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Abstract—Dense and symmetric graphs are useful for
modeling fast information distribution in wireless informa-
tion networks. In this paper, we focus on a specific family
of dense and symmetric graphs, the Borel Cayley graphs.
More specifically, we investigate the various parameters in
the original formulation of Borel Cayley graphs defined in
the matrix domain. By eliminating redundant parameters,
we propose a new and simpler formulation of Borel Cayley
graphs. This new formulation is defined in the integer
domain and the group operation resembles the generation
of pseudorandom numbers, hence the name pseudo-random
formulation. Through the establishment of propositions and
corollaries, we proved that certain parameters do not affect
the diameter under a specific condition. This result provides
a guideline in choosing appropriate generators and thus
reducing the computation time in the search of good or bad
generators. Using this new formulation, we also show that
Borel Cayley graphs are isomorphic to a sub-class of Cayley
graphs proposed by Dinneen. Finally, some guidelines for
choosing generators to avoid disconnected graphs are also
provided.

Keywords-Cayley graph, pseudo random graph, informa-
tion networks.

I. INTRODUCTION

In designing a wireless information network, the net-
work topology is modeled by graphs. The vertices of the
graph correspond to wireless network nodes, and the edges
correspond to wireless communication channels. Since
present technology readily permits two-way communica-
tion, the graphs considered in this paper are undirected. In
graph terminology, a regular graph is one that has the same
number of edges at every vertex; the degree δ of a regular
graph is the uniform number of connecting edges at every
vertex; and the diameter, D, of a graph is the maximum of
the set of minimum distances between any two vertices.
Due to limited number of communication channels per
network node, we are interested in regular graphs with
a small degree. In particular, we are interested in dense
graphs, that is, those having a large number of vertices
for a given diameter and degree. The so called Moore
bound provides an upper bound for the number of possible
vertices present for a fixed D and δ. Graphs attaining
these bounds are known as Moore graphs. However, Moore
graphs have been proved to be non-existent except for
diameter D = 2 and δ = 3, 7 and possibly 57 [1].

In addition to density, vertex-transitivity is a desirable
attribute for efficient interconnection networks. Mathemat-
ically, a graph is vertex-transitive if for any two vertices

u and v, there is an automorphism that maps u to v.
Informally, this means the graph looks the same from
any vertex. Such node symmetry also allows the use
of identical processing/communicating elements at every
vertex incorporating identical routing algorithms.

There is an increasing interest in a special class of
graphs based on group theory, known as Cayley graphs.
Basically, a Cayley graph is constructed from a finite
group. The vertices of the graph are the elements of
the group. Connections between vertices are defined by
the group operation and a set of generators. There is no
restriction in the choice of the underlying group. We can
construct a Cayley graph over an arbitrary finite group
and hence there are many varieties of Cayley graphs. It is
known that all Cayley graphs are vertex-transitive [2]. This
construction leads to many dense graphs and it has moti-
vated several research efforts [3]–[7]. The attractiveness of
Cayley graphs was further enhanced when Chudnovsky et.
al discovered that certain Borel Cayley graphs, i.e., Cayley
graphs based on Borel subgroups, are the densest degree-
4, non-random graphs known for an interesting range of
diameters [8].

In earlier reports [9]–[11], we have studied various
properties of Cayley graphs, including representations and
routing of these graphs. We have proved that all Cayley
and Borel Cayley graphs can be transformed into Gen-
eralized Chordal Rings/Chordal Rings (GCR/CR) defined
in the integer domain. Several time and space-efficient
routing algorithms were also devised.

Furthermore, our previous results in [12] showed that
the information distribution performance of Borel Cayley
graphs is far superior than that of other well-known graph
families. For example, the Borel Cayley graphs yielded
a 2 to 100 times faster convergence than the small-world
network (rewiring probability p = 0.01, 0.1and 0.2). More
importantly, the results also confirmed that Borel Cayley
graph has the best scalability over a wide range of graph
sizes and degrees [12].

In this paper we concentrate on the formulation and
generation of dense Borel Cayley graphs. Through the
establishment of propositions and corollaries, we propose
a new and simpler formulation for Borel Cayley graphs.
This new formulation resembles the generation of pseudo-
random numbers. Furthermore, with this formulation, we
show that Borel Cayley graphs are isomorphic to a sub-
class of Cayley graphs proposed by Dinneen using semi-



direct product of groups [7]. Finally, some guidelines for
choosing generators to avoid disconnected graphs are also
provided.

II. REVIEW

Cayley graphs were first constructed by A. Cayley, a
mathematician, in 1878 [2]. The construction of these
graphs is described by finite algebraic group theory. A
group (V, ∗) consists of a set V that is closed under
inversion and a single law of composition ∗, also known
as the group multiplication. There also exists an identity
element I ∈ V. A group is finite if there is finite number
of elements in V. In this section we review the definitions
of Cayley graphs, Borel Cayley graphs and Cayley graphs
proposed by Dinneen [7].

Definition 1 A graph C = (V,G) is a Cayley graph with
vertex set V if two vertices v1, v2 ∈ V are adjacent ⇔
v1 = v2 ∗g for some g ∈ G where (V, ∗) is a finite group
and G ⊂ V \ {I}. G is called the generator set of the
graph.

Note that the identity element I is excluded from G.
This prevents the graph from having self-loops. A Cayley
graph is undirected if G is closed under inversion, and the
graph’s degree is |G|. In our research, we are interested
in undirected, degree-four Cayley graphs mainly because
current technology allows four-neighbor connections. In
other words, we are concerned with Cayley graphs whose
generator set consists of two group elements and their
inverses.

The definition of a Cayley graph requires vertices to
be elements of a group but does not specify a particular
group. A family of Cayley graphs that includes some of
the densest degree 4 graphs are formed from a subgroup,
the Borel subgroup BL2(Zp), of the general linear 2× 2
matrices GL2(Zp). The definition of the Borel subgroup
is:

Definition 2 If V is a Borel subgroup, BL2(Zp), of
GL2(Zp) with a parameter a, a ∈ Zp \ {0, 1}, then

V =

{(
x y
0 1

)
: x = at (mod p), y ∈ Zp, t ∈ Zk

}
where p is prime and k is the smallest positive integer
such that ak = 1 (mod p).

The vertices of Borel Cayley graphs are 2× 2 matrices
that satisfy the definition of Borel subgroup, and modular
p matrix multiplication is chosen as the group operation
∗. Note that N = |V| = p×k, where k is a factor of p−1
and p is a prime number. By choosing specific generators,
Chudnovsky et al. [8] produced Borel Cayley graphs that
are the densest, nonrandom degree 4 graphs currently
known for diameters 7 to 13 [8]. Table 1 compares the
size of these graphs with that of the known graphs and the
Moore bounds. It is clear that these Borel Cayley graphs
show significant improvements in density. However, many
questions about these graphs are not addressed in [8]. Most

importantly, the question of how the choice of parameters
contributes to improvements in density. Motivated by this
question, our research focuses on Borel Cayley graphs
and this paper presents some of our findings. It is also
worth noting that the Borel Cayley graph discovered by
Chudnovsky with D = 11, δ = 4 has n = 38, 764. In
our research, we have discovered yet another denser Borel
Cayley graph with n = 41, 831 for D = 11, δ = 4.

In a separate research effort, Dinneen proposed a Cayley
graph constructed over a semi-direct product group [7].
The definition of this group is summarized as follows:

Definition 3 Given two cyclic groups Zm and Zn, the
semi-direct product group SG = Zm ×σ Zn is defined
by a homomorphism σ : Zm → Aut(Zn). Let an element
r be chosen from the group of units U(Zn). Define a
mapping σ′(k) = (rc)k = rck where c is chosen such
that rcm = 1. The group SG has its multiplication table
defined by

(a0, a1) ∗σ (b0, b1)

= (a0 + b0(mod m), a1 + σ′(a0)b1(mod n)). (1)

III. PARAMETERS OF DEGREE-4 BOREL CAYLEY
GRAPHS

For ease of description, we assume a size N , degree-4
Borel Cayley graph with generators A,B,A−1, and B−1.
Furthermore,

A =

(
at1 y1
0 1

)
, A−1 =

(
ak−t1 < −ak−t1y1 >p
0 1

)
,

B =

(
at2 y2
0 1

)
, B−1 =

(
ak−t2 < −ak−t2y2 >p
0 1

)
,

(2)

where < x >p denotes x mod p. We note that N = p× k
and the parameters: p, a, k, t1, t2, y1 and y2 are needed
to specify a particular Borel Cayley graph. Among these
parameters, p, a, k, related by ak = 1 (mod p), are
responsible for the determination of a Borel group (Def-
inition 2). However, connections and hence the diameter
are determined by the generators A,B and their inverses,
characterized by t1, t2, y1, and y2. In our research effort,
we investigate how these parameters affect each other and
the diameter of the graph. Table 2 illustrates the variations
in diameter D as a result of different parameter values.
In particular, the choices of t1 and t2 have a significant
effect on the diameter D. For instance, a graph with size
N = 1081 have diameters ranging from 7 to 9, depending
on t1 and t2. In the following sections, we summarize our
results.

A. Parameters: p, a and k

As stated before, N = p×k. That is, the size of a graph
is determined by p and k. Furthermore, k is the order of
a (mod p), which implies that k divides p − 1. However
the reason to choose a particular value of a is not clear.
Particularly, we have the following questions: (1) Is k the
smallest or largest order for all possible a? (2) How many



TABLE I: PARAMETERS OF BOREL CAYLEY GRAPHS

N p k a t1 t2 y1 y2 D

1081 47 23 2 1 7 0 1 7
2 10 0 1 7
7 8 0 1 8
3 6 0 1 9

2943 109 27 7 1 6 0 1 8

7439 173 43 16 4 10 0 1 9

15657 307 51 4 2 16 0 1 10
2 12 0 1 10
1 4 0 1 11
4 13 0 1 12
1 2 0 1 15

82901 911 91 2 31 34 0 1 12

a have order k? (3) For those a of the same order, do
they generate the same set of numbers? In this section,
we address these questions.

For any element a ∈ Zp, the smallest order is always 1,
when a = 1; and the biggest order is always p− 1, when
a is a primitive root of p. Furthermore, the possible values
of k are the factors of p− 1. For example, when p = 47,
p− 1 = 2× 23, and the possible values of k are 1, 2, 23
and 46.

The number of a with order k is given by the Euler
function φ(k). Furthermore, these a generate the same set
of numbers. These observations are supported by existing
theorems [13]. They are summarized as follows:

Theorem 1 The number of a with order k is φ(k), where
φ() is the Euler function. That is, for k = pc11 × p

c2
2 ×

pc33 × · · · ,

φ(k) = k × (1− 1/p1)× (1− 1/p2)× (1− 1/p3)× · · · ,

where p1, p2, p3, · · · are prime numbers.

Theorem 2 For a prime p, if k divides p−1, then xk = 1
(mod p) has exactly k roots.

The fact that different a generate the same set of
numbers, implies that the choice of a has no effect on
the group or the graph. Once p and k are being fixed, the
size of the graph is determined, and any a with order k
can be chosen.

B. Parameters: t1, t2, y1 and y2
The parameters t1, t2, y1 and y2 define the generators

A,B,A−1 and B−1, which in turn define the connections
and hence the diameter of the graph. From Table 2, it is
clear that the choices of t1 and t2 play a crucial part in
the determination of diameter. Furthermore, our computer
analysis indicates that changing y1 and y2 do not change
the diameter. This empirical observation is verified through
the establishment of the following propositions. Again, we
assume the generators of the degree-4 Borel Cayley graphs
are A,B,A−1 and B−1, according to Equation (2).

Proposition 1 (1 − at2)y1 = (1 − at1)y2 (mod p) ⇔
AB = BA.

The proof of this proposition is a straight forward
substitution and is omitted.

Proposition 2 For any paths X, Y, composed of gener-
ators A, B, A−1 and B−1, let

X =

(
a<it1+jt2>k < gy1 + hy2 >p

0 1

)
and

Y =

(
a<i

′t1+j
′t2>k < g′y1 + h′y2 >p

0 1

)
,

where < x >p denotes x (mod p). Then

X = Y

⇔ it1 + jt2 = i′t1 + j′t2 (mod k) and{
g = g′ and h = h′ (mod p) or
(1− at2)y1 = (1− at1)y2 (mod p).

The proof of this proposition is included in [10] and is
not repeated here. From this result, if AB 6= BA,

X = Y ⇔

{
it1 + jt2 = i′t1 + j′t2(mod k) and
g = g′ and h = h′(mod p).

(3)

The determination of the diameter of a graph basically
involves generating the entire set of vertices from differ-
ent compositions of generators. Equation (3) shows that,
whether two different compositions, X and Y correspond
to the same node is independent of the values of y1 and
y2. In other words, we have a useful corollary:

Corollary 1 The values of y1 and y2 do not affect the
diameter, iff AB 6= BA.

IV. A PSEUDO-RANDOM FORMULATION

In Section III-A and III-B, we have shown that the
choices of a, y1 and y2 do not affect the connections of
a Borel Cayley graph. The parameters that determine a
Borel Cayley graph are: p, k, t1, t2. Based on this finding,
we can use a constrained, simpler formulation of a Borel
group. Assume a Borel group as defined in Definition 2.
We define a Borel coordinate group Bp,k as follows:

Definition 4 For any prime number p and a factor of p−1,
k, choose any a such that ak = 1 (mod p). We have a Bp,k

with size N = p× k and

Bp,k = {(t, y) : t ∈ Zk, y ∈ Zp}.

For any (t, y), (t′, y′) ∈ Bp,k, the group operation ∗ is
defined as:

(t, y) ∗ (t′, y′) = (< t+ t′ >k, < aty′ + y >p). (4)

Accordingly, the generators A and B in the group can be
defined as:

A = (t1, y1),A
−1 = (k − t1, < −ak−t1y1 >p)

B = (t2, y2),B
−1 = (k − t2, < −ak−t2y2 >p). (5)



Since y1 and y2 do not affect the diameter, the simplest
choices for y1 and y2 are

y1 =

{
0 if t1 6= 0

1 if t1 = 0
and

y2 =

{
0 if t2 6= 0 and y1 6= 0

1 if t2 = 0 or y1 = 0
. (6)

Basically this new formulation has eliminated less es-
sential parameters and retained the properties of the orig-
inal group. In this new formulation, only two integers are
needed to specify an element; while in the original group,
an element is represented by a 2×2 matrix, which requires
four integers to specify. However, we observe that the
elements on the second row of a Borel matrix are always
0 and 1, which implies that such a formulation carries
redundant information. In our new formulation, modular
integer arithmetic has replaced the more complicated,
modular matrix multiplication of the original group.

Furthermore, the new group operation ∗ (Equation (4))
resembles the generation of pseudo-random numbers. The
generation of pseudo-random numbers by digital comput-
ers has been well studied. The almost universally used
method is the mixed congruential scheme, given by

xi+1 = λxi + c (mod T ) (7)

where λ and c are fixed odd integers and the xi < T are
the sequence of random numbers. We observed that the
operation on the y-coordinate in Equation (4) is similar to
the mixed congruential scheme, Equation (7). Because of
such similarity, we called this new formulation, a pseudo-
random formulation of Borel Cayley graphs.

In comparing Equations (4) and (1), we also found a
striking resemblance. Indeed, the Borel coordinate group,
Bp,k, defined in Definition 4 is a sub-class of the semi-
direct product group SG proposed by Dinneen and defined
in Definition 3. More specifically, if we choose, m =
k, n = p, rc = a (Definition 3), SG = Zm×σZk = Bp,k,
where a has order k in Zp. It is therefore not surprising
that the densest known degree-4 Cayley graphs provided
in [7] have the same number of nodes as that of Table 1.
Using a computer program, we have also verified that the
generators listed in [7] produce the same diameter in our
pseudo-random formulation of the corresponding Borel
Cayley graph.

V. CHOICE OF GENERATOR PAIRS

The definition of Borel Cayley graphs shows the con-
nection of the graphs is governed by the choice of gener-
ators (t1, y1) and (t2, y2). In fact, we observed that most
generator pairs yield densely connected graphs within a
narrow range of diameters. However, it is also observed
that a small portion of generator pairs gives rise to
disconnected graphs which are not desirable in a wireless
information network. For example, most networked sys-
tems such as computer networks, wireless communication
networks, and cooperative vehicles require the underlying
network topology to have strong connectivity and without

TABLE II: SIZE AND CORRESPONDING PARAMETERS OF THE
BOREL CAYLEY GRAPHS.

set N p k a samples

A

1081 47 23 2 45
2265 151 15 2 45
3081 79 39 2 45
4112 257 16 2 45
5253 103 51 2 45

B 2211 67 33 6 45
4063 239 17 6 45

any isolated node. Thus, it is critical to avoid generating
disconnected graphs by choosing appropriate parameters
for the generators. This section summarizes the patterns
of various parameters that will lead to disconnected Borel
Cayley graphs and therefore should be avoided.

A. Simulation Parameters

According to Section IV, we only consider generators
A =

(
at1 0
0 1

)
, B =

(
at2 1
0 1

)
and their inverses A−1,

B−1. The parameters y1 and y2 are chosen according
to Equation (6). In addition, we set the range of t1 and
t2 to 1 ≤ t1 < t2 ≤ 10 instead of using all (t1, t2)
pairs in the range 0 ≤ t1 < t2 ≤ (k − 1). Thus, the
total number of generator combinations is 45 where each
(t1, t2) pair generates a unique Borel Cayley graph with
different connectivity pattern. We concede, however, that
these limited choices imply that our conjectured guidelines
need further verification by sampling the entire possible
space of t1 and t2. This paper is a work-in-progress report
on the status of our findings and we plan to perform
more simulations to further confirm our results as will
be discussed in the Conclusion section.

Table II summarizes the parameters of Borel Cayley
graphs used in our experiments. There are two sets of
graphs. The simulation set A generates 1081, 2265, 3081,
4112 and 5253 nodes Borel Cayley graphs while the
simulation set B generates 2211 and 4063 nodes graphs.
We use the data from the simulation set A to find patterns
of good or bad generator pairs. In addition, the simulation
set B is designed to validate our observations.

For each of the generated Borel Cayley graph, we also
computed its algebraic connectivity, the second smallest
eigenvalue of the graph Laplacian. It is well known that
the algebraic connectivity of a graph is larger than 0
if and only if the graph is connected. The theoretical
foundation of algebraic connectivity has been established
by M. Fiedler in [14] and is not repeated here.

B. Patterns of bad generators

Based on the 45 (t1, t2) generator pairs and their
corresponding graphs for each of 1081-, 2265-, 3081-,
4112- and 5253-node Borel Cayley graphs, we found that
there exists a pattern of good or bad generators.

The algebraic connectivity results of the generated
graphs revealed that most of the Borel Cayley graphs
generated were connected graphs while a smaller portion
is disconnected. More specifically, 4, 3, 10 and 4 out of the



TABLE III: GENERATOR PARIS OF DISCONNECTED GRAPHS
FROM THE THE SIMULATION SET A

N p k d(k) generator (t1, t2) cd(t1, t2)

1081 47 23 23 - -

2265 151 15 3, 5
(3,6), (3,9) 3
(5,10) 5
(6,9) 3

3081 79 39 3, 13 (3,6), (3,9) 3
(6,9) 3

4112 257 16 2

(2,4), (2,6), (2,8), (2,10) 2
(4,6), (4,8), (4,10) 2
(6,8), (6,10) 2
(8,10) 2

5253 103 51 3, 17 (3,6), (3,9) 3
(6,9) 3

45 samples for 2265-, 3081-, 4112- and 5253-node Borel
Cayley graphs, respectively, were disconnected graphs. On
the other hand, there was no disconnected graph generated
in 1081-node case. We are interested in finding out if there
is any pattern of generator pairs that result in disconnected
graphs.

In Table III, we summarized the parameters of the dis-
connected Borel Cayley graphs, p, k and the generator pair
(t1, t2) in addition to the divisors of k denoted by d(k)
and the common devisors of t1 and t2, cd(t1, t2)1. Note
that one of k’s divisors always appears in the common
divisors of (t1, t2) pairs. Also, the opposite was always
true. That is, if a Borel Cayley graph is disconnected,
then cd(t1, t2) is always an element of the d(k) set. In
fact, 100% of the generator pairs in Table III share their
common divisors with the divisors of k. For example in
2265-node case, the common divisors of t1 and t2 of all
the disconnected graphs, 3 and 5, are also the divisors of
k = 15. In addition, the common divisors of all the other
generator pairs other than (3, 6), (3, 9) and (6, 9) are not
factors of k.

Furthermore, we also conjecture that the common divi-
sor cd(t1, t2) is not a factor of k if and only if the Borel
Cayley graph is connected. For example, the parameter k
of 1081-node Borel Cayley graphs is the prime number
23 of which only two factors are trivial factor 1 and itself.
The fact that the divisor 23 of k is a prime number and
that it is not within the range of t1 or t2 guarantees that
no common divisor cd(t1, t2) divides k.

To support this conjecture, we further experimented
with the simulation set B in Table II. First, in Table IV,
the generator pairs of all disconnected 2211-node Borel
Cayley graphs were the same as the ones of disconnected
3081- and 5253-node Borel Cayley graphs. The fact that
the common divisors of disconnected graphs of all 2211,
3081 and 5253 cases are 3 and it appears in the divisor
set of k supports our conjecture. Secondly, there is no
disconnected graph generated for 4063-node Borel Cayley
graphs in the range of (t1, t2) pairs we considered. That is

1Of course, we do not consider trivial divisors 1 or parameter itself
as d(k) or cd(t1, t2). For d(k), however, if the parameter k itself is
the one and only divisor, then we accept k as a divisor of k.

TABLE IV: GENERATOR PARIS OF DISCONNECTED GRAPHS
FROM THE SIMULATION SET B

size p k d(k) generator (t1, t2) cd(t1, t2)

2211 67 33 3, 11 (3,6), (3,9) 3
(6,9) 3

4063 239 17 17 - -

because the only factor 17 of the parameter k of 4063-node
Borel Cayley graphs does not fall into the experimented
range 1 ≤ t1 < t2 ≤ 10 and hence, there is no generator
pairs of which common divisors divide the factor of k.

C. Guideline for choosing Borel Cayley graph parameters

Based on our observations and conjectures from the pre-
vious section, we summarize some guidelines for choosing
the parameter k and the generator pairs (t1, t2) that
guarantees a connected Borel Cayley graph.

Odd k
For even number k, the divisor 2 of k is a com-
mon divisor of all even (t1, t2) = (even, even)
pairs which means half of the generator pairs will
result in disconnected graphs. By choosing odd
number k, we can avoid such cases.

Prime k
If possible, choose a prime number for param-
eter k. Based on our conjecture, all generator
pairs (t1, t2) except for the cases that cd(t1, t2)
divides k will result in a connected graph when
k is prime.

Given k, choose (t1, t2) s.t. cd(t1, t2) /∈ {d|d = d(k)}
Once the parameter k is chosen, the generator
(t1, t2) has to be chosen such that any common
divisor of t1 and t2 (cd(t1, t2)) is not a divisor
of k denoted as d(k).

VI. CONCLUSIONS AND FUTUREWORKS

Dense, symmetric graphs are used for modeling fast
information distribution in wireless information networks.
Applications can be found in consensus protocols [12] and
MAC protocol designs [15].

Cayley graphs are attractive since they are symmetric
and provide densest known degree-4 graphs for a range
of diameters [9]. These graphs are constructed over a
group of matrices. Connections of the graph are defined by
postmultiplying vertices with generators in the generator
set. Appropriate choices of generators are critical to the
diameter of the graph.

Despite the potential of using Borel Cayley graphs for
fast distribution of information in wireless information
network, little is known about the parameters of these
graphs. Most importantly, the relationship between the
generators and the diameter of the graph is unknown.
Currently, identification of “good” generators are achieved
through random or extensive systematic search of all
possibilities [16]. In an effort to resolve this problem, we



investigate the parameters of Borel Cayley graphs. This
paper summarizes our findings.

By eliminating redundant information, we propose a
new and simpler formulation of Borel Cayley graphs. This
new formulation is defined in the integer domain and
the group operation resembles the generation of pseudo-
random numbers, hence the name pseudo-random formu-
lation. In this new formulation, elements of the group are
defined as coordinate pairs. For a degree-4 Borel Cayley
graph, the generators are now considered as A = (t1, y1)
and B = (t2, y2).

Through the establishment of propositions and corol-
laries, we proved that the values of y1 and y2 do not
affect the diameter if and only if AB 6= BA. This result
provides a guideline in choosing appropriate generators
and thus reducing the computation time in the search of
“good” generators. Using this new formulation, we also
show that Borel Cayley graphs are isomorphic to a sub-
class of Cayley graphs proposed by Dinneen [7].

Finally, through running and observing a range of ex-
tensive simulations, we conjectured a set of guidelines for
choosing the appropriate parameters to avoid generating
disconnected graphs. However, we concede that, the guide-
lines are established by sampling a limited space of the
generator parameters. A more extensive search involving
sampling the entire space of the generator set is needed
to confirm these conjectures. We are currently working on
this aspect of the project.
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