
Equal Allocation Scheduling for
Data Intensive Applications

KWANGIL KO

THOMAS G. ROBERTAZZI, Senior Member, IEEE
Stony Brook University

A new analytical model for equal allocation of divisible

computation and communication load is developed. Equal

allocation of load is attractive in multiple processor systems

when real time information on processor and link capacity that

is necessary for optimal scheduling is not available. The model

includes a detailed accounting of solution reporting time. Equal

allocation scheduling is compared with sequential scheduling

and a new type of multi-installment scheduling. Aerospace

applications include the processing of satellite imagery, radar, and

sensor networks.

Manuscript received September 16, 2003; revised September 16,
2004; released for publication February 26, 2004.

IEEE Log No. T-AES/40/2/831392.

Refereeing of this contribution was handled by M. G. Simoes.

This work was supported by the National Science Foundation
through Grant CCR-99-12331.

Auhors’ address: Dept. of Electrical and Computer Engineering,
Stony Brook University, Stony Brook, NY 11794, E-mail:
(tom@ece.sunysb.edu).

0018-9251/04/$17.00 c 2004 IEEE

I. INTRODUCTION

The combination of the cost decrease and
performance improvement in both computers and
data storage devices has led to new data intensive
applications in the aerospace field. Examples include
processing satellite imagery, radar, and sensor
networks. It is becoming more common to conceive
and implement systems processing on the order of a
petabyte (i.e., 1015 bytes) of data a year. A useful tool
for modeling and evaluating the performance of such
data parallel applications is divisible load scheduling
theory.

In a divisible load scheduling model, load is
assumed to be completely partitionable (divisible) in
terms of both computation and communication. Model
parameters include processor and link speed(s), and
computation and communication intensity. A specific
model is also characterized by the parallel processor
interconnection topology, scheduling policy, and load
distribution assumptions. Divisible load scheduling
analysis makes use of linear and continuous variable
mathematics to produce a tractable model. Typically
one seeks to solve a particular model for the optimal
allocation of load, optimal speedup, and optimal
solution time. The study of divisible load models
began in 1988 with papers by Cheng and Robertazzi
[11] and Agrawal and Jagadish [2]. There are now
tutorials [17], surveys [5], and a monograph [6] on
this subject.

An alternative to optimal scheduling for divisible
loads, equal allocation of load to processors, is
considered here. That is, we consider a policy where
each of N processors receives 1=N of the load.
There are two practical reasons for considering
such a policy. One reason is that optimal policies
require real time knowledge of available processor
and link capacities. If a system is not instrumented
to provide such information, which is not a trivial
undertaking, then equal allocation scheduling may
be a reasonable policy. This is particularly true of
clusters of homogeneous (i.e., identical) computers,
an environment that often arises in practice. A
second reason to study equal allocation scheduling
is to determine how much finish time or speedup is
degraded compared with optimal scheduling policies.

A typical aerospace application of equal allocation
scheduling is processing a stream of still images from
a satellite. A cluster of computers on the ground may
be used to scan each of many images for significant
features. Naturally, to the granularity level of a single
image, the load is divisible and may be assigned
either in equal division style or optimally among the
computers. Optimal allocation of load is advantageous
when the cluster is heterogeneous; there is significant
communication delay in transporting the load to
processors and/or asymmetry in the load distribution,
when a finite batch of jobs is processed and when,

IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 40, NO. 2 APRIL 2004 695

most importantly, available processor/link effort
information is accessible in real time. Equal allocation
scheduling is advantageous when these conditions are
reversed, particularly when the cluster is homogeneous
and real time information on available processor/link
effort is not accessible.
The target architecture models developed here

are for a heterogeneous L-level K-ary tree topology.
Using a tree topology is quite generic as any arbitrary
interconnection topology can be spanned by a tree.
Thus spanning distribution trees can be used to
distribute or receive load in meshes, hypercubes,
torii, and other popular interconnection topologies
(this is not to say that detailed studies of specific
architectures are not of interest [9, 12]). Also if L= 1
and all link speeds are equal, the tree reduces to
a bus architecture. While the processors and links
considered here are heterogeneous, a symmetrical
tree is considered as a baseline. The results can
be extended to nonsymmetrical trees of particular
interest, though.
The paper presents the first published closed-form

results for speedup for a multilevel tree network
under equal allocation scheduling. This is compared
with optimal single installment and a novel multiple
installment scheduling. We find improvements in
speedup under optimal scheduling versus equal
allocation scheduling of as large as 70%.
In terms of related work, divisible load models

involving single installment load distribution for
trees were first considered in 1988 by Agrawal and
Jagadish using a linear programming approach [2]
and in 1990 by Cheng and Robertazzi [10] using an
algebraic approach. Agrawal and Jagadish presented
numerical (though not analytical) results for equal
allocation scheduling, which they referred to as
“naive” scheduling. Load distribution sequencing in
trees is discussed by Kim, Jee, and Lee in [14] and by
Bharadwaj, Ghose, and Mani in [8]. Load distribution
in trees is also studied by Barlas in [4]. Note that
Cheng and Robertazzi considered equal allocation
scheduling for linear daisy chains in [11]. The use
of multiple installments of load distribution in tree
networks was first examined by Ghose, Mani, and
Bharadwaj in 1995 [7] and by Casanova and Yang
[19] in 2003. Asymptotic results for large trees using
the single installment policy by Ghose and Mani
appeared in 1994 [13] and were also published by
Bataineh and Robertazzi in 1997 [3]. Asymptotic
multi-installment results appear in [7]. Finally, the
concept of an equivalent processor, used here was
introduced in Robertazzi [16]. A proof that optimal
load allocation can be found by forcing all processors
to stop computing at the same instant is presented
in [18]. The superiority of processors returning
solutions in the same order that work is received was
demonstrated in 1988 by Agrawal and Jagadish [2]
and, using a different method, by Adler, Gong, and
Rosenberg in 2003 [1].

Fig. 1. 3-level 3-ary tree network.

This paper is organized as follows. The system
model is presented in Section II. Equal allocation
scheduling, sequential optimal scheduling, and
multi-installment scheduling are modeled in Sections
III, IV, and V, respectively. Numerical results appear
in Section VI. The conclusion is in Section VII.

II. SYSTEM MODEL OF L-LEVEL K-ARY TREE
NETWORK

A heterogeneous L-level K-ary tree network of
communicating processors is considered. For an
example, a 3-level, 3-ary tree network is shown in
Fig. 1. It is a 3-level tree as the first (root) level is
level 0. Each processor is labeled in terms of indexes
from left to right and level to level. Here pi,j is the
ith processor at the jth level. Processor 0 at level
0 is assumed to be the originating (root) processor
which sequentially distributes the fractions of the
entire load to K processors. All processors in the
Lth level are terminal nodes and other processors
each have K children processors. Nodes which have
children processors distribute load sequentially to their
children.

It is assumed that communication speeds are high
enough relative to computation speeds that eliminating
subtrees does not result in a speedup improvement [6].

There exists Kj processors at the jth level for
j = 0,1,2, : : : ,L. Thus, the model of an L-level
K-ary tree network consists of L

j=0K
j processors.

Without loss of generality, it is assumed that the
load is instantaneously available at processor 0
at time 0. Each processor is interfaced with the
network via a front-end communication processor for
communication off-loading. That is, the processors
can communicate and compute at the same time.

It is important for pi,j to know the index of its
parent processor since pi,j receives load fractions from
its parent processor. Naturally, the parent processor
of pi,j is located at the (j 1)th level just above
the jth level. The integer part of i=K indicates the
order (index) of parent processor as all processors
at the (j 1)th level have K children processors.
Thus, the parent processor of any processor, pi,j for
j = 1,2, : : : ,L and i= 0,1, : : : ,Kj 1 is pint(i=K),j 1. Let

696 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 40, NO. 2 APRIL 2004

PP(pi,j) be the parent processor of pi,j

PP(pi,j) = pint(i=K),j 1: (1)

Here, int() is the rounding down to the nearest
integer. Further the grandparent processor of pi,j for
any j = 1,2, : : : ,L and i = 0,1, : : : ,Kj 1 is PP[PP(pi,j)]

PP[PP(pi,j)] = PP(pint(i=K),j 1)

= Pint(int(i=K)=K),j 2

= Pint(i=K2),j 2: (2)

Generally, the ancestor processor of pi,j at the lth level
(l < j) is (j l) levels above the jth level. In a manner
similar to (2), the ancestor processor of pi,j at the lth
level defined as AlP(Pi,j) is expressed as follows:

AlP(Pi,j) = pint(i=Kj l),l: (3)

This expression allows one to identify the ancestor
processors of any processor pi,j , and perceive which
processor distributes load fractions to it.
Alternately, a processor pi,j for any j = 0,1,

: : : ,L 1 and i= 0,1, : : : ,Kj 1 has K children
processors labeled piK+m,j+1 for m= 0,1, : : : ,K 1.
The following notation are used throughout this

work.

pi,j : The ith processor at the jth level.
®i,j : The fraction of the entire processing load

that is assigned to the ith processor at the jth level.
wi,j : A constant inversely proportional to the

computation speed of the ith processor at the jth level
(see Fig 1).
zi,j : A constant inversely proportional to the

channel speed of the ith link at the jth level.
Tcp: Computing intensity constant. The entire load

is processed in wi,jTcp seconds by the ith processor at
the jth level.
Tcm: Communication intensity constant. The

entire load can be transmitted in zi,jTcm seconds over
the ith link at the jth level.
Tsolcm : Solution reporting communication intensity

constant. The entire solution report can be transmitted
in zi,jT

sol
cm seconds over the ith link at the jth level.

Note that Tcp and Tcm are properties of the load.
As computation and communication intensities,
respectively, they affect the relative duration of
computing and communication in the scheduling
process.

III. EQUAL ALLOCATION SCHEDULING

A multilevel tree is considered where load is
distributed from the root to the children in a store
and forward mode of operation and “solutions” are
transmitted back to the root.

Each processor transmits load fractions to its
children processors in sequence. That is, each
processor transmits all the load that its left child
(and its children) will require, then it does the same
for the next (to the right) child and so on. Each
processor, that is not a terminal node, repeats this load
distribution policy. Thus, although load originates at
the root, as load distribution proceeds, multiple nodes
in the tree will be concurrently distributing load. In
equal division load scheduling, each processor keeps
the same fraction of the total load for processing. An
L-level K-ary tree network has L

j=0K
j processors.

Let " be the fraction assigned to any processor.
Consequently the fraction of normalized load for each
processor is obtained from the inverse of the total
number of processors

"=
1
L
j=0K

j
: (4)

The root processor at level 0 keeps ", a fraction
of the total processing load, for itself to compute
and divides and distributes the remaining load to its
children processors at the next level. The processors
at this level perform the same operation with the
load they receive. This process continues until the
processors located at the terminal nodes of the tree
are assigned their share of the processing load.

Our goal is to find expressions for the solution
(finish) time and speedup for the system described
under equal division scheduling. Towards this end,
the following subsection shows how to calculate
a communication delay for each processor. Each
processor starts to process its load fraction as soon
as it receives its load share and its descendants’ load
shares completely.

A. Communication Delay for Processor pi,j to Receive
its Load Fraction from Root Processor

Communication delay is divided into three parts;
one is the time delay incurred by the parent processor,
the second is the time delay incurred by the previous
brother processors at the same level (which are
children of the parent node), and the third is the time
taken for pi,j to receive its load fraction and load
fractions for descendant processors. The time at which
the processor pi,j finishes receiving its load fraction is
defined as Cd(pi,j). Assume that the parent processor
distributes load fractions to its children processor
starting from the left to the right

Cd(pi,j) = tr(pi,j) + ti(pi,j) + tp(pi,j): (5)

Here, in a different order, tr(pi,j), ti(pi,j), and tp(pi,j)
are the times taken to receive load fractions over
the link to pi,j , the time delay incurred by the prior
brothers processors, and the time delay incurred by
the parent processor of pi,j , respectively.

KO & ROBERTAZZI: EQUAL ALLOCATION SCHEDULING FOR DATA INTENSIVE APPLICATIONS 697

Fig. 2 illustrates equal division scheduling. In the
diagram communication time appears above each
horizontal time axis and computation time appears
below each horizontal time axis. In Fig. 2, the third
row is for pi,j . Referring to the figure for pi,j , prior to
the start of computation for this processor it receives
load from its parent, immediately after the start of
its computation it distributes load to its descendants.
The first receiving brother processor is located on
the second axis. Note that from the figure, solutions
are reported back up the tree to the root in the same
order that load is distributed in. This assumption is
also made for the two optimal techniques appearing
later in the paper.
The difference between the instant that the first

brother receiving processor begins to receive and the
instant that pi,j begins to receive is ti(pi,j).
When pi,j finishes receiving load fractions, that

time instant indicates the communication delay
Cd(pi,j) for pi,j . This is the same as tp(piK+m,j+1), the
time delay incurred by the processor (pi,j) which is
the parent of its children processors (piK+m,j+1) for
m = 0,1, : : : ,K 1.
The root processor can process its load fraction

while distributing the remaining load to its children
processors. Thus there is no communication delay
time for the root processor.
Next we develop expressions for the three

components of Cd(pi,j).
1) Receiving Time Delay, tr(pi,j): Each processor

at the same level has the same number of children
and grandchildren processors. Processors at any level
except the Lth level have K children processors, K2

grandchildren processors, and so on. This is summed
to the Lth level. The number of descendent processors
for pi,j is defined as ND(pi,j)

ND(pi,j) =
L

m =j+1

Km j (6)

=
L j

m=1

Km (7)

=
K KL j+1

1 K
: (8)

The processor pi,j receives [1+ND(pi,j)] fractions
for itself and for its descendent processors from its
parent processor and then sends ND(pi,j) fractions
to its descendent processors. Because pi,j receives
[1+ND(pi,j)] fractions from its parent processor,
tr(pi,j) is expressed as follows:

tr(pi,j) = "[1+ND(pi,j)]zi,jTcm (9)

= " 1+
L j

m=1

Km zi,jTcm (10)

Fig. 2. Timing diagram of equal division scheduling.

= "
L j

m=0

Km zi,jTcm (11)

=
1 KL j+1

1 K
"zi,jTcm: (12)

Here, " is the size of a fraction. The receiving time
delay from the parent processor of pi,j depends on the
level i, and only zi,j , the inverse link speed connected
to pi,j .

2) Time Delay of the Prior Brothers Processors
Located at the Same Level, ti: Now, if pi,j does not
receive first on its level from its parent processor,
pi,j should wait while its prior receiving brother
processors at the same level receive load fractions
from their parent processor. The remainder after
dividing i by K decides the receiving order (position)
of pi,j . The processor pi,j is the first receiving order
processor at the jth level when mod(i=K) is zero.
Here mod(i=K) is the remainder after dividing i by
K. Thus, the time delay due to the prior receiving
processors can be expressed as follows:

ti(pi,j) =
mod(i=K) 1

n=0

tr(pinx(n,i),j): (13)

Here inx(n, i) is used to find the nth receiving
processor’s index of brother processors of pi,j . The
indexes of processors at the jth level are sequentially
written starting from the first receiving child processor
of p0,j 1. From (1), the index of PP(pi,j), is int(i=K).
Thus, the index of the children processors of PP(pi,j)
starts from int(i=K) K. Furthermore, the nth receiving
processor index among brother processors of pi,j
is obtained adding n and int(i=K) K . For n =
0,1, : : : ,mod(i=K) 1,

inx(n, i) = n+ int(i=K) K: (14)

Applying (12) to (13), the time delay by the prior
brother processors is obtained as follows:

ti(pi,j) = "
mod(i=K) 1

n=0

L j

m=0

Km zinx(n,i),jTcm (15)

698 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 40, NO. 2 APRIL 2004

= "
L j

m=0

Km
mod(i=K) 1

n=0

zinx(n,i),jTcm (16)

= "
1 KL j+1

1 K

mod(i=K) 1

n=0

zinx(n,i),jTcm :

(17)
The processors at the same level have the same
number of load fractions as in (8) since they have the
same number of descendant processors. The bracket
in the above equation is the sum of the load
distribution delays to the prior brother processors
over their links.
3) Time delay by the Parent Processor of pi,j , tp:

Each child processor has a time delay caused by
waiting for its parent processor. This time delay
tp(pi,j) equals the total communication delay of the
parent processor of pi,j

tp(pi,j) = Cd(A
j 1
P (pi,j)): (18)

Here, Aj 1
P (pi,j) is the parent processor of pi,j . Using

(5) and (18), the following recursive equations can be
obtained

tp(pi,j) = Cd(A
j 1
P (pi,j)) (19a)

Cd(A
j 1
P (pi,j)) = tp(A

j 1
P (pi,j)) + ti(A

j 1
P (pi,j))

+ tr(A
j 1
P (pi,j)) (19b)

tp(A
j 1
P (pi,j)) = Cd(A

j 2
P (pi,j)) (19c)

Cd(A
j 2
P (pi,j)) = tp(A

j 2
P (pi,j)) + ti(A

j 2
P (pi,j))

+ tr(A
j 2
P (pi,j)) (19d)

...

tp(A
2
P(pi,j)) = Cd(A

1
P(pi,j)) (19e)

Cd(A
1
P(pi,j)) = tp(A

1
P(pi,j)) + ti(A

1
P(pi,j))

+ tr(A
1
P(pi,j)) (19f)

tp(A
1
P(pi,j)) = Cd(A

0
P(pi,j)): (19g)

Summing both sides of the above recursive equations,
tp(pi,j) can be rewritten as follows:

tp(pi,j) = Cd(A
0
P(pi,j))+

j 1

l=1

tr(A
l
P(pi,j)) +

j 1

l=1

ti(A
l
P(pi,j))

(20)

=
j 1

l=1

tr(A
l
P(pi,j)) +

j 1

l=1

ti(A
l
P(pi,j)): (21)

Note that the root processor has no communication
delay. Thus Cd(A

0
P(pi,j)) is zero.

Substituting (21) into (5), communication delay for
pi,j , Cd(pi,j), is expressed as follows:

Cd(pi,j) = tr(pi,j) + ti(pi,j) (22)

+
j 1

l=1

tr(A
l
P(pi,j))+

j 1

l=1

ti(A
l
P(pi,j)): (23)

Note that AjP(pi,j) = pi,j .

Cd(pi,j) =
j

l=1

[tr(A
l
P(pi,j)) + ti(A

l
P(pi,j))]: (24)

Equation (3) is applied to (12),

tr(A
l
P(pi,j)) = tr(pint(i=Kj l),l)

= "
1 KL l+1

1 K
zint(i=Kj l),lTcm (25)

and (3) is applied to (17):

ti(A
l
P(pi,j)) = ti(pint(i=Kj l),l)

= "
1 KL l+1

1 K

mod[int(i=Kj l)=K] 1

n=0

zinx[n,int(i=Kj l)],lTcm:

(26)

In the above equation, if n=mod[int(i=Kj l)=K], then
inx[n, int(i=Kj l)] = int(i=Kj l). From (14):

inx mod
int

i

Kj l

K
, int

i

Kj l

=mod
int

i

Kj l

K
+ int

int
i

Kj l

K
K

(27)

= int
i

Kj l
: (28)

Thus, the summation of tr(A
l
P(pi,j)) and ti(A

l
P(pi,j)) is

mentioned

tr(A
l
P(pi,j)) + ti(A

l
P(pi,j))

= "
1 KL l+1

1 K

mod[int(i=Kj l)=K]

n=0

zinx[n,int(i=Kj l)],lTcm:

(29)
Now (29) is substituted into (24)

Cd(pi,j) =
j

l=1

"
1 KL l+1

1 K

mod[int(i=Kj l)=K]

n=0

zinx[n,int(i=Kj l)],lTcm :

(30)

KO & ROBERTAZZI: EQUAL ALLOCATION SCHEDULING FOR DATA INTENSIVE APPLICATIONS 699

In the special case of homogeneous link speeds
(zi,j = z)

Cd(pi,j) =

j

l=1

"
1 KL l+1

1 K

mod[int(i=Kj l)=K]

n=0

zTcm (31)

=

j

l=1

"
1 KL l+1

1 K
1+mod

int
i

Kj l

K
zTcm :

(32)

B. Closed Form of Finish Time and Speedup

For equal allocation scheduling, even neglecting
for the moment solution reporting time, since
load is simply equally divided among processors
different processors may finish computing at different
times. This is in contrast to optimal scheduling
(again without considering solution reporting time)
where one constrains all of the processors to cease
computing at the same time instant in order to achieve
an optimal solution. With the inclusion of solution
reporting time optimal schedules are more coordinated
and more tightly “packed,” which partly explains their
lower values of finish (solution) time compared with
equal allocation scheduling.
The last receiving processor is pKL 1,L in the

L-level K-ary tree network. As soon as this node
finishes processing its load fraction, the node reports
its solution. The scheduling process is finished when
the solution of pKL 1,L is delivered to the originating
processor.
First the time delay for pKL 1,L to report solution

is considered. It takes " zKL 1,LT
sol
cm to transmit the

solution of pKL 1,L from this node at level L to
pKL 1 1,L 1, its parent processor at level L 1. The
parent processor of pKL 1,L collects the solutions
of K children processors and transmits (1+K)
solutions including its own solution to the ancestor
processor at level L 1. This procedure keeps until
the originating processor receives all solutions. Let Sd
be the time delay for pKL 1,L to report its solution to
the originating processor

Sd
"Tsolcm

= 1 zKL 1,L+(1+K)zKL 1 1,L 1

+ (1+K +K2)zKL 2 1,L 2

+ + (1+K +K2 + +KL 1)zK 1,1:

The above equation can be condensed as follows:

Sd = "
L 1

m=0

m

n=0

Kn zKL m 1,L mT
sol
cm (33)

= "
L 1

m=0

1 Km+1

1 K
zKL m 1,L mT

sol
cm : (34)

For homogeneous network speeds:

Sd =
"zTsolcm

1 K
L K

1 KL

1 K
(35)

=
"zTsolcm

K 1
KL+1 K

K 1
L : (36)

The finish (solution) time for equal allocation
scheduling is thus obtained as follows:

TEASf (L,K) = Cd(pL,KL)+ "wKL 1,LTcp + Sd: (37)

The first term is the communication delay for pKL 1,L,
the second term is the computation time for pKL 1,L,
and the third term is the reporting time.

Note that the speedup is

SEAS(L,K) =
wTcp

TEASf (L,K)
: (38)

Speedup is the ratio of solution time on one
processor to solution time on N processors. It is thus a
measure of parallel processing advantage.

IV. SEQUENTIAL OPTIMAL SCHEDULING

In sequential optimal scheduling, each processor
that is not a terminal node distributes load to each
child (once) in turn from left to right. The single
transmission of load to a child includes all loads that
child’s descendants will need. Thus the “sequencing”
is similar to equal allocation scheduling except that
the size of load fractions will now be determined
optimally. In sequential optimal scheduling, solution
reporting times are staggered in a subtree of an
L-level K-ary tree network. Children processors finish
reporting their solution while a parent processor is
processing.

In this section, the closed forms of the finish time
and speedup for an L-level K-ary tree network is
considered. The scheduling discussed here includes
solution reporting time, unlike previous work.
It is assumed that the solution reporting order
(of processors) is the same as the order of load
distribution. The procedure to obtain the finish time
for an L-level K-ary tree network can be expanded to
a general tree network.

The technique used here, established in [10], is to
calculate the multilevel tree finish time (and speedup)
by finding an equivalent processor that exactly
represents the multilevel tree operating characteristics.
This is done by finding equivalent processors for each
single level subtree (one subroot with K children)
starting from the bottom of the tree and proceeding
recursively upwards. At level j the processor that
replaces processor i and its descendants has equivalent
inverse processing speed weqi,j . When the recursive
process finishes, one has the equivalent inverse speed

700 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 40, NO. 2 APRIL 2004

of the root processor weq0,0 which is the same as
the overall multilevel tree. Note that [10] does not
consider solution reporting time, as the model in the
work presented here does.
To find weqi,j at the jth level for the ith processor,

Xm is defined as follows:

Xm =
weqiK+m+1,j+1Tcp + ziK+m+1,j+1Tcm
weqiK+m,j+1Tcp + ziK+m,j+1T

sol
cm

: (39)

Then ®i,j , the fraction of load assigned to the ith
processor at the jth level, is obtained as follows:

®i,j =

µi,j
K 1

n=0

K 1

m=n
Xm

ziK+n,j+1Tcm
wi,jTcp

+
weq(i+1)K 1,j+1Tcp

wi,jTcp
+
z(i+1)K 1,j+1T

sol
cm

wi,jTcp

K 1

n=0

K 1

m=n
Xm 1+

ziK+n,j+1Tcm
wi,jTcp

+
w
eq
(i+1)K 1,j+1Tcp

wi,jTcp
+
z(i+1)K 1,j+1T

sol
cm

wi,jTcp

:

(40)

Now (39) is substituted into the above equation.
The equivalent processor speed can be obtained as
follows:

w
eq
i,j = ®i,j wi,j (41)

= wi,jA=B: (42)

Here 0 j K 1.

A=
K 1

n=0

K 1

m=n

weqiK+m+1,j+1Tcp + ziK+m+1,j+1Tcm
weqiK+m,j+1Tcp + ziK+m,j+1T

sol
cm

ziK+n,j+1Tcm
wi,jTcp

+
weq(i+1)K 1,j+1Tcp

wi,jTcp
+
z(i+1)K 1,j+1T

sol
cm

wi,jTcp
(43)

B =
K 1

n=0

K 1

m=n

weqiK+m+1,j+1Tcp + ziK+m+1,j+1Tcm
weqiK+m,j+1Tcp + ziK+m,j+1T

sol
cm

1+
zTcm
wi,jTcp

+
weq(i+1)K 1,j+1Tcp

wi,jTcp
+
zTsolcm

wi,jTcp
: (44)

In the above equation, weqi,j is expressed using
its original processor speed, wi,j and the equivalent
children processor speeds, weqiK+m,j+1 for m =
0,1, : : : ,K 1. Then the finish time is

TSOSf (L,K) = weq0,0Tcp: (45)

Also, the speedup is

SSOS(L,K) =
w

w
eq
0,0

: (46)

A complete derivation of this result appears in
[15].

V. MULTI-INSTALLMENT OPTIMAL SCHEDULING

In the equal allocation and sequential distribution
of the previous sections, a child processor receives
load fractions at the same time for itself and for
processors at the next level. This causes the processors
at each level to have long idle time. In this section,
a processor at the jth level doesn’t distribute all
load at once to each descendent processors but
instead distributes load in turns (installments) to
its descendent processors. The first version of
multi-installment optimal scheduling was developed
originally by Bharadwaj, Ghose, and Mani [6, 7] as
a way to reduce solution time by modifying the load
distribution policy. In Bharadwaj, et al., partial load
is delivered in several installments (rounds) to each
processor to minimize idle time.

A somewhat different approach is taken here for
the first time, distributing load in complete integral
units to each individual processor but in “installments”
to the processors in the tree as a whole. That is,
each node including the root distributes load to each
of (only) K processors in turn during each set of
installments. During each succeeding installment
load is distributed in integral units for another K
processors. The process repeats until all of the tree’s
processors have received load. The amount of load to
allocate to each processor is determined optimally in
the context of this scheduling policy.

This scheduling strategy is best illustrated by
way of example. Referring to Fig. 1 let, again, i be
the children number and j be the level number for
processor pi,j . In a 3-level 3-ary tree network, for
instance, the root processor p0,0 distributes fractions
to children processor in the sequence of p0,1, p1,1,
p2,1. As soon as each processor at the first level
receives its load fraction, it begins to process. Again
p0,0 distributes load fractions to p0,1, p1,1, and p2,1
in sequence. As p0,1, p1,1, and p2,1 already received
their load fractions, these processors can redistribute
load to their children processors. That is as soon as
they receive fractions, p0,1, p1,1, and p2,1 distribute
load fractions to p0,2, p3,2 , and p6,2, respectively.
After that, additional load fractions are distributed
to p0,1, p1,1, and p2,1. As p0,2, p3,2 , and p6,2 already
received their load fractions, this time, p0,1, p1,1, and
p2,1 distribute load fractions to p1,2, p4,2, and p7,2,
respectively.

The receiving order at the second level is p0,2,
p3,2, p6,2, then p1,2, p4,2, p7,2, then p2,2, p5,2, and p8,2.
After each processor at the second level receives its
load fraction, it begins to distribute the load fractions
received from its parent processor. This procedure
continues until the terminal processors receive their
fraction.

As in the previous optimal strategy, solution
reporting order is the same as the order in which load
is distributed.

KO & ROBERTAZZI: EQUAL ALLOCATION SCHEDULING FOR DATA INTENSIVE APPLICATIONS 701

Fig. 3. L-level K-ary tree network.

This strategy shuffles the index i in pi,j . In Fig. 3,
the number beside the link indicates the distribution
sequence at the same level. Now, the actual sequence
of load distribution at the jth level of our type of
multi-installment scheduling as described above can
be calculated with a “processor identification number,”
the index i in pi,j

pi,j = pK mod(i=K)+int(i=K),j (47)

or
pm,j = pK mod(m=K)+int(m=K),j : (48)

Thus pi,j is the (K mod(i=K)+ int (i=K))th receiving
processor at the jth level. Let pm,j be the mth
receiving processor at the jth level. Furthermore,
®m,j , wm,j , and zm,j are relative to pm,j . The prime
variable is written in terms of the actual sequence of
load distribution to account for the load distribution
shuffling of processor identification.
The goal in the following is to find expressions

for the finish time and speedup of this optimal
multi-installment load distribution policy for the
described multilevel tree network. To accomplish
this, one sets up linear timing equations, as is usually
done in the literature [6], for this scheduling policy.
To achieve a solution with optimal finish time all of
the processors should stop computing at the same
instant (intuitively otherwise load could be transferred
between processors to improve the solution [6, 18]).
One uses this fact to algebraically solve for the
optimal fraction of load to assign to each processor.
Note that only the final result is presented here, a
complete derivation appears in [15].
Let:

Xm,j =
®m,j
®m+1,j

=
wm+1,jTcp + zm+1,jTcm
wm,jTcp + zm,jT

sol
cm

: (49)

Then ®n,j for 0 n Kj 1 can be rewritten in
terms of ®0,j as

®n,j =
n 1

m=0

X 1
m,j®0,j : (50)

Also, let

Yj =
®0,j
®0,j+1

(51)

= z0,jTcm +
Kj+1 1

n=0

n 1

m=0

X 1
m,j+1 zn,j+1Tcm +

Kj+1 2

m=0

X 1
m,j+1

(w
Kj+1 1,j+1Tcp + zKj+1 1,j+1T

sol
cm + zKj 1,jT

sol
cm)

w0,jTcp

Kj 1

n=1

n 1

m=0

X 1
m,j zn,jTcm : (52)

Now the processing time of the root processor, and
hence system finish time, can be found as follows.

Let

Y0 =

K 1

n=0

n 1

m=0
X 1
m,1 z

n,1Tcm

+
K 2

m=0
X 1
m,1 (w

K 1,1Tcp+zK 1,1T
sol
cm)

w0,0Tcp
:

(53)

From the above equations, ®0,l for l = 1,2, : : : ,L 1
can be expressed in terms of ®0,0

®0,l =
l 1

j=0

Y 1
j ®0,0: (54)

Furthermore ®n,l, the optimal load fraction for the nth
processor at the lth level, can be expressed in terms of
®0,l by substituting (54) into (50)

®n,l =
n 1

m=0

X 1
m,l

l 1

j=0

Y 1
j ®0,0: (55)

The normalization equation is

®0,0 +
L

l=1

Kl 1

n=0

®n,l = 1: (56)

Equation (55) is substituted into the above equation.
Then ®0 can be obtained as follows:

®0,0 = 1+
L

l=1

Kl 1

n=0

n 1

m=0

X 1
m,l

l 1

j=0

Y 1
j

1

:

(57)

702 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 40, NO. 2 APRIL 2004

Fig. 4. Speedup versus K and L. L= 3, wi = 1, zi = 0:05, Tcp = 1,

Tcm = 1, T
sol
cm = 0:2.

TABLE I
Speedup Improvement in Percentage. Equal Allocation Scheduling

Versus Sequential Optimal Scheduling

K = 1 K = 2 K = 3 K = 4

L= 1 3.0000 4.8657 6.6068 8.2321
L= 2 7.7911 13.2612 18.8595 23.6171
L= 3 14.0182 22.4653 29.0953 31.5415
L= 4 21.3361 29.3861 32.7270 26.7681

Note: wi = 1, zi = 0:05, Tcp = 1, Tcm = 1, T
sol
cm = 0:2.

Since the root processor processes load during the
entire scheduling process, the finish (solution) time
is

TMOSf (L,K) = ®0,0wTcp (58)

=
wTcp

1+ L

l=1
Kl 1
n=0

n 1
m=0X

1
m,l

l 1
j=0Y

1
j

:

(59)
Also the speedup is

SMOS =
1
®0,0

: (60)

VI. NUMERICAL RESULTS

As mentioned, speedup, for a computational
problem, is the ratio of solution time on one processor
to solution time on N processors. It is thus a measure
of parallel processing advantage.
Representative values of speedup versus the K and

L for equal allocation scheduling, sequential optimal
scheduling and multi-installment optimal scheduling
appears in Fig. 4. Note that if, for instance, L= 1 and
K = 3, there is one root and three children.
Sequential scheduling and the multi-installment

scheduling are compared with equal allocation
scheduling in Tables I and II. The speedup
improvement in the tables is obtained as follows. Let
the speedup improvement measures be

IS Table I =
SSOS(L,K) SEAS(L,K)

SEAS(L,K)
100 [%]

(61)

TABLE II
Speedup Improvement in Percentage. Equal Allocation Scheduling

Versus Multi-Installment Optimal Scheduling

K = 1 K = 2 K = 3 K = 4

L= 1 3.0000 4.8657 6.6068 8.2321
L= 2 9.5714 18.6093 26.8686 32.4850
L= 3 20.2847 43.5657 49.8413 36.7902
L= 4 34.6968 70.2669 42.7284 20.8299

Note: wi = 1, zi = 0:05, Tcp = 1, Tcm = 1, T
sol
cm = 0:2.

IS Table II =
SMOS(L,K) SEAS(L,K)

SEAS(L,K)
100 [%]:

(62)

Here, SEDS(L,K), SSOS(L,K), and SMOS(L,K) are
the speedups for equal allocation scheduling,
sequential scheduling, and multi-installment
scheduling, respectively. The speedups are defined
as follows

SEAS(L,K) =
wTcp

TEASf (L,K)
(63)

SSOS(L,K) =
wTcp

TSOSf (L,K)
(64)

SMOS(L,K) =
wTcp

TMOSf (L,K)
: (65)

Five or six digits accuracy is shown in the tables,
not because real scheduling is that precise, but to aid
in result replication.

Comparing the multi-installment scheduling
with the sequential scheduling, the multi-installment
strategy has the higher speedup. It is expected that
speedup for all three strategies will saturate for large
K or L. All three strategies are ultimately limited by
communication delays across levels of the tree and by
the assumed sequential distribution to each child in
each subtree.

In the tables it can be seen that speedup
improvements of optimal scheduling over equal
allocation scheduling of from 3% to 70% were found
for the tree topology. As L and K are increased
the speedup improvement first increases then may
decrease for certain parameter combinations.

It is interesting to ask over what range of
parameter values is the speedup improvement most
pronounced. For a homogeneous network, if a job
is computation intensive one would expect 1=N
equal allocation scheduling to be optimal. If a job
is communication intensive, the use of a single
processor may well be optimal. It is that range
where computation intensity is on the order of
communication intensity that one can expect optimal
scheduling to be most efficacious.

KO & ROBERTAZZI: EQUAL ALLOCATION SCHEDULING FOR DATA INTENSIVE APPLICATIONS 703

VII. CONCLUSION

This is the first published analysis of equal
allocation scheduling for multilevel tree networks.
Equal allocation scheduling is a pragmatic choice
for situations where processor and link effort are
not known in real time and where networks are
homogeneous. Results here, which agree with the
experience of the senior author, is that the degradation
in performance compared with optimal scheduling
is often less than a factor of two, which would be
adequate and cost effective for certain situations.
We believe that the relative performance ordering
noted here of the three scheduling policies will
carry over to other topologies though the numerical
amount of improvement will, of course, differ. Useful
future work would include determining performance
degradation bounds, both across possible parameter
values for a particular topology and across different
topologies.

REFERENCES

[1] Adler, M., Gong, Y., and Rosenberg, A. L. (2003)
Optimal sharing of bags of tasks in heterogeneous
clusters.
In Proceedings of SPAA’03, 2003.

[2] Agrawal, R., and Jagadish, H. V. (1988)
Partitioning techniques for large-grained parallelism.
IEEE Transactions on Computers, 37 (1988), 1627–1634.

[3] Bataineh, S., and Robertazzi, T. G. (1997)
Performance limits for processor networks with divisible
jobs.
IEEE Transactions on Aerospace and Electronic Systems,
33 (1997), 1189–1198.

[4] Barlas, G. D. (1998)
Collection-aware optimum sequencing of operations and
closed-from solutions for the distribution of divisible load
on arbitrary processor trees.
IEEE Transactions on Parallel and Distributed Systems, 9
(1998), 929–941.

[5] Bharadwaj, V., Ghose, D., and Robertazzi, T. G. (2003)
Divisible load theory: a new paradigm for load
scheduling in distributed systems.
Cluster Computing, 6 (2003).

[6] Bharadwaj, V., Ghose, D., Mani, V., and Robertazzi, T. G.
(1996)
Scheduling Divisible Loads in Parallel and Distributed
Systems.
Los Alamitos CA: IEEE Computer Society Press, 1996.

[7] Bharadwaj, V., Ghose, D., and Mani, V. (1995)
Multi-installment load distribution in tree networks with
delays.
IEEE Transactions on Aerospace and Electronic Systems,
31 (1995), 555–567.

[8] Bharadwaj, V., Ghose, D., and Mani, V. (1994)
Optimal sequencing and arrangement in distributed
single-level tree networks with communication delays.
IEEE Transactions on Parallel and Distributed Systems, 5
(1994), 968–976.

[9] Blazewicz, J., and Drozdowski, M. (1995)
Scheduling divisible jobs on hypercubes.
Parallel Computing, 21 (1995), 1945–1956.

[10] Cheng, Y-C., and Robertazzi, T. G. (1990)
Distributed computation for a tree network with
communication delays.
IEEE Transactions on Aerospace and Electronic Systems,
26 (1990), 511–516.

[11] Cheng, Y-C., and Robertazzi, T. G. (1988)
Distributed computation with communication delays.
IEEE Transactions on Aerospace and Electronic Systems,
24 (1988), 700–712.

[12] Drozdowksi, M., and Glazek, W. (1999)
Scheduling a divisible load in a three-dimensional mesh
of processors.
Parallel Computing, 25 (1999), 381–404.

[13] Ghose, D., and Mani, V. (1994)
Distributed computation with communication delays:
Asymptotic performance analysis.
Journal of Parallel and Distributed Computing, 23 (1994),
293–305.

[14] Kim, H. J., Jee, G-I., and Lee, J. G. (1996)
Optimal load distribution for tree network processors.
IEEE Transactions on Aerospace and Electronic Systems,
32 (1996), 607–612.

[15] Ko, K., and Robertazzi, T. G. (2003)
Naive versus optimal scheduling for data intensive
applications.
Technical Report 808, Stony Brook University College of
Engineering and Applied Science, 2003.

[16] Robertazzi, T. G. (1993)
Processor equivalence for a linear daisy chain of load
sharing processors.
IEEE Transactions on Aerospace and Electronic Systems,
29 (1993), 1216–1221.

[17] Robertazzi, T. G. (2003)
Ten reasons to use divisible load theory.
Computer, 36 (2003), 63–68.

[18] Sohn, J., and Robertazzi, T. G. (1996)
Optimal load sharing for a divisible job on a bus network.
IEEE Transactions on Aerospace and Electronic Systems,
32 (1996), 34–40.

[19] Yang, Y., and Casanova, H. (2003)
UMR: A multi-round algorithm for scheduling divisible
workloads.
In Proceedings of the International Parallel and Distributed
Processing Symposium, Nice, France, Apr. 2003.

704 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 40, NO. 2 APRIL 2004

Kwangil Ko received the M.S. and Ph.D. degrees in 1996 and 2000 from Stony
Brook University, Stony Brook, NY.
He is currently with Samsung Electronics, Suwon, Korea, where he is working

as a traffic engineer on radio access networks. His research interests include the
performance measurement of networks, scheduling algorithms, flow control, QoS,
and resource management.

Thomas G. Robertazzi (S’75—M’77—SM’91) received the Ph.D. from Princeton
University, Princeton, NJ, in 1981 and the B.E.E. from the Cooper Union, New
York, NY in 1977.
He is presently a professor in the Dept. of Electrical and Computer

Engineering at Stony Brook University, Stony Brook, NY. In supervising a
very active research area, he has published extensively in the areas of parallel
processor and grid scheduling, ad hoc radio networks, telecommunications
network planning, ATM switching, queueing, and Petri networks.
Dr. Robertazzi authored, coauthored, or edited four books in the areas of

performance evaluation, scheduling, and network planning.

KO & ROBERTAZZI: EQUAL ALLOCATION SCHEDULING FOR DATA INTENSIVE APPLICATIONS 705

	footer1:

