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ABSTRACT
In this paper, we apply divisible load theory to model
the Grid scheduling problem involving multiple sources to
multiple sinks, and present an optimized scheduling tech-
nique for this scenario. This scheduling technique can be
easily extended to schedule resources with buffer space
constraints. We provide a step-wise scheduling algorithm
for these constraints. Two example calculations will show
the practical utility and efficiency of DLT.
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1 Introduction

Geographically distributed, heterogeneous collections of
computers form a new concept of computing infrastruc-
ture, known as a computing “Grid”. Grid computing and
its applications are receiving an increasing amount of atten-
tion. One open problem is devising analytical performance
models that well represent networked and integrated com-
puting and communications. Existing tools for this purpose
include stochastic queueing theory, which has been exten-
sively developed over the years. A more recent approach
[5, 11, 16] is what is referred to as divisible load theory.

Divisible load theory is designed to solve the chal-
lenging problem of allocating and scheduling computing
resources on a Grid for thousands of independent tasks
from large number of users. Divisible load theory involves
the optimization of distributed computing problems where
both communication and computation load is partitionable.
Load may be divisible in fact or as an approximation (for
instance a large number of small, independent tasks). Most
divisible load theory uses a continuous mathematics, lin-
ear model which admits solution time optimization through
linear equations or recursions, allows equivalent elements

and other linear model features. Divisible load theory is
fundamentally a deterministic theory, though some equiva-
lencies to Markov chain modeling have been demonstrated
[17]. Solutions generated from divisible load theory are
surprisingly tractable.

A limitation in applying divisible load theory, as it
has been developed to date, to Grid computing is that most
of the literature involves a single source node distributing
computing load over a network to multiple sink nodes. An
appropriate modeling tool would need to be able to model
multiple sources and sinks. Some existing work on multi-
ple sources is [12] where tasks arrive according to a basic
stochastic process to multiple nodes. However an analyti-
cal approach to Grid modeling that is exact and determin-
istic would be useful. To this end, in this paper we present
a technique for scheduling divisible loads from multiple
sources to multiple sinks, with and without buffer capacity
constraints. We note that the results in this paper are a first
step in applying divisible load theory to Grid scheduling.
There is much that can be done beyond this.

This paper is organized as follows. In section 2, the
problem is formulated. Optimal load distribution without
buffer constraints appears in Section 3 and with buffer con-
straints appears in Section 4. The conclusion appears in
Section 5.

1.1 Related Work

Since the 1988 origin of divisible load theory [6], schedul-
ing in linear daisy chains, trees [9], hypercubes [8] and
meshes [10] has been studied. Work on scheduling has con-
sidered multi-installment scheduling [7], fixed communica-
tion charges [18], finite buffers [4], Markov chain models
[17], multiple rounds [13], detailed parameterizations and
solution reporting optimization [19] and combinatorial op-
timization [14]. Almost all work to date has assumed load
originates at a single node.



2 Grid Topology and Problem Formulation

In this section, we will consider a Grid architecture and
formally define the problem we address. We consider a
tightly coupled, bipartite multiprocessor system. In the
Grid system, we assume that there are � sources denoted
as ��� ��� ���� �� and � sinks denoted as ������ ������ .
For each source, there is a direct link to all the sinks and we
denote the link between �� and�� as ���� � � � �� ��� �� 	 �
�� ���� , respectively. Each source �� has a load, denoted
by 
� to process. Without loss of generality, we assume
that all sources can send their loads to all the sinks simul-
taneously. Similarly, we also assume that all the sinks can
receive load portions from all sources at the same time in-
stant.

The objective in this study is to schedule all the �

loads among � sink nodes such that the processing time,
defined as the time instant when all loads have finished be-
ing processed by all the � sinks, is minimal. The schedul-
ing strategy is such that the scheduler (assumed to be res-
ident in ��) will first obtain the information about the size
of the loads that other sources have in their local memory.
The scheduler will then calculate and notify each source of
the optimum amount of load that each source has to give
to each sink. This information can be easily communicated
via any means of standard or customized communication
protocol and it would not incur any significant communi-
cation overhead.

The sources, upon knowing the amount of load that
they should give to each sink respectively, will send the
loads to all sinks simultaneously. The sinks will then start
computing the loads immediately after they receive their
respective loads. Following Kim’s model [1], the sinks im-
mediately start computing the load fractions as they start
receiving them. It may be noted that we assume that each
sink has adequate memory/buffer space to accommodate
and process all the loads it receives from all the sources. We
also assume that communication time is faster than compu-
tation time so no processor starves for load. In Section 4,
we shall relax this assumption and study the impact of fi-
nite buffer space. We describe the actual load distribution
strategy in the next section.

3 Design and Analysis of Load Distribution
Strategy

In all the literature within the divisible load scheduling do-
main so far, an optimality criterion [3] that is used to derive
an optimal solution is as follows. It states that in order to
obtain an optimal processing time, it is necessary and suf-
ficient that all the sinks that participate in the computation
must stop at the same time instant. Otherwise, load could
be redistributed to improve the processing time. We use
this optimality principle in the design of our load distribu-
tion strategy.

We shall now introduce an index of definitions and
notations that are used throughout this paper.

� The total number of sources in the system
� The total number of sinks in the system
�� The �-th source

� The loads in ��

 The sum of loads in the system, where 
 ���

��� 
�
�� The 	-th sink
���� The amount of load that �� will receive from

��
�� The fraction of 
 that �� will receive from all

sources, where
��

��� �� � �

�� The inverse of the computing speed of � �

���� The link between �� and ��

��� The inverse of the link speed of ����
��� The computing intensity constant. A unit load

can be processed in ����� time by ��

��� The communication intensity constant. A unit
load can be communicated in ������ by ����

�� The finish time, defined as the time instant
when the computation ends, of�� , where �� �
��
�����

� ��� The processing time, defined as the time in-
stant when all loads 
�� � � �� ���� � are
processed by � sinks, where � ��� �
������ � 	 � �� ������
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Figure 1. Timing diagram of the distribution strategy with �
sources and� sinks



The timing diagram shown in Figure 1, represents
the communication and computation (load distribution and
processing) of the sources and sinks within the system, with
the x-axis representing the time. From the timing diagram,
we can see that,

��

���

��������� �

��

���

�������������� 	 � �� ����� � �

(1)
As our objective is to determine the above optimal fractions
���� , we impose the following condition in our strategy. Let
���� � ��
�� � � �� ���� � and 	 � �� ���� , respectively.
This condition essentially assumes that each sink receives
a load that is proportional to the size of the load from the
source. Moreover, each sink receives the same load frac-
tion (percentage of total load) from each source. Without
this condition, the system of equation is underconstrainted,
and additional constraints need to be added for a unique
solution. With this condition, the above equation simplifies
to,

��

���

��
��� �

��

���

����
����� � 	 � �� ����� � � (2)

Using the above equation together with the fact that
��

���

�� � �, we have

�� �
�

���
��

	��
�

�

�
� 	 � �� ����� (3)

Hence, the fraction of load that should be given by � � to
�� is

���� �
�

���
��

	��
�

�

�

� (4)

Thus the processing time is given by,

� ��� �

��

���

��������� (5)

The following example clarifies the above computations.
The system values in this example are directly taken from
a recently reported study on Solenoidal Tracker At RHIC
(STAR) simulation [2] used in large scale physics experi-
ments. The STAR collaboration is a large international col-
laboration of about 400 high energy and nuclear physicists
located at 40 institutions in the United States, France, Rus-
sia, Germany, Israel, Poland, and so on. After the Relativis-
tic Heavy-Ion Collider at Brookhaven National Laboratory
came on-line in 1999, STAR began data taking and con-
current data analysis that will last about ten years. STAR
needs to perform data acquisition and analyzes over ap-
proximately 250 tera-bytes of raw data, 1 peta-bytes of de-
rived and reconstructed data per year. Details on data ac-
quisition and hardware can be found in the above paper.
Example 1 : Consider a system with 3 sources and 4 sinks,
with parameters �� � ���� � ����, �� � ���� � �����,

�� � ����������, �� � 	��
������, and ��� � �����
����sec/load. We let the 3 sources have loads 
� � �,

� � �, and 
� � 	 unit loads, respectively. Using (4), we
have the following values for ���� and the processing time
is � ��� � ��	� ��	secs.

�� �� ��
�

����
�� ���� ���� ��	
 1.24
�� ��� ���� ���� 2.19
�� ��	
 ���� ���� 2.74
�� ��� ��
� ���� 3.83


� ���� ���� 	��� 10.00

4 Scheduling Under Resource Constraints:
Buffer Capacity Constraints

In our analysis so far, we assume that the buffer capacity
of the sinks are infinite, i.e., a sink can hold any amount
of load rendered by the sources. However, in reality,
each sink always has a limit to the amount of buffer
space that can be used. Further, in a multi-processor
environment, sinks may be running multiple tasks such
that it is required to share the available resources, hence
there may be only a limited amount of buffer space that is
allocated for processing particular loads. As a result, we
are naturally confronted with the problem of scheduling
divisible loads under buffer capacity constraints. In this
section, we revisit the problem of scheduling � loads
among � sinks, with buffer capacity constraints. We tune
the IBS algorithm [4] proposed in the literature to solve
the buffer space constraint problem. The IBS algorithm
produces a minimum time solution given prespecified
buffer constraints. The iterative IBS algorithm exhibits
finite convergence and is discussed in [4]. We shall first
introduce an index of notations that are used.




��
� The remaining loads in �� on the �-th iteration



�� The sum of remaining loads on the �-th it-
eration, where 

�� � 
. Hence 

�� �


�� �

����
	�� �


	�

	�

� 
�� Fraction of the load 

�� that should be taken
into consideration on the �-th installment.
Where � 
�� � �.

�

��
��� The amount of load given from � � to �� in the

�-th iteration.

�

��
� The fraction of load from 

�� that �� should

take in the �-th iteration
�� The total amount of buffer space in ��

�

��
� The available buffer space in �� in the �-th

iteration
�� Set of all the sinks in the system

�

��
�� Set of sinks with no available buffer space in

the �-th iteration

�

��
��� Set of sinks with available buffer space in the

�-th iteration
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� � �
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Table 1. Pseudocode for the modified IBS algorithm

The algorithm we propose is basically a recursive al-
gorithm that attempts to fill up one or more sinks’ buffer
space at every iteration by following the load distribution
suggested in Section 3. When a sink’s buffer is completely
filled up, it will no longer be considered for scheduling in
the next iteration. On the other hand, in any iteration, if the
remaining load is not enough to completely consume any
buffer, then the suggested distribution by (4) will be used.
The algorithm is presented in its pseudocode in Table 1.

It may be noted that, although the algorithm will
suggest a load portion to be given to all sinks at every
iteration, the distribution strategy remains the same as
presented in Section 2, where ���� is the sum of all
suggested loads given by �� to �� in all iterations. The
following example illustrates the working of the algorithm.

Example 2: In this example, we consider the system and
loads in Example 1 with sinks having buffer capacities as
follows: �� � �, �� � �, �� � �, and �� � �, respec-
tively. Using the algorithm, we have the following values
for �
�����

� � � �� �� ��
�

�

��
��� �


��
�

�� ��	� ���	 ��� 0.64 5.36
�� ���
 ���	 ��	� 1.14 3.86
�� ��
� ��� ���	 1.43 0.57
�� ���� ���� ���� 2.00 0.00

� � � �� �� ��
�

�

��
��� �


��
�

�� ���	 ���� ���� 0.26 5.10
�� ���	 ��� ���� 0.46 3.40
�� ��� ���� ���
 0.57 0.00
�� ���� ���� ���� 0.00 0.00

� � 	 �� �� ��
�

�

��
��� �


��
�

�� ���	 ���� ��	� 1.26 3.84
�� ���� ���� ���
 2.24 1.16
�� ���� ���� ���� 0.00 0.00
�� ���� ���� ���� 0.00 0.00

From, the above results, we observe that the buffer of � �

and �� are fully consumed at the first and second iteration,
respectively. At the final iteration, the remaining load is
insufficient to completely fill up either the buffer of �� or
��, hence the distribution suggested by (4) is used. The
values for ���� are

�� �� ��
�

����
�� ���� ���	 ���� 2.16
�� ��� ��

 ���� 3.84
�� ���� ���� ���� 2.00
�� ���� ���� ���� 2.00


� ���� ���� 	��� 10.00

Using the above values, the processing time is ���� � ���

seconds. As expected, the processing time is longer than
that of Example 1. Also, note that the algorithm ensures
that buffers of the faster sinks are fully consumed before
the slower ones. This is to guarantee efficiency of the dis-
tribution under such capacity constraints. Further, at the
final installment, when the remaining load is insufficient to
completely fill up the available buffers, the load distribution
suggested by (4) is used. As a result, the sinks with avail-
able buffers, will stop processing at the same time, hence
ensuring an optimal solution.

5 Conclusions

The problem of scheduling computationally intensive loads
on Grid platforms is addressed in this paper. We used the
divisible load paradigm approach to derive closed-form so-
lutions for processing time and also addressed the problem
under resource (buffer) constraints. We first considered the
case where the buffers of the sinks are assumed to be infi-
nite. In designing our strategy, the optimality principle was
utilized to ensure an optimum solution. We later relaxed
the assumption and considered the case where the buffer
capacities at the sinks are limited. A modified IBS algo-
rithm was proposed to solve the problem. The theoretical
findings are demonstrated via examples using a practical
Grid system [2].



Our study has demonstrated the relevance of the DLT
approach to handle actual problems on Grid architectures.
Again, this paper is an initial study on the multiple source
problem in grid scheduling using divisible load theory.
Much more can be done, such as an attempt to implement
the strategies in this paper and to extend these results to
more general Grid topologies.
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