
Performance Limits for
Processor Networks with
Divisible Jobs

SAMEER BATAINEH
Jordan University of Science and Technology

THOMAS G. ROBERTAZZI, Senior Member, IEEE
University at Stony Brook

Ultimate performance limits to the aggregate processing speed

of networks of processors that are processing a divisible job are

described. These take the form of either closed-form expressions

or numerical procedures to calculate the equivalent processing

speed of an infinite number of processors. These processors are

interconnected in either a linear daisy chain with load origination

from the network interior or a tree topology. The tree topology is

particularly general as a natural way to perform load distribution

in a processor network topology with cycles (e.g., hypercube,

toroidal network) is to use an embedded spanning tree. Such

limits on performance are important as they provide an ideal

baseline against which to compare the performance of finite

configurations of processors.

Manuscript received November 27, 1995; revised May 23, 1996.

IEEE Log No. T-AES/33/4/06843.

This work is supported by the BMDO/IST under the Office of the
Naval Research under Grant N00014-91-J4063.

Authors’ addresses: S. Bataineh, Dept. of Electrical Engineering,
Jordan University of Science and Technology, Irbid, P.O. Box 3030,
Jordan; T. G. Robertazzi, Dept. of Electrical Engineering, University
at Stony Brook, Stony Brook, NY 11794.

0018-9251/97/$10.00 c° 1997 IEEE

I. INTRODUCTION

The problem of scheduling a number of jobs
among n processors in order to minimize the finish
time has received a great deal of attention [5—12,
28—32]. This previous work involved the paradigm
of indivisible jobs. Under this paradigm a job can
be processed by at most one processor. Jobs that
can be assigned to multiple processors have received
less attention [25—27]. A new paradigm of divisible
jobs was discussed in [1—4, 13, 14, 16—24, 33—35].
Here the authors examined the case where a job
can be partitioned into smaller fractions that can be
processed independently on different processors in a
multiprocessor system. Typical applications involve
the processing of very large data files as in signal
processing, Kalman filtering, image processing and
sensor networks.
Optimal divisible job load allocation has been

examined to date in a number of interconnection
topologies including linear daisy chains, trees,
and buses. In a linear daisy chain there is a
communication link between processor i and i+1
for i= 1,2,3 : : : . Trees are, naturally, connected and
acyclic graphs. The bus architecture is equivalent
to a single level tree (a root node with a number
of children nodes) where all links have the same
transmission speed.
In [1] recursive expressions for calculating the

optimal processor load allocation for linear daisy
chains of processors were presented. These are
based on the simplifying premise that for an optimal
allocation of load, all processors must stop processing
at the same time [20, 21]. Analogous solutions
have been developed for tree networks [2], bus
networks [3, 4], hypercubes [33], and two-dimensional
meshes [34]. The equivalence of first distributing
load either to the left or to the right from a point in
the interior of a linear daisy chain is demonstrated
in [16]. Optimal sequences of load distribution
are described in [18, 19, 23, 24]. Closed-form
solutions for homogeneous bus and tree networks
appear in [22]. Real time systems are considered
in [35]. Asymptotic results appear in [13, 14, 17].
In particular, Mani and Ghose in [17] examine
performance for an infinite number of processors
for linear daisy chains with load origination at
a boundary processor and also single level tree
networks. They do not treat the subject of this work:
load origination at the interior of a linear daisy
chain with an infinite number of processors or
multilevel tree networks with an infinite number of
processors.
For a finite number of processors, the problem of

determining the amount of data that has to be assigned
to each processor to achieve the minimum finish time
was discussed in [1—4]. Here “finish” time is the time
when all of the processors finish their computation
on the fractions of the job they have been allocated.
The result of this past work is to indicate that all

IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 33, NO. 4 OCTOBER 1997 1189

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on November 10, 2008 at 21:20 from IEEE Xplore. Restrictions apply.

Fig. 1. Daisy chain network.

processors must stop computing at the same time
to achieve the minimal finish time. Intuitively this
is because if all the processors did not stop at the
same time then some processors would be idle while
others were busy. Certainly in this case the finish time
could be improved by transferring load from busy
processors to idle processors. Formal proofs of this
appear in [20, 21].
The minimum finish time was found to decrease

as the number of processors increases. However
it was also found that after a certain number of
processors were added to the network the amount
of improvement diminishes. In that case, it may be
advisable not to add more processors (hardware)
to the chain since the cost of doing so may not be
worth the small improvement in performance. In this
work the problem of determining the performance
of an infinite number of processors in certain
cases is considered. This makes it possible to
obtain the ultimate performance limit for a specific
interconnection topology and load distribution
sequence. Given the ultimate processing time, one
can design a system by finding the number of
processors that are needed in order to achieve a
certain percentage of the ultimate processing time.
A simple and well-known method used in infinite

electric circuit theory [15] is used here to determine
the speed of an “equivalent” processor that can be
used to replace an entire infinite network. Suppose,
for example, that the processor at the left end of
the chain, processor 1 in Fig. 1, receives a burst of
measurement data and is to share it with an infinite
number of network processors. The basic idea [14]
is to collapse processors 2,3 : : :1 into a single
equivalent processor of unknown speed. However
one can write an implicit equation to describe the
equivalent processor that would replace the first
processor and the equivalent processor for processors
2,3 : : :1. This equation can be solved as the two
equivalent processors it involves (one for processors
1,2 : : :1 and one for processors 2,3 : : :1) should
have identical speeds as they both involve an infinite
number of processors.
This work presents new results on the processing

of a divisible job on a multiprocessor system.
Specifically the case of load origination at the interior
of a linear daisy chain with an infinite number of
processors and the case of load origination at the root
of symmetric and homogeneous tree networks with
an infinite number of processors is discussed. The
study of load distribution in a tree type topology is
quite general in that a natural way to distribute load
in topologies with cycles (e.g., hypercube, toroidal

network) is through the use of an embedded spanning
tree.
This work is organized as follows. Section II

discusses the linear daisy chain network where load
originates at a processor in the interior of the network.
Systems with and without front-end processors are
analyzed. Section III discusses tree networks with and
without front-end processors. Section IV presents
performance evaluation results. The conclusion
appears in Section V.

II. LINEAR DAISY CHAIN

A. Introduction

Consider a linear daisy chain of processors as in
Fig. 1. It is a network where there is a communication
link from processor i to processor i+1 for i=
1,2,3 : : : . Each processor has the same computational
speed 1=w, and the channel speed between any two
adjacent processors is 1=Z. A burst of data is received
by one of the processors in the chain. This data can
be partitioned and the fragments distributed among
the processors in order to achieve a minimum “finish
time” through parallel processing. The finish time is
the time when all processors are finished processing
the load. The ultimate (minimum) finish time limit
T1 is achieved if there are an infinite number of
processors in the chain.
The following definitions for some variables

and parameters are adopted throughout the two
above-mentioned cases and some of them are used
through the whole paper as well.

w A constant that is inversely proportional to
the computation speed of a processor. The
processor can process the entire load in time
wTcp.

Z A constant that is inversely proportional to
the channel speed between two adjacent
processors. The entire load can be
transmitted over the channel in time ZTcm.

Tcp The time that it takes a processor to process
the entire load when w = 1.

Tcm The time it takes to transmit the entire load
over a link where Z = 1. For simplicity, a
constant bandwidth link is implicitly
assumed.

w1eq The inverse speed of a single equivalent
processor which is capable of replacing an
infinite number of processors in the network
and having the same performance as the
original network.

1190 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 33, NO. 4 OCTOBER 1997

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on November 10, 2008 at 21:20 from IEEE Xplore. Restrictions apply.

Fig. 2. Reduced daisy chain where load originates at network interior.

Fig. 3. Timing diagram for Fig. 2 system with front-end processors.

B. Linear Daisy Chain with Front-End Processors and
Interior Load Origination

In this subsection, each processor in a linear daisy
chain of processors is equipped with a front-end
processor for communications off-loading. That is, the
front-end processor relieves the main processor of
communication duties so that it can concentrate on
computation. Thus, each processor can compute and
communicate at the same time.
Consider a linear daisy chain as in Fig. 1 but with

an infinite number of processors. The load is now
delivered to an interior processor and distributed to
the other processors from this interior processor in
a particular sequence without losing generality. We
note that other sequences [24] could be considered.
This interior processor first determines its fraction
of the processing load ¯c. The interior processor
can immediately start processing this fraction.
Simultaneously, it randomly selects either one of its
immediate neighbors, say the left one, and transmits
that processor’s share of the load ¯l to it in time
¯lZTcm. Then it transmits the share of the immediate
right neighbor processor ¯r in time ¯rZTcm. The left
processor will share its portion of the total processing
load ¯l with an infinite number of processors to its
left. Similarly, the right processor will share its portion
of the total processing load ¯r with an infinite number
of processors to its right. Therefore, the left and
right processors can each be viewed as a boundary
processor in an infinite linear daisy chain network
where the load originates at boundary. Thus the
infinite chain of processors to the right and left of the

central processor can each be replaced with a single
processor with equivalent speed constants w1eql and
w1eqr, respectively. Naturally, w

1
eqr = w

1
eql = w

1
eq.

A reduced linear daisy chain for the system
shown in Fig. 1 is depicted in Fig. 2. There are three
processors: the central processor Pc, an equivalent
processor for an infinite number of processors to
the left or “left equivalent processor” Peql, and an
equivalent processor for an infinite number of
processors to the right or “right equivalent processor”
Peqr.
The timing diagram of the reduced daisy chain,

shown in Fig. 2, is depicted in Fig. 3. The finish
time is the time when all of the processors have
finished computation. From the timing diagram it
can be seen that the ultimate finish time limit T1fei
can be computed in three different ways. First, it
equals the computing time of the central processor,
¯cwTcp. Second, it equals the communication time
between the central processor and the left equivalent
processor ¯lZTcm plus the computing time of the left
equivalent processor ¯lw

1
eqTcp. Third, it equals the

communication time between the central processor
with the left equivalent processor and the right
equivalent processor (¯l+¯r)ZTcm plus the computing
time of the right processor. As described below, the
three processors in Fig. 2 can be replaced with a
single “equivalent” processor with equivalent speed
constant w1eqs. This equivalent processor is able to
preserve the performance characteristics of the
original system in Fig. 1. Then the time that it
takes the system processor to compute the whole
load, w1eqsTcp, would equal T

1
fei.

BATAINEH & ROBERTAZZI: PERFORMANCE LIMITS FOR PROCESSOR NETWORKS WITH DIVISIBLE JOBS 1191

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on November 10, 2008 at 21:20 from IEEE Xplore. Restrictions apply.

Fig. 4. Timing diagram for Fig. 2 system without front-end processors.

These four mentioned equations and the
normalized sum of the fractions of the load equation
are stated below:

T1fei = ¯cwTcp (1)

T1fei = ¯lZTcm+¯lw
1
eqTcp (2)

T1fei = (¯l+¯r)ZTcm+¯rw
1
eqTcp (3)

T1fei = w
1
eqsTcp (4)

¯c+¯r+¯l = 1: (5)

Using the above equations, where there are four
unknowns, an explicit expression to calculate w1eqs can
be developed

w1eqs =
w(ZTcm+w

1
eqTcp)

ZTcm+w1eqTcp+wTcp+
ww1eqT

2
cp

ZTcm+w1eqTcp

:

(6)

Here w1eq is the speed of an equivalent processor
for a linear daisy chain with an infinite number of
processors, with front-end processors and with load
origination at a boundary processor. It is given by the
following equation from [14]:

w1eq =
¡Z½+

p
(Z½)2 +4wZ½
2

: (7)

Here ½=Tcm=Tcp.
The ultimate finish time limit for load origination

at the network interior, with front-end processors T1fei
can now simply be determined

T1fei = w
1
eqsTcp: (8)

C. Linear Daisy Chain with No Front-End Processors
and Interior Load Origination

Consider a linear daisy chain similar to that
mentioned in the previous section, except that the

processors have no front-end processor. That is, the
main processor, in addition to its responsibility for
computation, must also handle communication duties.
In other words, each processor in the daisy chain can
either communicate or compute, but not do both at
the same time. Again, all processors have the same
computing speed constant w and all links have the
same transmission speed constant Z.
One can follow a similar approach to that used

in the front-end processor case where load originates
at the network interior. One can collapse the original
daisy chain with an infinite number of processors into
three processors: a central processor, a “left equivalent
processor”, and a “right equivalent processor.” A
pictorial representation of the reduced daisy chain is
shown in Fig. 2 and its timing diagram is shown in
Fig. 4.
From the timing diagram it can be seen that the

ultimate finish time limit T1nfei can be computed in
three different ways, in a manner similar to the case
of Section IIB. The three processors in Fig. 2 can
be replaced with a single equivalent processor with
equivalent speed constant w1eqs that is able to preserve
the performance characteristics of the original system
in Fig. 1. Then the time that it takes the system
processor to compute the whole load w1eqsTcp would
equal T1nfei.
The above four mentioned equations and the

normalized sum of the fractions of the load equation
are stated below:

T1nfei = (¯l+¯r)ZTcm+¯cwTcp (9)

T1nfei = ¯lZTcm+¯lw
1
eqTcp (10)

T1nfei = (¯l+¯r)ZTcm+¯rw
1
eqTcp (11)

T1nfei = w
1
eqsTcp (12)

¯c+¯r+¯l = 1: (13)

Using the above equations, where there are four
unknowns, an explicit expression to calculate w1eqs can

1192 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 33, NO. 4 OCTOBER 1997

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on November 10, 2008 at 21:20 from IEEE Xplore. Restrictions apply.

be developed

w1eqs =
w(ZTcm+w

1
eqTcp)

2

(w1eqTcp)2 +w1eqT2cpw+wTcp(ZTcm+w1eqTcp)
:

(14)

Here w1eq is the speed of an equivalent processor
of a linear daisy chain with an infinite number of
processors, with no front-end processors and with load
origination at a boundary processor. From [14] it is

w1eq =
p
½Zw: (15)

Here ½=Tcm=Tcp.
The ultimate finish time limit for load origination

at the network interior, with no front-end processors,
T1nfei can now simply be determined:

T1nfei = w
1
eqsTcp: (16)

In closing this section it should be noted [1,
14] that there are certain combinations of link
and processors speed parameters for linear daisy
chains without front-end processors for which load
distribution between processors is not optimal.
That is, for these combinations faster solutions can
be achieved when the load is run on a subset of
processors.

III. TREE NETWORKS

A. Introduction

In this section load distribution for networks with
a tree topology is discussed. Tree topologies to be
considered are naturally connected and acyclic. This
material is more general than a simple consideration
of hard-wired tree networks of processors. This
is because a natural way to distribute load in a
processor network with cycles is through the use of
an embedded spanning tree.
In this section a binary tree network of

communicating processors is considered. The general
technique developed here can be applied to other
types of tree networks. In the tree there are three
types of processors: root, intermediate, and terminal
processors. Each tree has one root processor that
originates the load. An intermediate processor can
be viewed as a parent of lower level processors with
which it has a direct connection. Also it is a child of
an upper level processor with which it has a direct
connection. The terminal processors can only be
children processors.
Every processor can only communicate with its

children processors and parent processor. Each of the
processors in the tree is assumed to have the same
computational speed, 1=w. The communication speed
between a parent processor and each of its children is
also assumed to have the same value, 1=Z.
In this section, two types of binary trees are

discussed. One is where processors are equipped with
front-end processors for communications off-loading.

Therefore, communication and computation can
take place in each processor at the same time. In the
second type of tree, processors do not have front-end
processors. That is, processors can either communicate
or compute but not do both at the same time.
In [2] a finite tree for the above two cases was

discussed. It was stated that the minimum processing
time is achieved when all processors in the tree stop
at the same time. The same intuition used in the
linear daisy chain case can be used as a justification.
Moreover formal proofs of optimality of single level
trees are available [20, 21]. As the size of the tree
gets larger, the share assigned to the root processor
gets smaller and so the processing time decreases.
On the other hand, adding more processors (nodes)
to the tree, will result in more overhead time spent
in communicating small fractions of load to the new
processors. At some point, adding more processors
will not decrease the fractions of load assigned to
the root processor substantially and so there is not
a considerable improvement in the processing time.
In that case, it may be advisable not to add more
processors (hardware) to the tree since the cost of
doing so may not be worth the small improvement
in the performance of the system.
To solve for the ultimate finish time limit, consider

a binary tree with an infinite number of processors;
that is, n=1 in Fig. 5. In the following the same
definitions for Tcp, Tcm, w, and w

1
eq are used as in the

previous section; however, Z is defined as follows.
Z is a constant that is inversely proportional to the
channel speed between a parent processor and each of
its children. The entire load can be transmitted over
the channel in time ZTcm. Again, for simplicity, the
use of a constant bandwidth channel is assumed.

B. The Tree Network With Front-End Processors

The idea behind obtaining the processing time for
this tree where n=1 is to collapse the tree into three
processors as shown in Fig. 6. The right side of the
tree has been replaced by one equivalent processor
with equivalent processing speed w1eq. The same is
true for the left side of the tree where it was replaced
with one equivalent processor that has an equivalent
computational speed w1eq. Naturally, as the left and
right sub-trees are homogeneous infinite trees in their
own right, an equivalent processor for either one of
them has the same computational speed as one for the
entire tree.
The timing diagram for this equivalent system, that

preserves the characteristics of an infinite size binary
tree, is shown in Fig. 7. From Fig. 7 it can be seen
that the computing time of the root processor ®0wTcp,
equals the communication time between the parent
processor (root processor) and the left processor
®lZTcm, plus the computing time of the left equivalent
processor ®lw

1
eqTcp. Also the computing time of the

BATAINEH & ROBERTAZZI: PERFORMANCE LIMITS FOR PROCESSOR NETWORKS WITH DIVISIBLE JOBS 1193

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on November 10, 2008 at 21:20 from IEEE Xplore. Restrictions apply.

Fig. 5. Binary tree network.

Fig. 6. Reduced tree network.

left side equivalent processor ®lw
1
eqTcp, equals the

communication time between the root processor and
the right side equivalent processor ®rZTcm, plus the
computing time of the right equivalent processor

Fig. 7. Timing diagram for Fig. 6 system with front-end processors.

®rw
1
eqTcp. If the three processors in Fig. 6 are replaced

with one equivalent processor then the computing time
of the root processor ®0wTcp equals the computing
time of the equivalent processor w1eqTcp. The three
equations explained above are listed below:

®0wTcp = ®lZTcm+®lw
1
eqTcp (17)

®lw
1
eqTcp = ®rZTcm+®rw

1
eqTcp (18)

®0wTcp = w
1
eqTcp: (19)

Also the sum of the fractions of the load equals one

®0 +®r+®l = 1: (20)

1194 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 33, NO. 4 OCTOBER 1997

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on November 10, 2008 at 21:20 from IEEE Xplore. Restrictions apply.

Fig. 8. Timing diagram for Fig. 6 system without front-end processors.

Now, there are four equations with four unknowns,
namely w1eq, ®0, ®r, and ®l. Thus w

1
eq can be

determined by solving iteratively the equation:

w1eq =
w(ZTcm+w

1
eqTcp)

ZTcm+w1eqTcp+wTcp+
ww1eqT

2
cp

ZTcm+w1eqTcp

:

(21)

Alternately, the above iterative equation can be
transformed through algebraic manipulation into a
cubic equation:

(w1eq)
3 + [2Z½+w](w1eq)

2¡ [Z½(w¡Z½)]w1eq
¡wZ2½2 = 0: (22)

Here ½= Tcm=Tcp. The solution to such
cubic equations appears in most mathematical
handbooks [36].
Consequently, the ultimate finish time for an

infinite tree network with front-end processors T1fe can
now be computed by

T1fe = w
1
eqTcp: (23)

C. The Tree Network Without Front-end Processors

Consider now the case where the processors in
the tree network are not equipped with front-end
processors. Therefore, each processor in the tree can
either compute or communicate but not do both at
the same time. The analytical results for a minimum
finish time for a finite tree were considered in [2]. In
this section, the situation where there is an infinite
number of processors in a binary tree network is
considered. As before, the left branch below the root
as well as the right branch below the root processor
are each collapsed into one equivalent processor.
This equivalent processor is able to present the same
characteristics as the original sub-tree. The timing of
the reduced tree is depicted in Fig. 8 where ®0, ®r, ®l,
Z, Tcp, Tcm, w

1
eq, and w are defined as before. From

Fig. 8 it can be seen the ultimate finish time limit with
no front-end processor (nfe), T1nfe can be computed
in four different ways. This can be done in a manner
similar to the previous case. The four equations are
listed below:

T1nfe = (®l+®r)ZTcm+®0wTcp (24)

= ®lZTcm+®lw
1
eqTcp (25)

= (®l+®r)ZTcm+®rw
1
eqTcp (26)

= w1eqTcp: (27)

Also the total sum of the fractions of the load is equal
to one:

®0 +®r+®l = 1: (28)

Solving the above equations, one can find an
expression for the exact numerical value of w1eq by
iteration

w1eq =
w(ZTcm+w

1
eqTcp)

2

(w1eqTcp)2 +2ww1eqT2cp+wZTcpTcm
: (29)

Again, the above iterative equation can be
transformed into a cubic equation through algebraic
manipulation:

(w1eq)
3 +w(w1eq)

2¡ [wZ½]w1eq ¡wZ2½2 = 0: (30)

Here ½= Tcm=Tcp.
The ultimate finish time limit can be computed

using (27).

IV. PERFORMANCE EVALUATION

To examine the effect of the speed of the
processors and the channel speed on the optimal finish
time, the previous equations were used to obtain a
set of curves, shown in Fig. 9. Both the performance
of trees and linear daisy chains, with and without
front-end processors, are plotted. For the linear daisy
chain, load origination at both the network interior
and, as a reference, the boundary is plotted. Here the

BATAINEH & ROBERTAZZI: PERFORMANCE LIMITS FOR PROCESSOR NETWORKS WITH DIVISIBLE JOBS 1195

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on November 10, 2008 at 21:20 from IEEE Xplore. Restrictions apply.

Fig. 9. Ultimate finish time for linear daisy chain with load
origination at network boundary and interior and with and without

front-end processors and for tree network with and without
front-end processors. Tcm = Tcp = 1, w = 1.

ultimate minimum finish time is plotted against Z.
Also, Tcm = 1, Tcp = 1, and w = 1. These parameter
values are chosen to be representative.

1) Fig. 9 supports the intuition that the ultimate
minimum finish time increases as the channel speed
decreases. A similar increase was observed when
processor speed decreases.
2) For certain cases, it has been observed that

beyond a threshold value of Z the overhead of
communication time that is needed to distribute the
load to the rest of the processors in the network
becomes excessive. Thus using a single processor to
execute the whole job would be more efficient. For
the chosen parameters a single processor takes wTcp to
compute the whole load. Therefore, a single processor
is selected whenever the ultimate finish time exceeds
wTcp. This accounts for the horizontal straight lines in
the figure.
3) There are two, largely intuitive, trends apparent

in the curves. First, the use of the front-end processors
improves the minimum finish time. Secondly, for the
linear daisy chain, origination at the interior of the
chain is superior to the origination at the boundary.
4) One surprising result in Fig. 9 is that, at least

for some parameter values, a binary tree network is
only marginally faster than a linear daisy chain with
origination at the chain interior. This can be partially
explained by noting that in both cases the load is
distributed for the first three processors in an identical
fashion. The majority of the load is allocated to the
first three processors when link speeds are moderate
to slow. For this range the additional processors in
the lower level of the tree do not lead to a significant
performance improvement.

V. CONCLUSION

This is an exciting problem area as one can
demonstrate a fundamental limit of performance in
a problem involving communication/computation
tradeoffs in a relatively straightforward manner. The
importance of these results is that they quantify the
fact that a finite-sized processor network load sharing
a divisible job can perform almost as well as an
infinite sized network. This is good practical news
and allows such infinite-sized networks to be used as
a theoretical performance benchmark.

REFERENCES

[1] Cheng, Y. C., and Robertazzi, T. G. (1988)
Distributed computation with communication delays.
IEEE Transactions on Aerospace and Electronic Systems,
24 (Nov. 1988), 700—712.

[2] Cheng, Y. C., and Robertazzi, T. G. (1990)
Distributed computation for tree network with
communication delays.
IEEE Transactions on Aerospace and Electronic Systems,
26 (May 1990), 511—516.

[3] Bataineh, S., and Robertazzi, T. G. (1991)
Distributed computation for a bus networks with
communication delays.
In Proceedings of the 1991 Conference on Information
Sciences and Systems, The Johns Hopkins University,
Baltimore, MD, Mar. 1991, 709—714.

[4] Bataineh, S., and Robertazzi, T. G. (1991)
Bus oriented load sharing for a network of sensor driven
processors.
IEEE Transactions on Systems, Man and Cybernetics, 21
(Sept. 1991) 1202—1205.

[5] Baumgartner, K. M., and Wah, B. W. (1989)
GAMMON: A load balancing strategy for local computer
systems with multiaccess networks.
IEEE Transactions on Computers, 38 (Aug. 1989),
1098—1109.

[6] Bokhari, S. H. (1987)
Assignment Problems in Parallel and Distributed
Computing.
Boston: Kluwer Academic Publishers, 1987.

[7] Lo, V. M. (1988)
Heuristic algorithms for task assignment in distributed
systems.
IEEE Transactions on Computers, 37 (Nov. 1988),
1384—1397.

[8] Ramamrithamm, K., Stankovic, J. A., and Zhao, W. (1989)
Distributed scheduling of tasks with deadlines and
resources requirements.
IEEE Transactions on Computers, 38 (Aug. 1989),
1110—1122.

[9] Shin, K. G., and Chang, Y-C. (1989)
Load sharing in distributed real-time systems with state
change broadcasts.
IEEE Transactions on Computers, 38 (Aug. 1989),
1124—1142.

[10] Stone, H. S. (1977)
Multiprocessor scheduling with the aid of network flow
algorithms.
IEEE Transaction on Software Engineering, SE-3 (Jan.
1977), 85—93.

1196 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 33, NO. 4 OCTOBER 1997

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on November 10, 2008 at 21:20 from IEEE Xplore. Restrictions apply.

[11] Mirchandaney, R., Towsley, D., and Stankovic, J. A. (1989)
Analysis of the effects of delays on the load sharing.
IEEE Transactions on Computers, 38 (Nov. 1989),
1513—1525.

[12] Ni, L. M., and Hwang, K. (1985)
Optimal load balancing in a multiple processor system
with many job classes.
IEEE Transaction on Software Engineering, SE-11 (May
1985), 491—496.

[13] Bataineh, S., and Robertazzi, T. G. (1992)
Ultimate performance limit for networks of load sharing
processors.
In Proceedings of the 1992 Conference on Information
Sciences and Systems, Princeton University, Princeton, NJ,
Mar. 1992, 794—799.

[14] Robertazzi, T. G. (1993)
Processor equivalence for daisy chain load sharing
processors.
IEEE Transactions on Aerospace and Electronic Systems,
29 (Oct. 1993), 1216—1221.

[15] Zemanian, A. H. (1988)
Infinite electric networks: A reprise.
IEEE Transactions on Circuits and Systems, 35 (Nov.
1988), 1346—1358.

[16] Mani, V., and Ghose, D. (1994)
Distributed computation in linear networks: Closed-form
solutions.
IEEE Transactions on Aerospace and Electronic Systems,
30 (Apr. 1994), 471—483.

[17] Mani, V., and Ghose, D. (1994)
Distributed computation with communication delays:
Asymptotic performance analysis.
Journal of Parallel and Distributed Computing, 23 (Nov.
1994), 293—305.

[18] Bharadwaj, V., Ghose, D., and Mani, V. (1994)
Optimal sequencing and arrangement in single level tree
networks with communication delay.
IEEE Transactions on Parallel and Distributed Systems, 5
(Sept. 1994), 968—976.

[19] Bharadwaj, V., Ghose, D., and Mani, V. (1995)
An efficient load distribution strategy for a distributed
linear network of processors with communication delay.
Computer and Mathematics with Applications, 29 (May
1995), 95—112.

[20] Bharadwaj, V., Ghose, D., and Mani, V. (1992)
A study of optimality conditions for load distribution in
tree networks with communication delay.
Technical report 423/GI/02-92, Guidance and
Instrumentation Laboratory, Dept. of Aerospace
Engineering, Indian Institute of Science, Bangalore, India.

[21] Sohn, J., and Robertazzi, T. G. (1993)
Optimal load sharing for a divisible job on a bus network.
In Proceedings of the 1993 Conference on Information
Sciences and Systems, The Johns Hopkins University,
Baltimore, MD, Mar. 1993, 835—840; also in IEEE
Transactions on Aerospace and Electronic Systems, 32 (Jan.
1996), 34—40.

[22] Bataineh, S., Hsiung, T., and Robertazzi, T. G. (1994)
Closed-form solutions for bus and tree networks of
processors load sharing a divisible job.
Presented at the 1993 International Conference on
Parallel Processing, Chicago, IL, Aug. 1993; also in IEEE
Transactions on Computers, 43 (Oct. 1994), 1184—1196.

[23] Kim, H. J., Jee, G.-I., and Lee, J. G. (1996)
Optimal load distribution for tree network processors.
IEEE Transactions on Aerospace and Electronic Systems,
32 (Apr. 1996), 607—612.

[24] Bharadwaj, V., Ghose, D., and Mani, V. (1995)
Multi-installment load distribution in tree networks with
delays.
IEEE Transactions on Aerospace and Electronic Systems,
31 (Apr. 1995), 555—567.

[25] Du, J., and Leung, J. Y.-T. (1989)
Complexity of scheduling parallel task systems.
SIAM Journal on Discrete Mathematics, 2 (Nov. 1989),
473—487.

[26] Blazewicz, J., Drabowski, M., and Weglarz, J. (1986)
Scheduling multiprocessor tasks to minimize schedule
length.
IEEE Transactions on Computers, C-35 (May 1986),
389—393.

[27] Zhao, W., Ramamritham, K., and Stankovic, J. A. (1987)
Preemptive scheduling under time and resource
constraints.
IEEE Transactions on Computers, C-36 (Aug. 1987),
949—960.

[28] Ramamritham, K., Stankovic, J. A., and Shiah, P.-F. (1990)
Efficient scheduling algorithms for real-time
multiprocessor systems.
IEEE Transactions on Parallel and Distributed Systems, 1
(Apr. 1990), 184—194.

[29] Lee, C.-H., Lee, D., and Kim, M. (1992)
Optimal task assignment in linear array networks.
IEEE Transactions on Computers, 41 (July 1992),
877—880.

[30] Peng, D.-T., and Shin, K. G. (1993)
A new performance measure for scheduling independent
real-time tasks.
Journal of Parallel and Distributed Computing, 19 (1993),
11—26.

[31] Xu, J., and Hwang, K. (1993)
Heuristic methods for dynamic load balancing in a
message-passing multicomputer.
Journal of Parallel and Distributed Computing, 18 (1993),
1—13.

[32] Ahmad, I., Ghafoor, A., and Fox, G. C. (1994)
Hierarchical scheduling of dynamic parallel computations
on hypercube multicomputers.
Journal of Parallel and Distributed Computing, 20 (1994),
317—329.

[33] Blazewicz, J., and Drozdowski, M. (1995)
Scheduling divisible jobs on hypercubes.
Parallel Computing, 21 (1995), 1945—1956.

[34] Blazewicz, J., and Drozdowski, M. (1996)
The performance limits of a two-dimensional network of
load sharing processors.
Foundations of Computing and Decision Sciences, 21
(1996), 3—15.

[35] Haddad, E. (1994)
Communication protocol for optimal redistribution of
divisible load in distributed real-time systems.
In Proceedings of the ISMM International Conference on
Intelligent Information Management Systems, Washington,
DC, June 1994, 39—42.

[36] Burington, R. S. (1973)
Handbook of Mathematical Tables and Formulas (5th ed.).
New York: McGraw-Hill, 1973.

BATAINEH & ROBERTAZZI: PERFORMANCE LIMITS FOR PROCESSOR NETWORKS WITH DIVISIBLE JOBS 1197

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on November 10, 2008 at 21:20 from IEEE Xplore. Restrictions apply.

Sameer Bataineh received the B.S. degree in electrical engineering in 1985 from
Syracuse University, Syracuse, NY. He received the Ph.D. degree in electrical
engineering from the University at Stony Brook, Stony Brook, NY, in 1992.
Since 1992 he has been on the faculty of the Electrical Engineering Dept. of

the Jordan University of Science and Technology, Irbid, Jordan.

Thomas G. Robertazzi (S’75–M’77–S’78–M’81–SM’91) received the
B.E.E. from Cooper Union in 1977 and the Ph.D in electrical engineering from
Princeton University, Princeton, NJ, in l981.
He was an Assistant Professor of Electrical Engineering at Manhattan College,

Riverdale, NY, during 1982—1983. Since 1983 he has been at the University
at Stony Brook where he is presently an Associate Professor in the Electrical
Engineering Department. During the Fall of 1990, he was a visiting research
scientist at Columbia University’s Electrical Engineering Department. His
research interests are in the performance evaluation of computer networks and
computer systems.
Dr. Robertazzi has been editor-in-chief for books for the Communications

Society and an associate editor of Wireless Networks.

1198 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 33, NO. 4 OCTOBER 1997

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on November 10, 2008 at 21:20 from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

