0 = (1� w) � b� + w � b�S: (6)

If the traffic arrival rate changes abruptly from 0 to 1
and then remains at 1, a w of 2e-3 allows the estimate to
reach 75% of the new rate after 10 sampling periods. A
largerw makes the averaging process more adaptive to load
changes; a smallerw gives a smoother average by keeping a
longer history. Recall that the equivalent bandwidth based
admission control algorithm requires peak rate policing and
derives a flow’s peak rate from its token bucket parameters
using Eqn. 3 when the peak rate is not explicitly specified.
We set U = S to reflect the peak rate seen by the measure-
ment mechanism. A smaller S not only makes the measure-
ment mechanism more sensitive to bursts, it also makes the
peak rate derivation more conservative. A larger S may re-
sult in lower averages, however it also means that the mea-
surement mechanism keeps a longer history because the av-
eraging process (Eqn. 6) is invoked less often.
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Figure 1: Time-window measurement of network load.
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Figure 2: The ONE-LINK and FOUR-LINK topologies

4 Simulation Scenarios
For this paper, we run our simulations on two topolo-

gies: the ONE-LINK and FOUR-LINK topologies depicted
in Figure 2. In both topologies, each host is connected to
a switch by an infinite bandwidth link. The connection be-
tween switches are all 10 Mbps links. Buffer space at the
switches are shared by all admitted flows. Buffer space of
the switches connected to the bottleneck links are sized dif-
ferently for each simulation, as we explain below. In the
ONE-LINK topology, traffic flows from HostA to HostB.
In the FOUR-LINK topologies, traffic flows between six
host pairs: HostA–HostC, HostB–HostD, HostC–HostE,
HostA–HostD, HostB–HostE, HostD–HostE; flow cre-
ations are distributed uniformly among the six host pairs.
In Figure 2, these host pairs and the paths their packets tra-
verse are indicated by the directed curve lines.

We use two kinds of source model in our simulations.
The first is an ON/OFF model with exponentially distributed
ON and OFF times. During each ON period, an exponen-
tially distributed random number of packets, with average
N , are generated at fixed rate p packet/sec. Let I millisec-
onds be the average of the exponentially distributed OFF

times, then the average packet generation rate a is given by

1=a = I=N + 1=p.
Recent studies ([13, 8, 2]) have shown that network traf-

fic often exhibits long-range dependence (LRD), with the
implications that congested periods can be quite long and
a slight increase in the number of active connections can
result in large increase in packet loss rate [16]. Reference
[16, 7] further call attention to the possibly damaging effect
long-range dependent traffic might have on measurement-
based admission control algorithms. To investigate this and
other LRD related questions, we augment our simulation
study with LRD source models. Following [18], our next
model is an ON/OFF process with Pareto distributed ON and
OFF times (for ease of reference, we call this the Pareto-
ON/OFF (POO) model). Pareto distributionis a heavy-tailed
distribution that can be described by two parameters: its
location and shape. A Pareto shape parameter less than 1
gives data with infinite mean; shape parameter less than
2 results in data with infinite variance. The Pareto loca-
tion parameter can be computed from the formula: mean�

(shape� 1)=shape. During each ON period of the Pareto-
ON/OFF model, a Pareto distributed number of packets,
with mean N and Pareto shape parameter �, are generated
at some peak rate p packet/sec. The OFF times are also
Pareto distributed with mean I milliseconds and shape pa-
rameter 
. Each Pareto-ON/OFF source by itself does not
generate LRD series; the aggregation of them does.

In addition to each source’s burstiness, network traffic
dynamics is also effected by the arrival pattern and duration
of flows. We use exponentially distributed lifetimes with
the Markov-ON/OFF source model, following [14]. The du-
ration of Pareto-ON/OFF sources, however, are taken from
a lognormal distribution, following [3, 5]. The interarrival
times of all flows are exponentially distributed [16].

We use six instantiations of the above source models as
summarized in Table 1. In the table, p =1means that af-
ter each OFF time, packets for the next ON period are trans-
mitted back to back. The shape parameter of the Pareto
distributed ON time (�) of the Pareto-ON/OFF sources are
selected following the observations in [18]. According to
the same reference, the shape parameter of the Pareto dis-
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Table 1: Six Instantiations of the Two Source Models

Model Parameters TB Filter Switch Parameters
Model Name p pkt/ I N p=a r tkn/ b max D� D � S bp pkt/

sec msec pkts sec tkns qlen msec msec (%) ptime sec

EXP1 64 325 20 2 64 1 0 16 16 98 5e3 –
EXP2 1024 90 10 10 320 50 17 160 160 40 1e3 832
EXP3 1 684 9 1 512 80 1 160 160 – 5e2 2150

�

POO1 64 325 20 1.2 64 1 0 16 16 98 5e3 –
POO2 64 2925 20 1.2 64 1 0 16 16 98 5e3 –
POO3 256 360 10 1.9 240 60 220 256 160 44 5e3 363

tributed OFF time (
) stays mostly below 1.5; in this paper
we use 
 = 1:1 for all Pareto-ON/OFF sources. For the
POO1 and POO2 models, we use a token bucket rate equal to
the source’s peak rate so that the token bucket filter does not
reshape the traffic. For the POO3 model, some of the gen-
erated packets were queued; this means during some of the
source’s alleged “OFF” times, it may actually still be drain-
ing its data queue onto the network.

In the same table, we also list the settings of the to-
ken bucket parameters assigned to each source. In this
study, we assign each flow a data queue with infinite
length (i.e. packets that arrive at an empty token bucket are
queued, and the queue never overflows). Column 7 of the
table, labeled max qlen, shows the maximum data queue
length a flow can expect to see. Our packets are of fixed
size (1 Kbits) and each of our token is worth 1 packet of
data.

When a flow with token bucket parameters (r; b) is
served with WFQ, the maximal queueing delay (ignoring
terms proportional to a single packet time) is given by b=r
[15]. Column 8 of the table, labeled D�, lists the maximal
delay for each source given its assigned token bucket filter.
This is also the “burst time” queueing delay acceptable un-
der the definition of controlled-load service. Column 9, la-
beled D, lists the delay bound we assigned to each source.
We have chosen the token bucket parameters such that, in
most cases, the delay bounds given to a flow will be the
same as its “burst time” queueing delay. This facilitates an-
alyzing the performance of the algorithms under controlled-
load service. In the few cases where the delays are not the
same, such as in the POO3 case, the utilization comparison
is less meaningful. For each simulation with measurement-
based admission control algorithm, we size the buffer at
the switches with enough space to accommodate the delay
bound (D). For example, simulations with EXP1 source,
given a link speed of 10 Mbps, use a buffer size of 160
packets. In simulations with multiple source models hav-
ing different delay bound requirements, we use the maxi-

mum of the required buffer sizes; for example, in a simula-
tion with both EXP1 and EXP2 models, we use a buffer size
of 1600 packets. Simulations with the parameter-based ad-
mission control algorithm assume infinite buffer size. Col-
umn 10, labeled � , contains the utilization threshold used
to simulate the acceptance region algorithm. This utiliza-
tion threshold should not be confused with the utilization
target used with the “Measured Sum” scheme, where the
value is set to 90% link bandwidth. The acceptance region
is computed in [9] for � of 1e-12. For simulations with the
equivalent bandwidth algorithm, we use � of 1e-7. The next
column, labeled S, gives the sampling period used with
the measurement mechanisms in packet transmission time
(ptime). For the time-window mechanism, the window size
is 10�S. The sampling period used with the acceptance re-
gion algorithm is S0 = 5 � S. The last column, labeled bp,
contains the derived peak rates computed with Eqn. 3. Note
that for source POO3, the derived peak rate is larger than the
actual peak rate. In this paper, we also consider using the
token rate (r) as the peak rate.

For each simulation, flow interarrival times are expo-
nentially distributed with an average of 400 milliseconds.
The average holding time of all Markov-ON/OFF sources
is 300 seconds. The Pareto-ON/OFF sources have lognor-
mal distributed holding times with median of 300 seconds
and shape parameter 2.5. We run simulations with Markov-
ON/OFF sources for 3000 seconds simulated time, serv-
ing 1e8 packets. The data presented are obtained from
the later half of each simulation. By visual inspection,
we determined that 1500 simulated seconds is sufficient
time for the simulations to warm up. Simulations involving
Pareto-ON/OFF sources require a longer warmup period and
a longer simulation time for the LRD effect to be seen, thus
we run them for 5.5 hours simulation time, serving close to
1e9 packets, with reported data taken from the later 10000
seconds.
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Table 2: Single-hop Homogeneous Sources Simulation Results. Entries in italics indicate simulations with non-zero loss rate.

Model Simple Sum Measured Sum Acc. Rgn. (bp) Eqv. Bw. (bp) Eqv. Bw. (r) Eqv. Bw. (r; �=1e-1)

Name %Util #Actv %Util #Actv %Util #Actv %Util #Actv %Util #Actv %Util #Actv

EXP1 46 144 79 250 97 308 71 223 – – – –
EXP2 28 28 75 74 38 37 12 12 41 40 68 67
EXP3 2 18 54 406 – – 0.3 2 5 40 23 171
POO1 39 144 86 330 99 381 70 270 – – – –
POO2 7 144 78 1539 97 1912 45 885 – – – –
POO3 3 38 72 965 43 582 2 27 12 159 37 505

5 Simulation Results
In the following three subsections, we present results

from simulations on the ONE-LINK topology. A summary
of the results is presented in Table 2. Each row of the table
contains results from up to six simulations using the source
model named at the leftmost column and the admission con-
trol algorithm indicated at the head of the columns. The
“%Util” columns list the average utilizationachieved at the
bottleneck link of the ONE-LINK topology. The “#Active”
columns list the average number of concurrently running
flows in steady state. We have repeated some of the simu-
lations reported in the table with up to ten different random
seeds; the 99% confidence intervals are less than one of the
least significant digit in most cases. We close this section
by presenting results from simulations on the FOUR-LINK

topology.

5.1 Single-hop Results
The first two columns of Table 2 show results from simu-

lation using the “Simple Sum” parameter-based admission
control algorithm. There are no lost packets. The second
set of two columns show results from the “Measured Sum”
algorithm. Except for the POO1 cases, where the “Mea-
sured Sum” algorithm gives a loss rate on the order of 1e-
7, simulations with other source models using this algo-
rithm do not result in any loss. We can achieve no loss with
POO1 sources if we reduce the utilization target to 80% of
link bandwidth, in which case the average link utilization
achieved is 77% and the average number of concurrently
served flows is 297.

The next two columns, under the heading
“Acc. Rgn. (bp)” give the results of simulations with
the acceptance region algorithm; here the peak rate of
sources with token bucket greater than 1 is derived from
their token bucket parameters using Eqn. 3. We do not
study the performance of this algorithm for EXP3 source
because the utilization threshold for this model is 0 [9].
The loss rate for sources EXP1, POO1, and POO2, from
three simulations of each with different random seeds, are
6e-3, 2e-2, and 1e-2 respectively. Since EXP1 and POO1
sources have mostly the same characteristics except for

the distributions of their ON and OFF times, we conjecture
that by not taking these into account, the acceptance region
algorithm is overly optimistic for sources having heavy-
tailed ON and OFF times distributions. As the grain size of
flows, i.e. the p=� ratio, enlarges, this algorithm becomes
more conservative. For the EXP2 and POO3 sources,
achievable utilization is about half of the utilization under
“Measured Sum.” Since the acceptance region algorithm
does not artificially adjust its measurement values upon
admittance of a new flow, and given its point sampling
measurement process, we do not see any significant dif-
ference in performance between simulations using derived
peak rates and token rates as peak rates.

The two columns of Table 2 under the heading
“Eqv. Bw. (bp)” show results from simulations using the
equivalent bandwidth based admission control algorithm.
In the case of simulations with EXP2, EXP3 and POO3
sources, the flows’ peak rates are derived from their token
bucket parameters using Eqn. 3. We showed the derived
peak rates for the three sources in Table 1 and pointed
out that in the POO3 case the derived peak rate is higher
than the actual peak rate. To see how a less conservative
peak rate effects the performance of the algorithm on
the EXP2, EXP3, and POO3 sources, we simulate them
with their token bucket rates as their peak rates, ignoring
the token bucket depths. The two columns of Table 2
under the “Eqv. Bw. (r)” heading show results from these
simulations. The performance of the algorithm improves
significantly, but still lags behind the other measurement-
based algorithms. Next we experiment with � = 1e-1,
using the token rate as peak rate, for sources EXP2,
EXP3, and POO3. The results are presented under the
“Eqv. Bw. (r; �=1e-1)” heading. Note that these numbers
are still lower than those achieved with the “Measured
Sum” algorithm. Due to its conservativeness, none of
the simulations with the equivalent bandwidth algorithm
results in packet loss.

5.2 Multiple-hop Results
Table 3 contains the average link utilization and average

number of connections of the four links in the FOUR-LINK
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Table 3: Multiple-hop All Sources Simulation Results. Entries in italics indicate simulations with non-zero loss rate.
Link Measured Sum Acceptance Rgn. 1 Acceptance Rgn. 2 Equivalent Bw.

%Util #Actv %Util #Actv %Util #Actv %Util #Actv

L6 47 282 23 145 54 332 9 64
L7 79 485 38 242 94 563 16 104
L8 77 469 36 228 93 547 18 116
L9 77 469 38 234 93 532 25 158

Table 4: Percentage Composition of Type of Admitted Flows

Algorithm EXP1 EXP2 EXP3 POO1 POO2 POO3
Measured Sum 21% 9 12 21 22 15
Acceptance Rgn. 1 21 9 13 21 21 16
Acceptance Rgn. 2 19 13 15 19 19 16
Equivalent Bw. 26 3 7 26 27 12

topology from simulations where we run all six sources,
with the choice of sources uniformly distributed. Simula-
tions with the “Measured Sum” and equivalent bandwidth
algorithms use a sampling period of 1e3 packet transmis-
sion times while that of acceptance region use a sampling
period five times as large. The switches have buffer space
for 1600 packets in all these simulations. The table shows
that the equivalent bandwidth algorithm is, again, rather
conservative in this scenario. The “Acceptance Rgn. 1”
scenario uses a utilization threshold of 40%, whereas the
“Acceptance Rgn. 2” scenario uses 98%. With a 98% uti-
lization threshold, the acceptance region algorithm results
in 5e-5, 6e-5, and 8e-7 loss rate at links L7, L8, and L9 re-
spectively. Under both the acceptance region and equiva-
lent bandwidth algorithms, sources that do not declare their
peak rates are admitted based on their derived peak rates per
Eqn. 3.

Note that link L6 consistently achieves lower utilization
than the other links. We call this the under-representation
phenomenon in reference [11], and attribute its cause to un-
consummated reservations when multi-hop flows admitted
by the switch attached to L6 are rejected by one of the
downstream switches. Table 4 shows the composition of
the type of admitted flows, in percentages. It confirms our
earlier observation in [11] that more resource demanding
sources, namely EXP2, EXP3, and POO3, can suffer from
another form of under-representation, where they are dis-
criminated against by the network.

While the utilization achieved under the acceptance re-
gion algorithm is high when the utilization threshold is
98%, the choice of the utilizationthreshold is not from com-
putation in [9], rather it is a “best case,” but ad-hoc, choice
for this scenario—hence does not allow the load estimation
error to be quantified and assessed any more more rigor-
ously than under the “Measured Sum” method. To com-
pute the acceptance region, one must know the source char-

acteristics a priori. On environments such as the Internet,
where new applications are introduced at a high rate, and
source characteristics depend not only on the applications
but also their use, one cannot make a priori characteriza-
tion of sources with any degree of certainty.

6 Conclusion
We have presented some preliminary results from

the comparison of four admission control algorithms for
controlled-load service. We hope that this paper will start
a dialog with others in the field on a suitable method to
conduct such study. We ourselves plan to do further, more
systematic, comparative analysis of the various algorithms
presented here.
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