
2004 Conference on Information Sciences and Systems, Princeton University, March 17–19, 2004

Equal Allocation Scheduling for Data Intensive Applications

Kwangil Ko*,

Thomas Robertazzi**
*Samsung Electronics

*Dept. of Electrical and Computer
Engineering,

Stony Brook University,
Stony Brook, NY 11794

Phone: 631-632-8412/8400 Fax:
631-632-8494

e-mail: tom@ece.sunysb.edu

Abstract — A new analytical model for equal al-

location of divisible computation and communication

load is developed. Equal allocation of load is attrac-

tive in multiple processor systems when real time in-

formation on processor and link capacity that is nec-

essary for optimal scheduling is not available. The

model includes a detailed accounting of solution re-

porting time. Equal allocation scheduling is com-

pared to sequential scheduling and a new type of

multi-installment scheduling. Aerospace applications

include the processing of satellite imagery, radar and

sensor networks.

I. Introduction

The combination of the cost decrease and performance im-
provement in both computers and data storage devices has
led to new data intensive applications in the aerospace field.
Examples include processing satellite imagery, radar and sen-
sor networks. It is becoming more common to conceive and
implement systems processing on the order of a petabyte (i.e.
1015 bytes) of data a year. A useful tool for modeling and
evaluating the performance of such data parallel applications
is divisible load scheduling theory.

In a divisible load scheduling model, load is assumed to
be completely partitionable (divisible) in terms of both com-
putation and communication. Model parameters include pro-
cessor and link speed(s), and computation and communica-
tion intensity. A specific model is also characterized by the
parallel processor interconnection topology, scheduling policy
and load distribution assumptions. Divisible load scheduling
analysis makes use of linear and continuous variable mathe-
matics to produce a tractable model. Typically one seeks to
solve a particular model for the optimal allocation of load,
optimal speed-up and optimal solution time. The study of di-
visible load models began in 1988 with papers by Cheng and
Robertazzi [11] and Agrawal and Jagadish [2]. There are now
tutorials [17], surveys [5] and a monograph [6] on this subject.

In this paper an alternative to optimal scheduling for divis-
ible loads, equal allocation of load to processors, is considered.
That is, we consider a policy where each of N processors re-
ceives 1/N of the load. There are two practical reasons for
considering such a policy. One reason is that optimal policies
require real time knowledge of available processor and link
capacities. If a system is not instrumented to provide such
information, which is not a trivial undertaking, then equal

allocation scheduling may be a reasonable policy. This is
particularly true of clusters of homogeneous (i.e. identical)
computers, an environment that often arises in practice. A
second reason to study equal allocation scheduling is to deter-
mine how much finish time or speedup is degraded compared
to optimal scheduling policies.

A typical aerospace application of equal allocation schedul-
ing is processing a stream of still images from a satellite. A
cluster of computers on the ground may be used to scan each
of many images for significant features. Naturally, to the gran-
ularity level of a single image, the load is divisible and may
be assigned either in equal division style or optimally among
the computers. Optimal allocation of load is advantageous
when the cluster is heterogeneous, there is significant commu-
nication delay in transporting the load to processors and/or
asymmetry in the load distribution, when a finite batch of
jobs is processed and when, most importantly, available pro-
cessor/link effort information is accessible in real time. Equal
allocation scheduling is advantageous when these conditions
are reversed, particularly when the cluster is homogeneous
and real time information on available processor/link effort is
not accessible.

The target architecture models developed in this paper
are for a heterogeneous L-level K-ary tree topology. Using a
tree topology is quite generic as any arbitrary interconnection
topology can be spanned by a tree. Thus spanning distribu-
tion trees can be used to distribute or receive load in meshes,
hypercubes, torii and other popular interconnection topolo-
gies (this is not to say that detailed studies of specific archi-
tectures are not of interest [9,12]). Also if L=1 and all link
speeds are equal, the tree reduces to a bus architecture. While
the processors and links considered here are heterogeneous, a
symmetrical tree is considered as a baseline. The results can
be extended to non-symmetrical trees of particular interest,
though.

The paper presents the first published closed form results
for speedup for a multilevel tree network under equal alloca-
tion scheduling. This is compared with optimal single install-
ment and a novel multiple installment scheduling. We find im-
provements in speedup under optimal scheduling versus equal
allocation scheduling of as large as 70%.

In terms of related work, divisible load models involving
single installment load distribution for trees were first consid-
ered in 1988 by Agrawal and Jagadish using a linear program-
ming approach [2] and in 1990 by Cheng and Robertazzi [10]
using an algebraic approach. Agrawal and Jagadish presented

numerical (though not analytical) results for equal allocation
scheduling, which they referred to as “naive” scheduling. Load
distribution sequencing in trees is discussed by Kim, Jee and
Lee in [14] and by Bharadwaj, Ghose and Mani in [8]. Load
distribution in trees is also studied by Barlas in [4]. Note that
Cheng and Robertazzi considered equal allocation scheduling
for linear daisy chains in [11]. The use of multiple install-
ments of load distribution in tree networks was first examined
by Ghose, Mani and Bharadwaj in 1995 [7] and by Casanova
and Yang [19] in 2003. Asymptotic results for large trees us-
ing the single installment policy by Ghose and Mani appeared
in 1994 [13] and were also published by Bataineh and Rober-
tazzi in 1997 [3]. Asymptotic multi-installment results appear
in [7]. Finally, the concept of an equivalent processor, used
in this paper was introduced in Robertazzi [16]. A proof that
optimal load allocation can be found by forcing all proces-
sors to stop computing at the same instant is presented in
[18]. The superiority of processors returning solutions in the
same order that work is received was demonstrated in 1988 by
Agrawal and Jagadish [2] and, using a different method, by
Adler, Gong and Rosenberg in 2003 [1].

This paper is organized as follows. The system model is
presented in section II. Equal allocation scheduling, sequen-
tial optimal scheduling and multi-installment scheduling are
modeled in sections III, IV, and V, respectively. Numerical
results appear in section VI. The conclusion is in section VII.

II. System Model of L-level K-ary Tree

Network

0 ,0

1 ,1

3 ,22 ,2

7 ,36 ,35 ,34 ,33 ,32 ,31 ,30 ,3

0 ,2 1 ,2

0 ,1 2 ,1

5 ,24 ,2

8 ,3

6 ,2 8 ,27 ,2

16 ,315 ,314 ,313 ,312 ,311 ,310 ,39 ,3 17 ,3 25 ,324 ,323 ,322 ,321 ,320 ,319 ,318 ,3 26 ,3

θ0 ,1 θ1 ,1 θ2 ,1

θ0 ,2 θ1 ,2 θ2 ,2 θ3 ,2 θ4 ,2 θ6 ,2θ5 ,2 θ7 ,2 θ8 ,2

Figure 1: 3-level 3-ary tree network.

A heterogeneous L-level K-ary tree network of communi-
cating processors is considered. For an example, a 3-level,
3-ary tree network is shown in Fig. 1. It is a 3-level tree as
the first (root) level is level 0. Each processor is labeled in
terms of indexes from left to right and level to level. Here
pi,j is the ith processor at the jth level. Processor 0 at level
0 is assumed to be the originating (root) processor which se-
quentially distributes the fractions of the entire load to K
processors. All processors in the Lth level are terminal nodes
and other processors each have K children processors. Nodes
which have children processors distribute load sequentially to
their children.

It is assumed that communication speeds are high enough
relative to computation speeds that eliminating subtrees does
not result in a speedup improvement [6].

There exists Kj processors at the jth level for j =
0, 1, 2, · · · , L . Thus, the model of a L-level K-ary tree network

consists of
∑L

j=0
Kj processors. Without loss of generality, it

will be assumed that the load is instantaneously available at
processor 0 at time 0. Each processor is interfaced with the
network via a front-end communication processor for commu-
nication off-loading. That is, the processors can communicate
and compute at the same time.

It is important for pi,j to know the index of its parent
processor since pi,j receives load fractions from its parent pro-
cessor. Naturally, the parent processor of pi,j is located at the
(j − 1)th level just above the jth level. The integer part of i

K

indicates the order (index) of parent processor as all proces-
sors at the (j − 1)th level have K children processors. Thus,
the parent processor of any processor, pi,j for j = 1, 2, · · · , L
and i = 0, 1, · · · , Kj − 1 is pint(i/K),j−1. Let PP (pi,j) be the
parent processor of pi,j .

PP (pi,j) = pint(i/K),j−1 (1)

Here, int(·) is the rounding down to the nearest integer. Fur-
ther the grandparent processor of pi,j for any j = 1, 2, · · · , L
and i = 0, 1, · · · , Kj − 1 is PP [PP (pi,j)].

PP [PP (pi,j)] = PP

(

pint(i/K),j−1

)

= Pint(int(i/K)/K),j−2

= Pint(i/K2),j−2 (2)

Generally, the ancestor processor of pi,j at the lth level(l < j)
is (j − l) levels above the jth level. In a manner similar to
equation (2), the ancestor processor of pi,j at the lth level
defined as Al

P (Pi,j) is expressed as follows:

Al
P (Pi,j) = pint(i/Kj−l),l (3)

This expression allows one to identify the ancestor processors
of any processor, pi,j and perceive which processor distributes
load fractions to it.

Alternately, a processor, pi,j for any j = 0, 1, · · · , L − 1
and i = 0, 1, · · · , Kj − 1 has K children processors labeled
piK+m,j+1 for m = 0, 1, · · ·K − 1.

The following notation will be used throughout this paper:

• pi,j : The ith processor at the jth level.

• αi,j : The fraction of the entire processing load that is
assigned to the ith processor at the jth level.

• wi,j : A constant inversely proportional to the computa-
tion speed of the ith processor at the jth level (see Fig
1).

• zi,j : A constant inversely proportional to the channel
speed of the ith link at the jth level.

• Tcp: Computing intensity constant. The entire load is
processed in wi,jTcp seconds by the ith processor at the
jth level.

• Tcm: Communication intensity constant. The entire
load can be transmitted in zi,jTcm seconds over the ith

link at the jth level.

• T sol
cm : Solution reporting communication intensity con-

stant. The entire solution report can be transmitted in
zi,jT

sol
cm seconds over the ith link at the jth level.

Note that Tcp and Tcm are properties of the load. As com-
putation and communication intensities, respectively, they af-
fect the relative duration of computing and communication in
the scheduling process.

III. Equal Allocation Scheduling

A multilevel tree is considered where load is distributed
from the root to the children in a store and forward mode of
operation and “solutions” are transmitted back to the root.

Each processor transmits load fractions to its children pro-
cessors in sequence. That is, each processor transmits all the
load that its left child (and its children) will require, then it
does the same for the next (to the right) child and so on. Each
processor, that is not a terminal node, repeats this load distri-
bution policy. Thus, although load originates at the root, as
load distribution proceeds multiple nodes in the tree will be
concurrently distributing load. In equal division load schedul-
ing, each processor keeps the same fraction of the total load for
processing. A L-level K-ary tree network has

∑L

j=0
Kj pro-

cessors. Let ε be the fraction assigned to any processor. Con-
sequently the fraction of normalized load for each processor is
obtained from the inverse of the total number of processors.

ε =
1

∑L

j=0
Kj

(4)

The root processor at level 0 keeps ε, a fraction of the
total processing load for itself to compute and divides and
distributes the remaining load to its children processors at
the next level. The processors at this level perform the same
operation with the load they receive. This process continues
until the processors located at the terminal nodes of the tree
are assigned their share of the processing load.

Our goal is to find expressions for the solution (finish) time
and speedup for the system described under equal division
scheduling. Towards this end, the following subsection shows
how to calculate a communication delay for each processor.
Each processor starts to process its load fraction as soon as it
receives its load share and its descendants’ load shares com-
pletely.

Communication delay is divided into three parts; one is the
time delay incurred by the parent processor, the second is the
time delay incurred by the previous brother processors at the
same level (which are children of the parent node), and the
third is the time taken for pi,j to receive its load fraction and
load fractions for descendant processors. The time at which
the processor, pi,j finishes receiving its load fraction is defined
as Cd (pi,j). Assume that the parent processor distributes load
fractions to its children processor starting from the left to the
right.

Cd (pi,j) = tr (pi,j) + ti (pi,j) + tp (pi,j) (5)

Here, in a different order, tr (pi,j), ti (pi,j) and tp (pi,j) are the
times taken to receive load fractions over the link to pi,j , the
time delay incurred by the prior brothers processors, and the
time delay incurred by the parent processor of pi,j , respec-
tively.

tr(pi,j) =
1 − KL−j+1

1 − K
εzi,jTcm (6)

Here, ε is the size of a fraction. The receiving time delay from
the parent processor of pi,j depends on the level i, and only
zi,j , the inverse link speed connected to pi,j .

ti (pi,j) =

mod(i/K)−1
∑

n=0

tr(pinx(n,i),j) (7)

tp (pi,j) = Cd

(

Aj−1
P (pi,j)

)

(8)

The finish (solution) time for equal allocation scheduling is
thus obtained as follows:

T EAS
f (L, K) = Cd(pL,KL) + εwKL

−1,LTcp + Sd (9)

The first term is the communication delay for pKL
−1,L, the

second term is the computation time for pKL
−1,L and the third

term is the reporting time.

... ...

ε w int(i) , j -1T c p

ε w i,jT c p

ε w in t (i /K)*K,jT c p

ε w iK , j+1T c p

......

... ...

... ...

...

...

ε w in t (i /K)*K+K-1, jT c p

...

...

...

...

t r(p i,j)t i(p i,j)
tp(p i,j)`

t r(p iK , j+1)tp(p iK, j) = C d(p i,j)

P int(i /K), j -1

P in t (i /K)*K,j

P i,j

P in t (i /K)*K+K-1, j

P iK , j+1

Figure 2: Timing diagram of equal division scheduling.

Fig. 2 illustrates equal division scheduling. In the dia-
gram communication time appears above each horizontal time
axis and computation time appears below each horizontal time
axis. In Fig. 2, the third row is for pi,j . Referring to the figure
for pi,j , prior to the start of computation for this processor it
receives load from its parent, immediately after the start of
its computation it distributes load to its descendants. The
first receiving brother processor is located on the second axis.
Note that from the figure, solutions are reported back up the
tree to the root in the same order that load is distributed in.
This assumption is also made for the two optimal techniques
appearing later in the paper.

IV. Sequential Optimal Scheduling

In sequential optimal scheduling, each processor that is not
a terminal node distributes load to each child (once) in turn
from left to right. The single transmission of load to a child
includes all loads that child’s descendants will need. Thus the
“sequencing” is similar to equal allocation scheduling except
that the size of load fractions will now be determined opti-
mally. In sequential optimal scheduling, solution reporting
times are staggered in a subtree of a L-level K-ary tree net-
work. Children processors finish reporting their solution while
a parent processor is processing.

In this section, the closed forms of the finish time and
speedup for a L level K ary tree network is considered. The
scheduling discussed here includes solution reporting time, un-
like previous work. It is assumed that the solution reporting
order (of processors) is the same as the order of load distribu-
tion. The procedure to obtain the finish time for a L level K
ary tree network can be expanded to a general tree network.

The technique used here, established in [10], is to calcu-
late the multilevel tree finish time (and speedup) by finding
an equivalent processor that exactly represents the multilevel
tree operating characteristics. This is done by finding equiva-
lent processors for each single level subtree (one sub-root with

K children) starting from the bottom of the tree and proceed-
ing recursively upwards. At level j the processor that replaces
processor i and its descendants has equivalent inverse process-
ing speed weq

i,j . When the recursive process finishes, one has
the equivalent inverse speed of the root processor weq

0,0 which is
the same as the overall multilevel tree. Note that [10] does not
consider solution reporting time, as the model in this paper
does.

To find weq
i,j at the jth level for the ith processor, Xm is

defined as follows:

Xm =
weq

iK+m+1,j+1Tcp + ziK+m+1,j+1Tcm

weq
iK+m,j+1Tcp + ziK+m,j+1T sol

cm

(10)

Then αi,j , the fraction of load assigned to the ith processor
at the jth level.

Now equation (10) is substituted into the above equation.
The equivalent processor speed can be obtained as follows:

weq
i,j = αi,j · wi,j (11)

In the above equation, weq
i,j is expressed using its original

processor speed, wi,j and the equivalent children processor
speeds, weq

iK+m,j+1 for m = 0, 1, · · · , K − 1. Then the finish
time is:

T SOS
f (L, K) = weq

0,0Tcp (12)

A complete derivation of this result appears in [15].

V. Multi-Installment Optimal Scheduling

In the equal allocation and sequential distribution of the
previous sections, a child processor receives load fractions at
the same time for itself and for processors at the next level.
This causes the processors at each level to have long idle time.
In this section, a processor at the jth level doesn’t distribute
all load at once to each descendent processors but instead dis-
tributes load in turns (installments) to its descendent proces-
sors. The first version of multi-installment optimal scheduling
was developed originally by Bharadwaj, Ghose and Mani [6,7]
as a way to reduce solution time by modifying the load distri-
bution policy. In Bharadwaj et. al. partial load is delivered
in several installments (rounds) to each processor to minimize
idle time.

A somewhat different approach is taken in this paper for
the first time, distributing load in complete integral units to
each individual processor but in “installments” to the proces-
sors in the tree as a whole. That is, each node including the
root distributes load to each of (only) K processors in turn
during each set of installments. During each succeeding in-
stallment load is distributed in integral units for another K
processors. The process repeats until all of the tree’s proces-
sors have received load. The amount of load to allocate to
each processor is determined optimally in the context of this
scheduling policy.

This scheduling strategy is best illustrated by way of exam-
ple. Referring to Figure 1 let, again, i be the children number
and j be the level number for processor pi,j . In a 3-level 3-ary
tree network, for instance, the root processor, p0,0 distributes
fractions to children processor in the sequence of p0,1, p1,1,
p2,1. As soon as each processor at the first level receives its
load fraction, it begins to process. Again p0,0 distributes load
fractions to p0,1, p1,1, and p2,1 in sequence. As p0,1, p1,1, and
p2,1 already received their load fractions, these processors can

redistribute load to their children processors. That is as soon
as they receive fractions, p0,1, p1,1, and p2,1 distribute load
fractions to p0,2, p3,2 , and p6,2 respectively. After that, addi-
tional load fractions are distributed to p0,1, p1,1, and p2,1. As
p0,2, p3,2 , and p6,2 already received their load fractions, this
time, p0,1, p1,1, and p2,1 distribute load fractions to p1,2, p4,2,
and p7,2 respectively.

The receiving order at the second level is p0,2, p3,2, p6,2,
then p1,2, p4,2, p7,2, then p2,2, p5,2, and p8,2. After each pro-
cessor at the second level receives its load fraction, it begins
to distribute the load fractions received from its parent pro-
cessor. This procedure continues until the terminal processors
receive their fraction.

As in the previous optimal strategy, solution reporting or-
der is the same as the order in which load is distributed.

0 , 0

0 , 1

0 , j i , j

m , 1 K - 1
,1

0 , L

K j-1 , j

i K + 0
, j+1

i K + m
, j+1

iK + K -1
, j+1

0,
j+ 1

K j+1-1
, j+1

0

K , j i+K
, j+1

1 K * m o d (i / K)
+ in t (i /K) K j-1K * m o d (i / K)

+ i n t (i / K) + 1

0 m K - 1

K L-1
,L

Figure 3: A L-level K-ary tree network.

This strategy shuffles the index, i in pi,j . In Fig. 3, the
number beside the link indicates the distribution sequence at
the same level. Now, the actual sequence of load distribution
at the jth level of our type of multi-installment scheduling as
described above can be calculated with a “processor identifi-
cation number,” the index i in pi,j .

pi,j = p′

K·mod(i
K)+int(i

K),j
(13)

or

p′

m,j = pK·mod(m
K)+int(m

K),j (14)

Thus pi,j is the
(

K · mod
(

i
K

)

+ int
(

i
K

))th
receiving proces-

sor at the jth level. Let p′

m,j be the mth receiving processor
at the jth level. Furthermore, α′

m,j , w′

m,j , and z′

m,j are rel-
ative to p′

m,j . The prime variable is written in terms of the
actual sequence of load distribution to account for the load
distribution shuffling of processor identification.

The goal in the following is to find expressions for the fin-
ish time and speedup of this optimal multi-installment load
distribution policy for the described multilevel tree network.
To accomplish this, one sets up linear timing equations, as is
usually done in the literature [6], for this scheduling policy. To

achieve a solution with optimal finish time all of the processors
should stop computing at the same instant (intuitively other-
wise load could be transferred between processors to improve
the solution [6,18]). One uses this fact to algebraically solve
for the optimal fraction of load to assign to each processor.
Note that only the final result is presented here, a complete
derivation appears in [15].

Let:

Xm,j =
α′

m,j

α′

m+1,j

=
w′

m+1,jTcp + z′

m+1,jTcm

w′

m,jTcp + z′

m,jT
sol
cm

(15)

Then α′

n,j for 0 ≤ n ≤ Kj − 1 can be rewritten in terms of
α′

0,j as:

α′

n,j =

n−1
∏

m=0

X−1
m,jα

′

0,j (16)

Also, let:

Yj =
α′

0,j

α′

0,j+1

(17)

Since the root processor processes load during the entire
scheduling process, the finish (solution) time is:

T MOS
f (L, K) = α′

0,0wTcp (18)

=
wTcp

1 +
∑L

l=1

∑Kl
−1

n=0

(
∏n−1

m=0
X−1

m,l

)

·
(

∏l−1

j=0
Y −1

j

)(19)

VI. Numerical Results

As mentioned, speedup, for a computational problem, is the
ratio of solution time on one processor to solution time on N
processors. It is thus a measure of parallel processing advan-
tage.

Representative values of speedup versus the K and L for
equal allocation scheduling, sequential optimal scheduling and
multi-installment optimal scheduling appears in Figure 4.
Note that if, for instance, L = 1 and K = 3, there is one
root and three children.

Sequential scheduling and the multi-installment scheduling
are compared with equal allocation scheduling in Tables 1 and
2. The speedup improvement in the tables is obtained as
follows. Let the speedup improvement measures be:

IS|Table 1 =
SSOS (L, K) − SEAS (L, K)

SEAS (L, K)
× 100 [%] (20)

IS|Table 2 =
SMOS (L, K) − SEAS (L, K)

SEAS (L, K)
× 100 [%] (21)

Here, SEDS (L, K), SSOS (L, K) and SMOS (L, K) are the
speedups for equal allocation scheduling, sequential scheduling
and multi-installment scheduling, respectively. The speedups
are defined as follow:

SEAS (L, K) =
wTcp

T EAS
f (L, K)

(22)

SSOS (L, K) =
wTcp

T SOS
f (L, K)

(23)

SMOS (L, K) =
wTcp

T MOS
f (L, K)

(24)

K = 1 K = 2 K = 3 K = 4

L = 1 3.0000 4.8657 6.6068 8.2321

L = 2 7.7911 13.2612 18.8595 23.6171

L = 3 14.0182 22.4653 29.0953 31.5415

L = 4 21.3361 29.3861 32.7270 26.7681

Table 1: Speedup Improvement in Percentage: Equal Al-
location Scheduling vs. Sequential Optimal Scheduling;

wi = 1, zi = 0.05, Tcp = 1, Tcm = 1, T
sol
cm = 0.2

Five or six digits accuracy is shown in the tables, not be-
cause real scheduling is that precise, but to aid in result repli-
cation.

Comparing the multi-installment scheduling with the se-
quential scheduling, the multi-installment strategy has the
higher speedup. It is expected that speedup for all three
strategies will saturate for large K or L. All three strategies
are ultimately limited by communication delays across levels
of the tree and by the assumed sequential distribution to each
child in each subtree.

In the tables it can be seen that speedup improvements of
optimal scheduling over equal allocation scheduling of from
3% to 70% were found for the tree topology. As L and K are
increased the speedup improvement first increases then may
decrease for certain parameter combinations.

It is interesting to ask over what range of parameter values
is the speedup improvement most pronounced. For a homo-
geneous network, if a job is computation intensive one would
expect 1/N equal allocation scheduling to be optimal. If a job
is communication intensive, the use of a single processor may
well be optimal. It is that range where computation intensity
is on the order of communication intensity that one can expect
optimal scheduling to be most efficacious.

1 1.5 2 2.5 3 3.5 4
0

2

4

6

8

10

12

14

16

18

K−ary

S
pe

ed
up

Equal Division Scheduling
Sequential Scheduling
Multi−Installment Scheduling

Figure 4: Speedup vs. K and L; L = 3; wi = 1, zi = 0.05,

Tcp = 1, Tcm = 1, T
sol
cm = 0.2.

VII. Conclusion

This is the first published analysis of equal allocation
scheduling for multilevel tree networks. Equal allocation
scheduling is a pragmatic choice for situations where proces-
sor and link effort are not known in real time and where net-
works are homogeneous. Results here, which agree with the

K = 1 K = 2 K = 3 K = 4

L = 1 3.0000 4.8657 6.6068 8.2321

L = 2 9.5714 18.6093 26.8686 32.4850

L = 3 20.2847 43.5657 49.8413 36.7902

L = 4 34.6968 70.2669 42.7284 20.8299

Table 2: Speedup Improvement in Percentage: Equal
Allocation Scheduling vs. Multi-Installment Optimal

Scheduling; wi = 1, zi = 0.05, Tcp = 1, Tcm = 1,

T
sol
cm = 0.2

experience of the senior author, is that the degradation in per-
formance compared to optimal scheduling is often less than a
factor of two, which would be adequate and cost effective for
certain situations. We believe that the relative performance
ordering noted here of the three scheduling policies will carry
over to other topologies though the numerical amount of im-
provement will, of course, differ. Useful future work would
include determining performance degradation bounds, both
across possible parameter values for a particular topology and
across different topologies.

Acknowledgments

The support of the National Science Foundation through
grant CCR-99-12331 is acknowledged.

References

[1] Adler, M., Gong, Y. and Rosenberg, A.L. (2003) Optimal Shar-
ing of Bags of Tasks in Heterogeneous Clusters. In Proceedings

of SPAA’03 (2003).

[2] Agrawal, R. and Jagadish, H.V. (1988) Partitioning techniques
for large-grained parallelism. IEEE Transactions on Comput-

ers, 37 (1988), 1627-1634.

[3] Bataineh, S. and Robertazzi, T.G., (1997) Performance limits
for processor networks with divisible jobs. IEEE Transactions

on Aerospace and Electronic Systems, 33 (1997), 1189-1198.

[4] Barlas, G.D. (1998) Collection-aware optimum sequencing of
operations and closed-from solutions for the distribution of di-
visible load on arbitrary processor trees. IEEE Transactions on

Parallel and Distributed Systems, 9 (1998), 929-941.

[5] Bharadwaj, V., Ghose, D. and Robertazzi, T.G. (2003) Divisible
load theory: a new paradigm for load scheduling in distributed
systems. Cluster Computing, 6 (2003).

[6] Bharadwaj, V. Ghose, D., Mani, V. and Robertazzi, T.G. (1996)
Scheduling Divisible Loads in Parallel and Distributed Systems,
Los Alamitos CA: IEEE Computer Society Press, 1996.

[7] Bharadwaj, V., Ghose, D. and Mani, V. (1995) Multi-
installment load distribution in tree networks with delays. IEEE

Transactions on Aerospace and Electronic Systems, 31 (1995),
555-567.

[8] Bharadwaj, V., Ghose, D. and Mani, V., Optimal sequencing
and arrangement in distributed single-level tree networks with
communication delays, IEEE Transactions on Parallel and Dis-

tributed Systems, 5 (1994), 968-976.

[9] Blazewicz, J. and Drozdowski, M. (1995) Scheduling divisible
jobs on hypercubes. Parallel Computing, 21, 1995, 1945-1956.

[10] Cheng, Y.-C. and Robertazzi, T.G. (1990) Distributed com-
putation for a tree network with communication delays. IEEE

Transactions on Aerospace and Electronic Systems, 26 (1990),
511-516.

[11] Cheng, Y.-C. and Robertazzi, T.G. (1988) Distributed com-
putation with communication delays. IEEE Transactions on

Aerospace and Electronic Systems, 24 (1988), 700-712.

[12] Drozdowksi, M. and Glazek, W. (1999) Scheduling a divisible
load in a three-dimensional mesh of processors. Parallel Com-

puting, 25, 1999, 381-404.

[13] Ghose, D. and Mani, V. (1994) Distributed computation with
communication delays: asymptotic performance analysis. Jour-

nal of Parallel and Distributed Computing, 23 (1994), 293-305.

[14] Kim, H.J., Jee, G.-I. and Lee, J.G. (1996) Optimal load dis-
tribution for tree network processors. IEEE Transactions on

Aerospace and Electronic Systems, 32 (1996), 607-612.

[15] Ko, K. and Robertazzi, T.G. (2003) Naive versus optimal
scheduling for data intensive applications. Stony Brook Uni-

versity College of Engineering and Applied Science Technical

Report 808, (2003).

[16] Robertazzi, T.G. (1993) Processor equivalence for a linear
daisy chain of load sharing processors. IEEE Transactions on

Aerospace and Electronic Systems, 29 (1993), 1216-1221.

[17] Robertazzi, T.G. (2003) Ten reasons to use divisible load the-
ory. Computer, 36 (2003), 63-68.

[18] Sohn, J. and Robertazzi, T.G. (1996) Optimal load sharing
for a divisible job on a bus network. IEEE Transactions on

Aerospace and Electronic Systems, 32 (1996), 34-40.

[19] Yang, Y. and Casanova, H. (2003) UMR: a multi-round algo-
rithm for scheduling divisible workloads. In Proceedings of the

International Parallel and Distributed Processing Symposium,
Nice France, April 2003.

