
2003 Conference on Information Sciences and Systems, The Johns Hopkins University, March 12–14, 2003

Distributed Scheduling of Nonlinear Computational Loads

Jui-Tsun Hung
Department of Electrical and

Computer Engineering
Stony Brook University

Stony Brook, New York 11794

e-mail: trent@ece.sunysb.edu

Thomas Robertazzi1
Department of Electrical and

Computer Engineering
Stony Brook University

Stony Brook, New York 11794

e-mail: tom@ece.sunysb.edu

Abstract —
It is demonstrated that supra-linear (greater than

linear) speedup is possible in processing distributed
divisible computational loads where computation time
is a nonlinear function of load size. This result is rad-
ically different from the traditional distributed pro-
cessing of computational loads with linear processing
complexity appearing in over 50 journal papers.

I. Introduction

Divisible loads are data parallel loads that are perfectly par-
titionable amongst links and processors. Such loads arise in
the parallel and data intensive processing of massive amounts
of data in grid computing, signal processing, image process-
ing and experimental data processing. Since 1988 [1-11] work
by a number of researchers has developed algebraic means of
determining the optimal fractions of total load to assign to
processors and links in a given interconnection topology un-
der a given scheduling policy. The theory to date involves
loads of linear computational complexity. That is, computa-
tion and communication time is proportional to the size of
the load fraction assigned to a processor or link, respectively.
With the right scheduling policy linear speedup in the number
of processors can be achieved [3]. Here speedup is the ratio
of solution time on one processor to solution time on N pro-
cessors and is thus a measure of achievable parallel processing
advantage.

In this paper we consider situations where the computa-
tional complexity of processing divisible load is a nonlinear
function of the load size. It is shown, for tree networks, that
if there is an (integer) χth power dependency of computation
time at a node to the amount of load allocated to the node,
one can solve for the optimal nodal load allocation by solv-
ing an χth order algebraic equation. For the special case of a
single level tree (star) topology with certain scheduling policy
assumptions, a closed form solution for an arbitrary integer
power dependency can be found. On the other hand, a recur-
sive solution is possible for the case of a multilevel tree with
power 2 (square law) dependency.

Because of such nonlinear dependencies, supra-linear
speedup is possible when load is distributed among multiple
processors for concurrent processing.

In the scheduling policy used here (simultaneous start) load
reception and processing may commence at the same time.
Tractable load allocation and speedup equations are found for
these cases, without loss of generality, for a power 2 nonlinear
dependency of computation time on load size for both single
level and multi-level trees topologies.

The majority of the divisible load scheduling literature has
appeared in computer engineering periodicals. Divisible load

1The support of NSF grant CCR-99-12331 is acknowledged.

modeling should be of interest as it models, both computa-
tion and network communication in a completely seamless in-
tegrated manner. Moreover, it is tractable with its linearity
assumption. It has been used to accurately and directly model
such features as specific network topologies and scheduling
policies [2-7] computation versus communication load inten-
sity [2-3], and numerous applications.

To evaluate a homogeneous multilevel tree, we must ana-
lyze a single level tree first. We make three major assump-
tions. First, the computing and communication loads are di-
visible (i.e. perfectly divisible with no precedence constraints
[3]). Second, computation time is proportional to a nonlinear
function of the size of the problem and transmission time is
proportional to the size of the problem. Finally, each node
transmits load concurrently (simultaneously) to its children.

This paper presents the types of notation and analytic
background in section II. The speedup of a single level tree is
obtained in section III. Furthermore, the speedup of a multi-
level tree is derived in section IV. The conclusion is stated in
section V.

II. Model, Notation and Theorem

• Notation for Single Level Tree

In this paper we assume that a node begins to process its
load as soon as the load is received. This strategy is proposed
by Kim [10] and we call it a simultaneous start.

For a heterogeneous single level tree, which can be collapsed
into an equivalent node, the notation is presented as follows.

α0 : The load fraction assigned to the root processor.
αi : The load fraction assigned to the ith link-processor

pair.
wi : The inverse computing speed on the ith processor.
weq : The inverse computing speed on an equivalent node

collapsed from a single level tree.
zi : The inverse link speed on the ith link.
Tcp : Computing intensity constant. The entire load can be

processed in wiT
2
cp seconds on the ith processor.

Tcm : Communication intensity constant. The entire load
can be transmitted in ziTcm seconds over the ith link.

Tf,m : The finish time of an equivalent node from a single
level tree composed of one root node and m children nodes.

Tf,0 : The finish time of a processor only, (i.e. a tree with-
out any children nodes but the root node).

Definition 1 γeq, the ratio of the inverse computing speed on
an equivalent node to that on the root node.

γeq = weq/w0

Definition 2 Speedup, the ratio of finish time on one proces-
sor (i.e. the root node) to that on an equivalent node collapsed

from a single level tree. This value is equal to the ratio of the
inverse computing speed on the root node to that on an equiv-
alent node, i.e. the inverse of γeq. Hence,

Speedup = Tf,0/Tf,m = w0/weq = 1/γeq

Finally, (αiTcp)2wi is the finish time to process the fraction
αi of the entire load on the ith processor.

• Model and Notation for Multilevel Tree

A heterogeneous multilevel tree network is too complicated
to obtain a closed form solution of speedup. Therefore, a ho-
mogeneous multilevel tree network where root processors are
equipped with a front-end processor for off-loading communi-
cations is evaluated. Root nodes, called intelligent roots, pro-
cess a fraction of the load immediately while they start trans-
mitting data to their children (see Figure 1). After sub-roots

k,0(α Τ) wcp
2

(Layer k)

The entire load is
already stored in
the root node

Level k

zp
k-1

zp
k-1

zp
k-1 zp

k-1

k,2α
k,m-1α

k,mα
k,1α

...

3,1α

2,1α
2,2α

2,mα...

1,1α

1,1(α Τ) wcp
2

1,2(α Τ) wcp
2

1,m(α Τ) wcp
2

1,2α 1,mα 1,1α 1,2α 1,mα 1,1α 1,2α 1,mα

.........

Level 2

Level 1

(Layer 2)

(Layer 1)

(Layer 0)

zp
1

zp
2

zp
1

zp
1

zp
0

zp
0

zp
0

zp
0

zp
0

zp
0

zp
0

zp
0

zp
0

2,0(α Τ) wcp
2

1,0(α Τ) wcp
2

2,0(α Τ) wcp
2

2,0(α Τ) wcp
2

1,1(α Τ) wcp
2

1,2(α Τ) wcp
2

1,m(α Τ) wcp
2

1,1(α Τ) wcp
2

1,2(α Τ) wcp
2

1,m(α Τ) wcp
2

Figure 1: Structure of multi-level homogeneous tree with
store and forward switching, simultaneous distribution,
simultaneous start.

receive all the assigned fraction of load for its descendants, it
starts distributing these loads to its descendants immediately
and concurrently. This strategy is called “store and forward
switching with simultaneous distribution”.

The notation for a multi-level homogeneous fat tree is de-
noted as follows.

αj,0 : The load fraction assigned to a root processor of the
jth level subtrees.

αj,i : The load fraction assigned to the ith link-processor
pair on the jth level subtrees.

wieqj−1
: The inverse computing speed of on an equivalent

ith node collapsed from the (j − 1)th level subtree, which is
from level j− 1 descending to level 1. In a homogeneous mul-
tilevel tree, we assume that weqj−1 = wieqj−1

(i = 1, 2, ..., m).

T h,k
f,m : The finish time of a k level homogeneous tree with

one root node and m equivalent children nodes.

Definition 3 pj−1,i; the multiplier of the inverse capacity of
the ith link at level j (see Figure 1).

The value of the multiplier pj−1,i is defined as the inverse
of the total number of children processor descendants at and
below level j for the ith subtree. The variable pj−1,i allows fat
tree modeling. A fat tree allocates more capacity to nodes near
the root to improve the transmission speed. In a homogeneous
multilevel fat tree, pj−1 = pj−1,i (i = 1, 2, ..., m). Hence,

pj−1 =

(
j−1∑
l=0

ml

)−1

0 < pj−1 ≤ 1

Definition 4 γj , the ratio of the inverse computing speed on
an equivalent node at level j to that on the root node.

γj = weqj /w

Definition 5 Speedup, the ratio of finish time on one proces-
sor (i.e. the root node) to that on an equivalent node collapsed
from a subtree from level k to level 1. This value is also equal
to the ratio of the inverse computing speed on the root node to
that on an equivalent node, i.e. the inverse of γk. Hence,

Speedup = Tf,0/T h,k
f,m = w/weqk = 1/γk

• Nonlinear Divisible Computational Load Theorem

If the elements in an arbitrarily divisible load are depen-
dent on one another in some sense, the computation times
based on some algorithm for each fraction of load can be
nonlinear in the size of the loads (neglecting prior or post-
processing). Since the elements are dependent on one other,
post-processing is needed (as in sorting algorithms). Some
thought and knowledge of existing algorithms leads to the fol-
lowing theorem:

Theorem 1 For nonlinear divisible computational loads, (de-
pendent loads), it is not possible to arbitrarily partition a load,
do independent processing and both decrease solution time in
a nonlinear manner and produce a solution exactly the same
as that in a single processor. Either the solution is approxi-
mate, post-processing is necessary to combine partial solutions
or both.

Proof 1 Let an entire load be a nonempty data set S consist-
ing of n elements. A partition of a nonempty set S is a col-
lection of nonempty subsets that are disjoint and whose union
is S (see [12], page 106). After being partitioned into m + 1
subsets, S0 ,S1 ,S2 , ...,Sm , the entire load S is the union of the
m+1 subsets. Provided that each processing step (instruction)
takes the same time under the same computing capability for a
specific algorithm, finish time will be proportional to the num-
ber of steps. Without loss of generality, let a load composed of
n elements takes n2 steps, then a function, F (n) = n2(steps),
can be defined. Here, F is a virtual machine with n elements
input and n2steps output. For a fraction, α, of load of n ele-
ments, the number of processing steps, F (αn), is as following,

F (αn) = (αn)2(steps) = α2n2 = α2F (n) (1)

Here α is fractional number. If a fraction of load, α, is par-
titioned into α1 and α2, the number of the processing steps is
invariant after the fraction load is partitioned. That is,

F (αn) = (αn)2 = α2n2 = α2F (n)

= (α1 + α2)
2n2 = (α1 + α2)

2F (n)

= α2
1F (n) + α2

2F (n) + 2α1α2F (n)

= F (α1n) + F (α2n) + 2α1α2F (n)

= F (α1n) + F (α2n) + post− processing (2)

After the entire load is partitioned into m + 1 subsets, and
the fraction of each load is assigned as α0 , α1 , α2 , ..., αm , the
number of steps by a specific algorithm is

F (n) = (n)2

= [(α0 + α1 + ... + αm)n]2

= (α0 + α1 + ... + αm)2 × F (n)

=

(
m∑

i=0

α2
i + 2

m∑
i=0,j=0

αi · αj

)
× F (n)

=

m∑
i=0

F (αin) + 2

m∑
i=0,j=0

αi · αj × F (n) (3)

Observing the above equation, the first term is a summation of
the amount of processing steps for each fraction processed by a
children node, and the second term is the amount of steps for
post-processing. Therefore, post-processing is necessary for an
exact solution if the processing steps is a nonlinear function
of the number of elements in a load using a specific algorithm.

Corollary 1 Nonlinear speedup improvement is possible, but
solution time for divisible processing must include partitioned
load solution time and post-processing time.

III. Processors with Simultaneous Start: Single
Level Tree

When a processor uses the simultaneous start protocol, it
starts processing data as soon as it receives the initial frac-
tion of load. We assumed that the root is “intelligent” so that
it can distribute load to its children while processing some
fraction of the load. The simultaneous start of load reception
and computation was proposed by Kim [10] and the concur-
rent broadcast of load over links from a root to children by
Murthy and Piriyakumar [11]. Note that if load reception and
computation commences simultaneously, sufficient load must
be received by each point in time so a processor is not idle
(starvation).

• Single Level Tree: Root Node with Data Storage, Power χ

In this section we find optimal load distribution formula
for a power χ dependency between computation time at a
node and load size at the node in a single level tree network.
Simultaneous start is used. All load is available at the root at
t = 0 (data storage case).

All children processors are connected to the root processor
via direct communication links. The intelligent root processor,
assumed to be the only processor at which the divisible load
arrives, partitions a total processing load into m+1 fractions,
keeps its own fraction α0, and distributes the other fractions
α1, α2,..., αm to the children processors respectively and con-
currently.

While receiving its initial assigned fraction of load, each
child processor begins computing immediately and continues
without any interruption until all of its assigned load fraction
has been processed. In order to minimize the processing finish
time, all of the utilized processors in the network must finish
computing at the same time [3]. The process of load distribu-
tion can be represented by Gantt chart-like timing diagrams,
as illustrated in Figure 2. Note that this is a completely de-
terministic model.

z Tcmmαm

z Tcmm-1αm-1

z Tcmm-2αm-2

z Tcm2α2

z Tcm1α1

Communication

Computation

Root Node

Tf

(Parent 0)

Communication

Computation

Communication

Computation

Communication

Computation
(Child m-1)

.

.

.

.

Communication

Computation
(Child m-2)

Communication

Computation
(Child m)

Tf

Tf

Tf

(Child 1)

(Child 2)

Tf

Tf

Single Level

(α1T) cp w1

(α0T) cp
χ
w0

(α2T) cp w2

(αmT) cp wm

(αm-2T) cp wm-2

(αm-1T) cp wm-1

χ

χ

χ

χ

χ

Figure 2: Timing diagram of a single level tree with simul-
taneous distribution, simultaneous start, and root node
with data storage.

From the timing diagram Figure 2, the fundamental recur-
sive equations of the system can be formulated as follows:

(α0Tcp)χw0 = (α1Tcp)χw1 (4)

(αi−1Tcp)χwi−1 = (αiTcp)χwi i = 2, ..., m (5)

The normalization equation for the single level tree with in-
telligent root is

α0 + α1 + α2 + ... + αm = 1 (6)

This yields m+1 linear equations with m+1 unknowns. One
can manipulate the recursive equations to yield a solution for
the optimal allocation of load. From (4),

αχ
0 =

w1T
χ
cp

w0T
χ
cp

αχ
1 =

w1

w0
αχ

1 (7)

Let κ1 = w0/w1, and then (7) becomes

αχ
0 =

w1

w0
αχ

1 =
1

κ1
αχ

1 (8)

One obtains for integer χ [13]

α0 = χ

√
1

κ1
αχ

1

(
cos

2hπ

χ
+
√−1 sin

2hπ

χ

)

where h takes successively the values 0, 1, 2, ..., χ-1 (9)

Because α0 ≥ 0 and α0 is real, we can take h = 0 and obtain

α0 = χ

√
1

κ1
· α1 i = 1, 2, ..., m (10)

From (5),

αχ
i =

wi−1T
χ
cp

wiT
χ
cp

αχ
i−1 =

wi−1

wi
αχ

i−1 i = 2, ..., m (11)

Let ξi = wi−1/wi, i = 2, ..., m. Thus, (11) becomes

αχ
i = ξiα

χ
i−1 (12)

One obtains

αi = χ
√

ξiα
χ
i−1

(
cos

2hπ

χ
+
√−1 sin

2hπ

χ

)

where h takes successively the values 0, 1, 2, ..., χ-1 (13)

Since αi ≥ 0 and αi is real, we can take h = 0 and obtain

αi = χ
√

ξiαi−1 = χ

√√√√
i∏

l=2

ξl · α1

= χ

√
w1

wi
· α1 i = 2, ..., m (14)

From the normalization equation (6) and from equation
(10) and (14), we obtain the optimal fractions of load αi as

αi =
1

χ
√

wi ·
(∑m

l=0
χ

√
1

wl

) i = 0, 1, 2, ..., m (15)

From Figure 2, the finish time is expressed as follows.

Tf,m = (α0Tcp)χ w0 (16)

Here, Tf,m, indicates the finish time for the single divisible
load solved in a single level tree, which consists of one root
node as well as m children nodes. Also, Tf,0, is defined as the
finish time for the entire divisible load processed on the root
processor. In other words, Tf,0 is the finish time of a network
composed of only one root node without any children nodes.
Hence,

Tf,0 = (α0Tcp)χw0 = (1× Tcp)χw0 = T χ
cpw0 (17)

Now, collapsing a single level tree into a single equivalent node,
one can obtain the finish time of the single level tree and the
inverse of the equivalent computing speed of the equivalent
node as follows.

Tf,m = (1× Tcp)χweq = T χ
cpweq = (α0Tcp)χw0 (18)

From the Definition 1, γeq = weq/w0, one obtains the value
of γeq by (17) dividing (18). That is,

γeq = αχ
0 (19)

Since speedup is the ratio of job solution time on one pro-
cessor to job solution time on the m + 1 processors (see Def-
inition 2), one obtains the value of speedup from Tf,0/Tf,m,
which is equal to 1/γeq. Thus,

Speedup =
1

γeq
=

(
1

α0

)χ

= w0

(
m∑

l=0

χ

√
1

wl

)χ

(20)

Speedup is a measure of the achievable parallel processing
advantage.

IV. Processors with Simultaneous Start:
Homogeneous Multilevel Fat Tree Analysis,

Power 2

Again, the topmost single level subtree is called level k,
levels below it are generally level j, (j goes from level 1 at
the bottom most level up to level k − 1). We will derive the
speedup of the whole multi-level tree by successively collapsing
single level trees into equivalent nodes until the entire tree is
collapsed into an equivalent node. We will first use the root
without data storage model for levels, j = 1, 2, ..., k − 1 and
then use the root with data storage model for the top level,
level k.

• Level j Subtree: Root Node without Data Storage, Power 2

From Figure 3, the fundamental recursive equations of the

Communication

Computation

Root Node

Tf

(Parent 0)

Communication

Computation

Communication

Computation

Communication

Computation
(Child m-1)

.

.

.

.

Communication

Computation
(Child m-2)

Communication

Computation
(Child m)

Tf

Tf

Tf

(Child 1)

(Child 2)

zTcmαj,1 pj-1

Tf

Tf

Single Level zp1. Tcmj αj,0

αj,m-2
zTcmpj-1

αj,m-1

αj,m zTcmpj-1

zTcmαj,2 pj-1

zTcmpj-1

(αj,0 wT)cp
2

weqj-1
(αj,1T)cp

2

weqj-1
(αj,2T)cp

2

weqj-1
(α j,m-2T)cp

2

weqj-1
(α j,m-1T)cp

2

weqj-1
(α j,mT)cp

2

Figure 3: Timing diagram of level j subtree using store
and forward switching, simultaneous distribution, simul-
taneous start, and root node without data storage

jth-level tree network are

(αj,0Tcp)2w = (αj,1Tcp)2weqj−1 + 1 · pjzTcm (21)

(αj,i−1Tcp)2weqj−1 = (αj,iTcp)2weqj−1 i = 2, 3, ..., m (22)

The normalization equation for the jth single level tree with
intelligent root is

αj,0 + αj,1 + αj,2 + ... + αj,m = 1 (23)

This yields m + 1 linear equations with m + 1 unknowns.

From (21),

α2
j,1 =

wT 2
cp

weqj−1T 2
cp

α2
j,0 − pjzTcm

weqj−1T 2
cp

(24)

=
w

weqj−1

α2
j,0 − pjw

weqj−1

· zTcm

wTcp
· 1

Tcp
(25)

Here, as Definition 4, w/weqj−1 = 1/γj−1 and we let

ς =
zTcm

wTcp
· 1

Tcp
(26)

Equation (25) becomes

α2
j,1 =

1

γj−1
α2

j,0 − 1

γj−1
pjς (27)

Hence,

αj,1 = ±
√

1

γj−1
α2

j,0 −
1

γj−1
pjς (28)

Since αj,1 > 0, we take the positive value. Therefore,

αj,1 =

√
1

γj−1
α2

j,0 −
1

γj−1
pjς (29)

From (22),

αj,i = ±αj,i−1 i = 2, 3, ..., m

Also, since αj,i > 0, i = 2, 3, ..., m, we take the positive value.
Therefore,

αj,i = αj,1 i = 2, 3, ..., m

The normalization equation (23) becomes

αj,0 + αj,1 +

m∑
i=2

αj,i = 1 (30)

αj,0 + mαj,1 = 1

1− αj,0 = mαj,1 = m

√
1

γj−1
α2

j,0 −
1

γj−1
pjς (31)

Squaring both sides in (31), one obtains

(1− αj,0)
2 =

(
m

√
1

γj−1
α2

j,0 −
1

γj−1
pjς

)2

(32)

1− 2αj,0 + α2
j,0 = m2 1

γj−1
α2

j,0 −m2 1

γj−1
pjς (33)

(
m2

γj−1
− 1

)
α2

j,0 + 2αj,0 −
(

1 + m2 pjς

γj−1

)
= 0 (34)

Finally, one obtains the value of αj,0 as follows:

αj,0 =

−1±
√

1 +
(
1 + m2 pjς

γj−1

)(
m2

γj−1
− 1

)

m2

γj−1
− 1

(35)

Because γj−1 is usually much smaller than m; thus, we found
m2

γj−1
− 1 > 0. Now αj,0 > 0 and m2

γj−1
− 1 > 0, and then

αj,0 =

−1 +

√
1 +

(
1 + m2 pjς

γj−1

)(
m2

γj−1
− 1

)

m2

γj−1
− 1

=

−1 +
√

m4

γ2
j−1

pjς − m2

γj−1
pjς + m2

γj−1

m2

γj−1
− 1

(36)

Since T h,j
f,m is the finish time for a equivalent homogeneous

jth-level subtree, one can obtain

T h,j
f,m = (1 · Tcp)2weqj = (αj,0Tcp)2w

where j = 1, 2, ..., k − 1 (37)

From Definition 4,

γj =
weqj

w
= α2

j,0

=
1(

m2

γj−1
− 1

)2
×

{
1 +

m4

γ2
j−1

pjς − m2

γj−1
pjς +

m2

γj−1

−2

√
m4

γ2
j−1

pjς − m2

γj−1
pjς +

m2

γj−1

}

where j = 1, 2, ..., k − 1 (38)

• Level k Subtree: Root Node with Data Storage, Power 2

The timing diagram of the top equivalent single level tree,
level k, is similar to Figure 2. However, the following nota-
tion is replaced as αi = αk,i (i = 0, 1, 2, ..., m); zi = pk−1z
(i = 1, 2, ..., m); w0 = w; and wi = weqk−1 (i = 1, 2, ..., m).
Consequently, the fundamental recursive equations of the kth-
level subtree are derived as follows.

(αk,0Tcp)2w = (αk,iTcp)2weqk−1 i = 1, 2, 3, ..., m (39)

The normalization equation for the kth single level tree with
intelligent root and simultaneous start is

αk,0 + αk,1 + αk,2 + ... + αk,m = 1 (40)

This gives m+1 linear equations with m+1 unknowns. From
(39),

α2
k,i =

wT 2
cp

weqk−1T 2
cp

α2
k,0 =

1

γk−1
α2

k,0 (41)

αk,i = ±
√

1

γk−1
αk,0 (42)

Since αk,i > 0,

αk,i =
1√

γk−1
αk,0 i = 1, 2, ..., m (43)

From (40) and (43), one can derive the distribution αk,0 as
follows:

αk,0 +

m∑
i=1

1√
γk−1

αk,0 = 1

αk,0 =
1

m√
γk−1

+ 1
(44)

Therefore, the equivalent finish time, T h,k
f,m, for a homogeneous

kth-level tree with m children nodes can be obtained.

T h,k
f,m = (1 · Tcp)

2weqk = (αk,0Tcp)2w

From Definition 4,

γk =
weqk

w
= α2

k,0 =
1(

m√
γk−1

+ 1
)2

Speedup =
1

γk
=

(
m√
γk−1

+ 1

)2

For a homogeneous multi-level fat tree using simultaneous
start, the computation capability of each node is w, thus, weq0

is equal to w, which is the inverse computing speed of the
bottom most layer nodes. To summarize,

γ0 =
weq0

w
=

w

w
= 1 (45)

γj =
1(

m2

γj−1
− 1

)2
×

{
1 +

m4

γ2
j−1

pjς − m2

γj−1
pjς +

m2

γj−1

−2

√
m4

γ2
j−1

pjς − m2

γj−1
pjς +

m2

γj−1

}

where j = 1, 2, ..., k − 1 (46)

γk =
1(

m√
γk−1

+ 1
)2

(47)

Speedup =

(
m√
γk−1

+ 1

)2

(48)

• Special Case: pjς Approaches Zero

If pjς → 0, the model will approach an ideal case. Each
node can receive the load instantly and compute the data
immediately.

Since the structure of this multilevel tree can be collapsed
from bottom most level subtree upwards to topmost level sub-
tree and finally collapsed into a single node, the recursive
equation (46) can be simplified as

γj =
1 + m2

γj−1
− 2

√
m2

γj−1(
m2

γj−1
− 1

)2
=

1(
m√
γj−1

+ 1
)2

(49)

Since the formula of γj is the same form as that of γk, we can
obtain a closed form solution of γk.

γk =
1

(m0 + m1 + m2 + · · ·+ mk)2
(50)

Speedup =

k∑
l=0

(ml)2 where k = 1, 2, 3, ... (51)

Speedup, which is equal to (m0 + m1 + m2 + · · · + mk)2, is
proportional to the total number of nodes by power 2. This
is consistent with the ideal situation.

V. Conclusion

This research result is extremely promising in providing a
tractable means of assigning load to processors in an optimal
manner for the important case of divisible loads with nonlinear
computational complexity with its many applications.

This work indicates that an (integer) χth order dependency
of computation time on divisible problem size necessitates the
solution of an χth order polynomial. It should be noted that
numerical (arithmetic) problem may occur in solving polyno-
mials when χ is large.

References
[1] V. Bharadwaj, D. Ghose, and T. Robertazzi, “A new paradigm

for load scheduling in distributed systems,” Cluster Computing,
vol. 6, pp. 7–18, Jan 2003.

[2] Y. Cheng and T. Robertazzi, “Distributed computation with com-
munication delays,” IEEE Transactions on Aerospace and Elec-
tronic Systems, vol. 22, pp. 60–79, 1988.

[3] V. Bharadwaj, D. Ghose, V. Mani, and T. Robertazzi, “Scheduling
divisible loads in parallel and distributed systems,” IEEE Com-
puter Society Press, Los Alamitos CA, 1996.

[4] J. T. Hung, H. Y. Kim, and T. G. Robertazzi, “Scalable scheduling
in parallel processors,” 2002 Conference on Information Sciences
and Systems, pp. 376–381, March 2002. Princeton University.

[5] G. D. Barlas, “Collection aware optimum sequencing of operations
and closed form solutions for the distribution of divisible load on
arbitrary processor trees,” IEEE Transactions on Parallel and
Distributed Systems, vol. 9, pp. 429–441, May 1998.

[6] S. Bataineh and T. G. Robertazzi, “Bus oriented load sharing for
a network of sensor driven processors,” IEEE Transactions on
Systems, Man and Cybernetics, vol. 21, no. 5, pp. 1202–1205,
1991.

[7] J. Blazewicz and M. Drozdowski, “Scheduling divisible jobs on
hypercubes,” Parallel Computing, vol. 21, no. 12, pp. 1945–1956,
1995.

[8] O. Beaumont, L. Carter, J. Ferrante, L. A., and Y. Robert,
“Bandwidth-centric allocation of independent tasks on heteroge-
neous platforms,” Proceedings of the International Parallel and
Distributed Processing Symposium (IPDPS’02), June 2002.

[9] Y. Yang and H. Casanova, “UMR: A multi-round algorithm for
scheduling divisible workloads,” Proceedings of the International
Parallel and Distributed Processing Symposium (IPDPS’03),
April 2003.

[10] H. J. Kim, “A novel load distribution algorithm for divisible loads,”
Special Issue of Cluster Computing on Divisible Load Scheduling,
vol. 6, pp. 41–46, 2002.

[11] D. A. L. Piriyakumar and C. S. R. Murthy, “Distributed compu-
tation for a hypercube network of sensor-driven processors with
communication delays including setup time,” IEEE Transactions
on Systems, Man, and Cybernetics-PART A: Systems and Hu-
mans, vol. 28, pp. 245–251, March 1998.

[12] K. A. Ross and C. R. B. Wright, Discrete Mathematics. Prentice
Hall, 4 ed., 1999.

[13] R. S. Burington, Handbook of Mathematical Tables and Formulas.
McGraw-Hill Book Company, 5 ed., 1973.

