
Scheduling Nonlinear Divisible Loads in a Single
Level Tree Network

S. Suresh1, H. J. Kim2, Cui run2, and T. G. Robertazzi3

1 School of Computer Engineering
Nanyang Technological University

Singapore. Email: ssundaram@ntu.edu.sg

2 Division of Information Management and Security
Korea University

Seoul, South Korea.

3 State University of New York
Stony Brook, Stony Brook, New York, USA

July 19, 2011

Abstract: In this paper, we study the scheduling problem for polynomial time

complexity computational loads in a single level tree network with collective com-

munication model. The problem of minimizing the processing time is investigated

when the computational loads require polynomial order of processing time which

is proportional to the size of load fraction. In divisible load theory framework, the

presence of polynomial time complexity computational loads leads to solving higher-

order algebraic equations to find the optimal load fractions assigned to the processors

in the network. The problem of finding optimal load fraction is a computationally

intensive task. Using a mild assumption on the ratio of communication time to com-

1

putation time, we present a closed-form solution for near optimal load fractions and

processing time for the entire load fractions. Finally, we also present a closed-form

solution for scheduling polynomial loads with start-up delay in communication and

computation. The numerical speedup results obtained using closed-form solution

clearly show that super-linear speedup is possible for the polynomial computational

loads.

Index Terms: Nonlinear divisible loads, broadcast communication or simul-

taneously load distribution model, overhead delays, single-level tree network.

1 Introduction

A divisible load is an input load that can be arbitrarily partitioned and assigned to

distributed processors to gain the benefits of parallel and distributed processing. No

precedence relationships between atomic loads of the entire payload are assumed in

the divisible load theory. Atomic load cannot be divided further. Divisible loads are

data parallel loads that are perfectly divisible amongst links and processors. Such

loads arise in the parallel and distributed, and data intensive processing with massive

amounts of data. Massively data parallel applications suitable for divisible load

computing include grid computing, signal processing, image processing, multimedia

computing, bio-intelligent computing, geological data processing, and aerospace data

processing. Of course, arbitrarily divisible load applications relate to a narrow class

of problems.

Cheng and Robertazzi [12] are the pioneers in the divisible load theory. Since

1988 hundreds of works by a number of researchers [1, 3–13, 15, 18, 19, 21–23, 25–27,

29–35] have developed algebraic means determining optimal fractions of a load dis-

tributed to processors via corresponding links under a given interconnection topol-

2

ogy and a given scheduling policy. Here, optimality is defined in terms of speedup

and execution time. Speedup is defined by the ratio of the execution time of the

sequential algorithm to that of the parallel algorithm based on the divisible load

theory. The theory to date largely involves loads of linear computational complex-

ity [7, 8, 31]. In other words, computational or communication time is proportional

to the size of fractional loads distributed to processors via corresponding links. Di-

visible load modeling should be of interest as it models, both computation and

network communication in a completely integrated manner. A number of schedul-

ing policies have been investigated including multi-installments [6] and multi-round

scheduling [35], simultaneous distribution [19, 29], simultaneous start [25], detailed

parameterizations and solution time optimization [1] and combinatorial schedule

optimization [15]. Divisible loads may be divisible in fact or as an approximation

as in the case of a large number of relatively small independent tasks [5, 9]. Many

tutorials [7, 8, 31] on divisible load scheduling theory are available now.

Only a single level tree network (or star network) is considered in this paper

as it forms a fundamental interconnection topology among many topologies such as

linear daisy chains [12], buses [4,33], trees [3], hypercubes [10], and multidimensional

meshes [11,18]. Multilevel tree networks can be used as a spanning distribution tree

embedded in other interconnection topologies as well as being an interconnection

topology of interest in itself. In short, the single level tree network is an archetypal

network since it can generalize any topology [26].

There is an increasing amount of research on real-time modeling and simula-

tion of complex systems such as image processing [14], etc. It is well known that

many algorithms used in these areas require processing load of nonlinear complexity,

i.e., the computational time of the given data/load is a nonlinear function of the load

3

size (N). For example, line detection using Hough transform [14] and pattern recog-

nition using 2D hidden Markov model (HMM) [28] requires O(N2) computational

effort.The classical Hough transform was concerned with the identification of lines

in the image, but later this transform has been extended to identifying positions of

arbitrary shapes, most commonly circles or ellipses. The computational complexity

for N points is approximately proportional to N2. When, N is large, parallel or

distributed processing is desired [17]. A separable 2D HMM for face recognition

builds on an assumption of conditional independence in the relationship between

adjacent blocks. This allows the state transition to be separated into vertical and

horizontal state transitions. This separation of state transitions brings the com-

plexity of the hidden layer of the proposed model from the order of O(N3k) to the

order of O(2N2k), where N is the number of the states in the model and k is the

total number of observation blocks in the image [17] and O(2N2k) in worst-case. In

addition, we can also find real-world problems like molecular dynamic simulation

of macromolecular systems, learning vector quantization neural network [24] and

block tri-diagonalization of real symmetric matrices [2] which require second-order

computational complexity.

In most of the algorithms which require nonlinear computational complexity,

it is possible to divide the loads arbitrarily and process them independently such

that the total processing time is less than the processing time on a single proces-

sor [13]. For some cases, we may need post-processing of the results obtained from

the individual processors to get exactly the same solution as that of a solution ob-

tained from a single processor. In this paper, we follow the fundamental assumption

of arbitrarily divisible load [12] that the loads can be divided arbitrarily and can

be processed without any precedence. Also, the post-processing time required to

combined the results are assumed to be small and negligible. The computational

4

complexity of the algorithm processing the computational load is nonlinear. Load

is divided optimally by solving Equations (4) and (6).

Recently, Hung and Robertazzi [23] reiterate the nonlinear divisible load the-

ory. Here, the computational loads require nonlinear processing time depending on

the size of load fractions. In [23], the authors formulated the problem of schedul-

ing such nonlinear computational loads in divisible load theory framework. We can

determine the optimal load fractions assigned to the processors and the processing

time by solving the nonlinear algebraic equations. But, solving these equations re-

quires numerical methods and is computationally intensive to find optimal solution.

Hence, we consider polynomial time complexity computational loads in a single-level

tree network and present a closed-form solution for near optimal load fractions and

processing time.

In this paper, we study the scheduling problem for computational loads of

polynomial-order in a single level tree network with collective communication model

(also known as simultaneous load distribution). Here, the polynomial time com-

plexity computational load arrives at root processor and root processor distributes

the load fractions simultaneously using collective broadcast model [16]. First, we

formulate the scheduling problem for a general nth-order computational loads, i.e.,

processing time is O(Nn). Using a mild assumption on the ratio of communication to

computation time, we derive the closed-form expressions for optimal load fractions

assigned to child processors and the processing time for second- and third-order cases

(i.e., γ = 2 and γ = 3, respectively). The closed-form solution in this paper is an ap-

proximated solution because it is very difficult to derive an exact analytic solution.

Due to the nonlinearity of the equations, it is not possible to derive the closed-form

solution analytically. Only a numerical solution can be obtained. However, this

5

paper provides an analytical closed-form solution by a simple approximation of the

nonlinear equation. Numerical solutions are compared with the analytic solution to

see if they conform to each other. The results clearly indicate that the analytical

closed-form expression matches closely with the numerical solution. The numerical

speedup results obtained using the closed-form solution clearly show that a super-

linear speedup is possible for computational loads of polynomial-order. Super-linear

speedup means a speedup of more than p when using p processors. Finally, we also

present closed-form expressions for the load fractions and processing time in case of

overhead factors in communication and computation links in addition to inherent

computation and communication time.

First, nonlinear dependency in computational time function has been considered

in [20]. The main contributions of this paper are,

• With a polynomial computation time function, we first derive closed-form ex-

pressions for load fractions assigned to the processors in the network and total

load processing time. We also present the validity of the solution by compar-

ing with analytic solution obtained using a numerical solver for Equations (4)

and (6). The MATLAB nonlinear solver is used in this paper.

• With the proposed closed-form solutions, we can directly study the character-

istics (processing time, speedup and ultimate performance bounds) of polyno-

mial computational loads in a distributed system.

• Finally, we extend the results for the system with additive overheads in com-

putation and communication in addition to inherent communication and com-

putation time.

Section II describes the communication and computation model of divisible

6

load theory considered in this paper. In addition, nomenclatures, definitions and

notations are provided in this section. Section III derives the closed-form expressions

for load fractions and processing time for a single level tree network with a broadcast

communication model. This section also presents a numerical study to show super-

linear speedup is possible when the computational time is nonlinear function of the

size of load fractions. The study is extended to a system with overhead delays in

communication and computation in Section IV. Section V concludes the paper.

0

1

2 i

l

P

P

P P

l

l

1

2

Pi+1

l i+1

Pm

lm

 i

Figure 1: A single level tree network

2 Models and Notations

The single level tree network architecture considered in this paper is shown in Fig-

ure 1. Suppose there are m child processors (p1, p2, · · · , pm) connected to a load

originating processor (p0) through communication links (l1, l2, · · · , lm), as shown in

Figure 1. The processor p0 initially holds the processing load or computational load

(N) and the processing load can be partitioned into m + 1 independent fractions

7

(Nα0, Nα1, · · · , Nαm). Here, total size of processing load (N) is a very large quan-

tity. The root processor p0 keeps the load fraction Nα0 for itself and distributes the

remaining m fractions (Nα1, Nα2, · · · , Nαm) to the child processors (p1, p2, · · · , pm),

concurrently. Note that the processor p0 distributes the load fractions simultane-

ously, but not one by one (sequentially). Given that:

• The child processors start computing only after completely receiving the load

fraction.

• The root processor p0 can concurrently distribute the load fractions to its child

processors.

• The load distribution process starts at time t = 0 and there is no time gap

between communication and computation process.

Then, the finish time Ti for the processor pi is the time difference between the time

instant at which processor pi starts receiving the load distribution and the time

instant at which the processors stop computing.

Ti = T comm
i + T comp

i , (1)

where T comm
i is the load distribution time and T comp

i is the computation time given

as Equation (2). Ti is given as Equation (18), for example. These terms depend

on the type of communication model and the nature of algorithm processing the

computational load.

8

2.1 Collective Communication Model

In this paper, we use simultaneous broadcast (’All-Broadcast’) model for concur-

rent transfer of load fractions to child processors. All-Broadcast is a collective

communication model [16]. Using this collective communication model, the root

processor p0 can concurrently distribute/receive the load fractions to/from the child

processors p1, p2, · · · , pm. For example, the processor p0 can distribute the fractions

{Nα1, Nα2, · · · , Nαm} to the child processors p1, p2, · · · , pm concurrently using the

broadcast model [16]. In this model, the processor p0 concurrently writes the load

fractions Nα1, Nα2 · · · Nαm into the respective communication buffer. The child

processors read the data from the respective communication buffers.

The communication time required to completely receive the load fraction Nαi

through the communication link li is the sum of constant start-up delay, θcm, and

transmission time. The start-up time is a constant additive communication overhead

component that includes the sum of all delays associated with the communication

process. The transmission time is the time taken to read the data from the commu-

nication buffer by the processor pi. This time depends on the communication link

speed and transmission data size. Hence, the communication time, T comm
i , can be

written as follows:

T comm
i = θcm + (Nαi)Gi, (2)

where N is the size of the total processing load, and Gi is the time taken to read a

unit data from the buffer.

9

2.2 Polynomial Computation Model

For many practical applications, the computation complexity of the algorithm pro-

cessing the computational loads is nonlinear in problem size. Earlier studies in

divisible load theory assume a linear computation complexity in their study. In this

paper, we define the computational time function in terms of the running cost of an

algorithm, the computing speed of unit load in the CPU and delay in extracting the

actual load for processing.

The processor speed, pi, in a network is modeled using the parameter Ai which

is the time taken to process a unit load by the processor pi. The constant start-up

delay in processor pi due to load extraction and processor initialization is modeled

using the parameter θcp. The computation time T comp
i required to process the load

fraction (Nαi) is the sum of the constant additive start-up delay and nonlinear

computation time as follows:

T comp
i = θcp + (Nαi)

γ Ai, (3)

where γ is an integer constant. The value of the integer constant (γ) depends on the

nature of the algorithm used to process the load. The computation time function

for any given processor is a polynomial equation in load fraction size. Equation (3)

is completed using Equations (4) and (6).

2.3 Notation and Definitions

Notations:

N : The total size of the processing load.

m: Number of child processors.

10

γ: Integer constant depends on the nature of the algorithm used for processing

the load. For example, this value is 2 for second-order nonlinear system (See

Subsection 3.1).

αi: Fraction of the processing load assigned to processor pi, i = 0, 1, · · · ,m.

Ai: The computation speed parameter for processor pi.

Gi: The communication speed parameter for link li.

θcm: A constant additive communication overhead component that includes the

sum of all delays associated with the communication process.

θcp: A constant additive computation overhead component that includes the sum

of all delays associated with the computation process.

Definitions:

Ti: Finish time for processor pi is the time difference between the time instant

at which the processor pi stops computing and the time instant at which the

root processor p0 initiates the load distribution process.

T : Processing time is the time at which the entire load is processed; it is given

by the maximum of the finish time of all processors; i.e., T = max{Ti}, i =

0, 1, · · · ,m, where Ti is the finish time of processor pi.

3 Closed-Form Expression for Processing Time:

Non-Affine Case

In this section, we present a closed-form expression for load fractions and process-

ing time for non-affine case, i.e., the overhead factors are zero in communication

11

and computational model. Now, we shall derive a closed-form expression for the

processing time. For this purpose, we consider a heterogeneous single-level tree

network in which the root processor p0 uses a broadcast communication model to

concurrently distribute the load fractions (Nα1, Nα2, · · · , Nαm) to child processors

(p1, p2, · · · , pm). Here, we assume that the root processor p0 can start its computa-

tion while its front-end distributes the load fractions concurrently. The process of

load distribution is described using a timing diagram similar to a Gantt chart as

shown in Figure 2. Without loss of generality, it is assumed that the root processor

p0 starts broadcasting the load fractions at time t = 0. In divisible load theory

literature [7], it has been rigorously proved that for optimal processing time, all the

processors involved in the computation of the processing load must stop computing

at the same time instant. In this paper, we also use this optimality criterion.

From the timing diagram shown in Figure 2, the recursive equations for load

distribution are

(α0N)γ A0 = (αiN)γ Ai + (αiN)Gi, i = 1, 2, · · · ,m. (4)

Denoting fi =
Ai−1

Ai
and βi =

Gi

Ai
, for all i = 1, 2, · · · ,m. Equation (4) can be

rewritten as

(αiN)γ + (αiN) βi − (α0N)γ f1f2 · · · fi = 0, i = 1, 2, · · · ,m, (5)

Now, we see, from Equation (5), there are m nonlinear equations with m + 1

variables, and together with the normalization equation, we have m + 1 equations.

The normalization equation is written as

1 =
m∑
i=0

αi.. (6)

12

P

P

P

P

0

1

i

m

0 0
(α N)

(α N)

(α N)

(α N)

1 1

i i

m m

(α1N)
1

(α N)

N)

i i

m(αm

γ

γ

γ

γ

A

A

A

A

G

G

G

Figure 2: Timing diagram for load distribution process for non-affine case

In the earlier studies [12,25,26,31], divisible load theory has considered only the

first-order case (γ = 1). In this case, these m+1 equations are solved by expressing

each load fractions in Equation (5) in terms of α0. Using normalization equation, we

can obtain the closed-form expression for load fraction α0. In a general case of the

high-order functions (i.e., γ ≥ 2), it is difficult to express each αi in terms of α0 and

also difficult to find general solution. Hence, in the following subsection, first, we

present the closed-form expressions for second-order (γ = 2) complexity and next

we present the third-order complexity (γ = 3). Finally, we present approximate

closed-form solutions for higher-order complexity.

13

3.1 Case A: Second-Order Complexity (γ = 2)

For γ = 2, the load fractions are expressed in quadratic equations. Applying the

quadratic formula, we find the solution for the load fraction αi in terms of α0 from

Equation (5) as follows:

αi =
−βi ±

√
β2
i + 4 (α0N)2

∏i
k=1 fk

2N
, i = 1, 2, · · · ,m. (7)

Since, the load fractions αi are positive and greater than or equal to zero, we consider

only the positive real root as a solution as follows:

αi =
−βi +

√
β2
i + 4 (α0N)2

∏i
k=1 fk

2N
, i = 1, 2, · · · ,m. (8)

From the above we can see that there arem nonlinear equations withm+1 variables,

and together with the normalization equation, we have m + 1 equations. Now, we

will derive the closed-form expression for load fractions and processing time by

expressing αi (i = 1, 2, · · · ,m) in terms of α0 and normalization equation is used to

solve for α0.

By substituting Equation (8) in (6), we can get

2 (α0N)−
m∑
i=1

βi +
m∑
i=1

√√√√β2
i + 4 (α0N)2

i∏
k=1

fk = 2N. (9)

Note that Equation (9) is nonlinear and finding analytical solution is not possible.

Hence, in this paper, we find an approximate solution without loosing accuracy. The

square root term in Equation (9) is expressed using Taylor series as√√√√β2
i + 4 (α0N)2

i∏
k=1

fk = 2(α0N)
i∏

k=1

√
fk +

β2
i

4(α0N)
∏i

k=1

√
fk

+O

(βi

(α0N)2
∏i

k=1 fk

)2

.

The higher-order terms are function of
β2
i

4(α0N)2
∏i

k=1
fk
. The term in denominator is

much higher than the communication to computation speed ratio (βi), i.e., α0N >>

14

1, fi > 1 and βi < 1. Hence, the higher-order terms can be neglected without

sacrificing much of accuracy in the solution. Hence, the square root term can be

approximated as√√√√β2
i + 4 (α0N)2

i∏
k=1

fk = 2(α0N)
i∏

k=1

√
fk +

β2
i

4(α0N)
∏i

k=1

√
fk

. (10)

By substituting Equation (10) in Equation (9), we get

2(α0N)−
m∑
i=1

βi +
m∑
i=1

(
2(α0N)

i∏
k=1

√
fk +

β2
i

4(α0N)
∏i

k=1

√
fk

)
= 2N. (11)

Equation (11) is reduced to

8A(m) (α0N)2 − 4B(m) (α0N) + C(m) = 0, (12)

where f0 = 1, and

A(m) =

(
m∏
k=1

√
fk

)
.

(
1 +

m∑
i=1

k=1∏
i

√
fk

)
, (13)

B(m) =

2N +
m∑
j=1

βj

 m∏
k=1

√
fk, (14)

C(m) =
m∏
k=1

√
fk.

(
m∑
i=1

β2
i∏i

k=1

√
fk

)
. (15)

Since Equation (12) is quadratic in terms of (α0N), we can write the solution for α0

as follows:

α0 =
B(m)±

√
B(m)2 − 2A(m)C(m)

4NA(m)
. (16)

From Equations (14) and (15), we can show that B(m) > 0 and C(m) > 0. In

other words, B(m)C(m) > 0. In addition, from Equations (13), (14), and (15), we

can show that B2(m) ≥ A(m)C(m). Even the term A(m) is greater than the term

B(m), most of the elements in the term C(m) are the sum of β2
i . Since βi ≪ 1,

15

Table 1: Parameters of Single Level Tree Network: Non-Affine Case
Parameter p0 p1 p2 p3 p4 p5 p6 p7 p8 p9

Ai 6.3 6.6 6.9 7.2 7.5 7.8 8.1 8.4 8.7 9.0
Gi - 0.60 0.70 0.71 0.72 0.73 0.8 0.81 0.82 0.90

it is obvious that B(m)2 > 2A(m)C(m). Hence, the solution for load fraction α0

assigned to the root processor p0 is given as follows:

α0 =
B(m) +

√
B(m)2 − 2A(m)C(m)

4NA(m)
. (17)

Total load processing time T (m) is given as

T (m) =

B(m) +
√
B(m)2 − 2A(m)C(m)

4A(m)

2

A0. (18)

Using the closed-form expressions for load fractions and total load processing time,

one can easily determine the speed for any given load size and number of processors.

Now, we present an numerical example to illustrate the closeness of the solution

obtained using the closed-form expression and solution obtained using numerical

methods.

Numerical Example I: Consider a single level tree network with 10 processors

and 9 links. The parameters of the processors and links are given in Table 1. The

total load (N) assumed to be processed is 10.

By using our closed-form expression in Equation (18) for processing time, we

can obtain the total load processing time directly for different numbers of processors.

Here, we also used the numerical solver in MATLAB to obtain the actual algebraic

solution. The processing time for various number of processors obtained using the

proposed closed-form expression and actual algebraic solution are given in Table 2.

From the table, we can see that the direct solution obtained using the proposed

16

Table 2: Total Load Processing Time for Various Number of Processors for a Second-
Order System

m Processing Time Absolute
Proposed Numerical Difference
Solution Solution

1 162.646 162.644 2.159e-03
2 74.663 74.664 1.146e-03
3 43.332 43.332 4.724e-05
4 28.584 28.582 1.754e-03
5 20.441 20.441 5.039e-04
6 15.462 15.460 2.000e-03
7 12.178 12.177 9.015e-04
8 9.891 9.889 1.555e-03
9 8.235 8.234 1.667e-03

closed-form expression is matching with the actual solution and the error is only in

the third decimal. Hence, we can say that neglecting higher-order terms does not

influence the accuracy significantly in the closed-form expression.

3.1.1 Homogeneous System

As a special case, we present a homogeneous system, where Ai = A and Gi = G for

all i. Hence, the value of fi is 1 and all βi is identical such that βi = β. Then, from

Equation (8), we can obtain the load fractions assigned to child processors for the

homogeneous case as follows:

αi =
−β +

√
β2 + 4 (α0N)2

2N
, i = 1, 2, · · · ,m. (19)

Using the normalization equation (
∑m

i=0 αi = 1) in Equation (6), we can obtain the

closed-form expression for the load fraction α0 as follows:

α0 +
m∑
i=1

−β +
√
β2 + 4 (α0N)2

2N
= 1. (20)

17

Equation (20) reduces by using the Taylor expansion of the square-root term as

(m2 − 1)(α0N)2 + (2N +mβ)(α0N)−N(N +mβ) = 0. (21)

The positive root of the above equation is the load fraction assigned to root processor

p0, which is given as

α0 =
−(2N +mβ) +m

√
β2 + 4N(N +mβ)

2N (m2 − 1)
. (22)

The total load processing time is

T (m) =

−(2N +mβ) +m
√
β2 + 4N(N +mβ)

2 (m2 − 1)

2

A. (23)

When the communication time is smaller than the computation time, asymptotic

solution for T (m) is obtained as

lim
β→0

T (m) =
N2

(m+ 1)2
A. (24)

Two Processor System: Equation (22) holds if m > 1. Thus, Equation (22)

cannot be used for a two-processor case with m = 1. For a two-processor system,

the load fractions for each processor are obtained by substituting α1 = 1− α0 from

Equation (6) with Equation (5) as follows:

α0 =
N + β

2N + β
, (25)

and

α1 =
N

2N + β
. (26)

Total load processing time is

T (1) =

(
N + β

2N + β
N

)2

A. (27)

18

Asymptotic Analysis: We use the above closed-form solution to obtain the ulti-

mate performance limits of the network with respect to the number of processors.

In case of polynomial computing loads, the total computing load (N) can be divided

into N fractions and processed individually in N processors. Hence, the maximum

number of processors used in the network is m = N − 1.

The total load processing time is

T (N − 1) =

−(2N + (N − 1)β) + (N − 1)
√
β2 + 4N(N + (N − 1)β)

2 ((N − 1)2 − 1)

2

A. (28)

The speedup is given as

S(N − 1) =
N2A

T (N − 1)

=
4N2((N − 1)2 − 1)2(

−(2N + (N − 1)β) + (N − 1)
√
β2 + 4N(N + (N − 1)β)

)2 .(29)

When the communication time is very small (β → 0), then the ultimate speedup is

lim
β→0

S(N − 1) = N2. (30)

From Equation (30), we can achieve a super-linear speedup when the processing

time is a nonlinear function of the size of load fractions. In Figure 3, we plot

the speedup against number of processors for different values of communication to

computation ratio (β). From the figure, we can see that the performance curve is

bounded between 0 for β → ∞ and N2 when β → 0. The figure clearly indicates

that the speedup characteristics pose a super-linear behavior. Since the speedup

figures ares much larger than the number of processors, we can say that super-linear

performance is achieved.

19

0 5 10 15 20 25 30
0

100

200

300

400

500

600

700

800

900

1000

No. of Processors

S
p

e
e

d
−

u
p

β = 2

β = 1

β = 0.1

β = 0.01

Figure 3: Speedup vs. number of processors

3.2 Case B: Third-Order Complexity (γ = 3)

For γ = 3, the load fractions are expressed in cubic equations. From the timing

diagram or from Equation (5), the load distribution equations for third-order com-

plexity is given below.

(αiN)3 + (αiN) βi = (α0N)3
i∏

k=1

fk, i = 1, 2, · · · ,m. (31)

Using the cubic equation, we can express the load fraction αi in terms of load fraction

α0. For the cubic equation of this form x3 + ax− by3 = 0, we get one real and two

complex roots. Since the load fraction assigned to the processors in the network is

20

real and positive number, we only consider the real root.

(αiN) =

(
9by3 +

√
3
√
4a3 + 27b2y6

)1/3
21/332/3

− (2/3)1/3 a(
9by3 +

√
3
√
4a3 + 27b2y6

)1/3 , (32)

where a = βi, b =
∏i

k=1 fk and y = α0N .

First, we consider the term inside the cubic root for determining the closed-form

expression. The cubic root term can be expanded using the Taylor series as

(
9by3 +

√
3
√
4a3 + 27b2y6

)1/3

=

[
9by3 + 9by3

[
1 +

2a3

27b2y6
+O

(
a6

b4y12

)]]1/3
. (33)

Here, the higher-order terms are a function of 6th power of communication to com-

putation speed ratio, 4th power of processing speed ratio, and 12th power of α0N . In

general, the communication time is less than computation time (βi < 1). Otherwise,

the processor will not participate in the load distribution process [7]. Also, the load

fraction assigned to the root processor (α0N) and processor speed ratio is greater

than one. Hence, we can neglect the higher-order terms from the above equation.

By neglecting the higher-order term in Equation (33) and substitute in Equation

(32), we get

(αiN) =
i∏

k=1

(fk)
1/3 (α0N)− βi

3
∏i

k=1 (fk)
1/3 (α0N)

. (34)

Substituting Equation (34) in Equation (6), we get

(α0N)2A(m)−N(α0N)− C(m) = 0, (35)

where

A(m) = 1 +
m∑
i=1

i∏
k=1

(fk)
1/3 ,

C(m) =
m∑
i=1

βi

3
∏i

k=1 (fk)
1/3

.

21

The above quadratic equation can be easily solved to determine the closed-form

expression for load fraction α0 and is

α0 =
N +

√
N2 + 4A(m)C(m)

2NA(m)
. (36)

The total load processing time for third-order complexity is

T (m) =

N +
√
N2 + 4A(m)C(m)

2A(m)

3A0. (37)

Using the closed-form expression, we can directly determine the processing time and

analyze the characteristics of the third-order system.

3.2.1 Asymptotic Analysis

We use the above closed-form expression to obtain the ultimate performance limits

for the third-order complexity with respect to the number of processors. For this, we

consider the homogeneous system, i.e., Ai = A and Gi = G for all i = 1, 2, · · · ,m.

In this case, the closed-form solution for processing time given in Equation (37) can

be written as

T (m) =

N +
√
N2 + 4

3
m(m+ 1)β

2(m+ 1)

3 A. (38)

Hence, the maximum number of processors used in the network is m = N − 1 and

the processing time is

T (N − 1) =

N +
√
N2 + 4

3
N(N − 1)β

2N

3A. (39)

Ultimate speedup performance for the third-order complexity is

S(N − 1) =
N3A

T (N − 1)

=
8N6[

N +
√
N2 + 4

3
N(N − 1)β

]3 . (40)

22

When the communication to computation ratio tends to be a small value then we

achieve the upper bound on speedup as follows:

lim
β→0

S(N − 1) = N3. (41)

From Equation (41), we can achieve a super-linear speedup when the processing

time is a nonlinear function of the size of load fractions.

3.3 Case C: Higher-Order Complexity

For general higher-order system it is difficult to derive a closed-form expression.

Hence, in this section, we attempt to solve this problem for a specific situation.

From the timing diagram or from Equations (4) and (6), we can rewrite the load

distribution equation as

(α0N)γ A0 = (αiN)γ Ai + (αiN)Gi, i = 1, 2, · · · ,m. (42)

Divide the above equation by NγAi, we get

(α0)
γ

i∏
k=1

fk = (αi)
γ + (αi) ηi, i = 1, 2, · · · ,m. (43)

where ηi =
βi

Nγ−1 .

Without loss of generality, we can assume that the communication link speed is less

than the computation speed (at least of the order of 10, βi < 0.1). In addition, the

total size of polynomial computing load is large and also the order complexity (γ)

is greater than 4. Hence, the term ηi becomes infinitesimal and can be neglected.

Under this condition, the Equation (43) is reduced to

(α0)
γ

i∏
k=1

fk = (αi)
γ , i = 1, 2, · · · ,m. (44)

23

The load fraction αi can be expressed in terms of α0 as

αi = α0

i∏
k=1

f
1/γ
k , i = 1, 2, · · · ,m. (45)

Using the normalization process using Equation (5), we can obtain the closed-form

expression for α0 as

α0 =
1

1 +
∑m

i=1

∏i
k=1 f

1/γ
k

. (46)

From the timing diagram shown in Fig. 2, the total load processing time is

T (m) = (α0N)γA0 =

[
N

1 +
∑m

i=1

∏i
k=1 f

1/γ
k

]γ
A0. (47)

Using this closed-form expression, we can study the behavior of the general polyno-

mial computation loads. For homogeneous system (Ai = A and Gi = G), the total

load processing time is reduced to

T (m) =
[

N

1 +m

]γ
A. (48)

Hence, the ultimate bound on speedup will be mγ, which is similar to the second

and third-order case.

4 Closed-Form Expression for Processing Time:

Affine Case

In this section, we consider the presence of additive overhead component in the

communication and computation model. Similar to the case without overhead (non-

affine model), here also, the load distribution process is described using the Gantt

chart like timing diagram as shown in Figure 4. Also, assume that all processors

stop computing at the same time to achieve the optimal solution.

24

P

P

P

P

0

1

i

m

0 0
(α N)

(α N)

(α N)

(α N)

1 1

i i

m m

(α1N)
1

(α N)

N)

i i

m(αm

γ

γ

γ

γ

A

A

A

A

G

G

G

θcm+

θcm+

θcm+

cpθ+

cpθ+

cpθ+

cpθ+

Figure 4: Timing diagram for polynomial load distribution: Affine case

From the timing diagram, we can write the load distribution equations as follows,

(α0N)γ A0 + θcp = (αiN)γ A1 + θcp + (αiN)Gi + θcm, i = 1, 2, · · · ,m, (49)

where θcp and θcm are the constant additive start-up delays in computation and

communication respectively.

Denoting fi =
Ai−1

Ai
, βi =

Gi

Ai
and δi =

θcm
Ai

, the above equations reduce to

(αiN)γ + (αiN) βi + δi = (α0N)γ
i∏

k=1

fk, i = 1, 2, · · · ,m (50)

and the normalization equation is

m∑
i=0

αi = 1. (51)

First, we present the closed-form expression derivations for second-order com-

plexity (γ = 2). Finding closed-form expression for higher-order is difficult for affine

25

case.

4.1 Case A: Second Order Complexity

By substituting γ = 2 in Equation (50), we get a following second-order equation.

(αiN)2 + (αiN) βi + δi = (α0N)2
i∏

k=1

fk, i = 1, 2, · · · ,m. (52)

By applying the quadratic formula, we can express the load fraction (αi) in terms

of α0 as follows:

(αi) =
−βi +

√
β2
i + 4 (α0N)2 − 4δi

2N
, i = 1, 2, · · · ,m. (53)

Since, the load fractions (αi) are a real positive root, we consider only the positive

real root.

By substituting the load fractions (αi) in normalization equation, we get

2 (α0N)−
m∑
i=1

βi +
m∑
i=1

(
β2
i − 4δi + 4 (α0N)2

i∏
k=1

fk

)1/2

= 2N. (54)

Using first-order approximation for the square root term as explained in non-affine

case, we can rewrite the above equation as

2 (α0N)−
m∑
i=1

βi +
m∑
i=1

(
2 (α0N)

i∏
k=1

√
fk +

β2
i − 4δi

4 (α0N)
∏i

k=1

√
fk

)
= 2N. (55)

The above equation is reduced to

8A(m) (α0N)2 − 4B(m) (α0N) + C(m) = 0, (56)

where

A(m) =

(
m∏
k=1

√
fk

)
.

(
1 +

m∑
i=1

k=1∏
i

√
fk,

)
(57)

26

B(m) =

2N +
m∑
j=1

βj

 m∏
k=1

√
fk, (58)

C(m) =
m∏
k=1

√
fk.

(
m∑
i=1

β2
i − 4δi∏i
k=1

√
fk

.

)
(59)

From the solution of the quadratic equation, we can derive the closed-form expression

for load fraction α0 as

α0 =
B(m) +

√
B(m)2 − 2A(m)C(m)

4NA(m)
. (60)

The total load processing time T (m) is

T (m) =

B(m) +
√
B(m)2 − 2A(m)C(m)

4A(m)

2 A0. (61)

Using the closed-form expressions for load fractions and processing time, similar to

non-affine case, we can also analyze the characteristics of second-order computa-

tional complexity. By comparing the expression for total load processing time in

affine (Eq. 61) and non-affine case (Eq. 18), we can see that one can obtain the

closed-form expression for total load processing time in affine case by substituting

the term β2
i in C(m) by β2

i − 4δi.

4.1.1 Numerical Example II

For the sake of simplicity, we consider the same parameters used in the numerical

example I. The network has 10 processors and 9 links. The total load (N) assumed

to be processed is 10. Assume the value 1 for both θcp and θcm.

By using our closed-form expression in Equation (61) for processing time, we can ob-

tain the solution for different numbers of processors. The actual numerical solution

for processing time and processing time obtained using the closed-form expression

27

Table 3: Total Load Processing Time for Various Number of Processors: Affine Case
m Processing Time Absolute

Proposed Numerical Difference
Solution Solution

1 228.774 228.744 2.047e-04
2 103.661 103.661 8.443e-04
3 59.681 59.679 2.327e-03
4 39.232 39.233 7.976e-04
5 28.074 28.073 7.910e-04
6 21.315 21.315 2.847e-04
7 16.908 16.908 2.150e-04
8 13.872 13.872 4.124e-04
9 11.690 11.689 8.983e-04

are given in Table 3. From the table, we can clearly see that the processing time

obtained using the proposed closed-form expression closely matches the actual so-

lution.

5 Conclusions

The problem of distributing a nonlinear divisible load on a single level tree network

with collective communication model is presented in this paper. Here, a polyno-

mial computation load with computational complexity proportional to its processing

load size is considered. A closed-form solution for the load fractions assigned to the

processors and the processing time are derived from the nonlinear recursive equa-

tions. Numerical solutions are compared with the analytic solutions for its closeness.

The results clearly show that the proposed closed-form expression matches with the

analytic solutions. Using the closed-form expression, we can directly analyze the

speedup behavior and ultimate bounds on the speedup. The results clearly indicate

that the speedup achieves a super-linear behavior for the polynomial computation

loads. The study is also extended to the case with additive overhead components in

28

communication and computational time.

Acknowledgments

The first author would like to acknowledge the support by the NTU-SUG program

by Nanyang Technological University. This work was in part supported by 3DLife,

CTRC, and ITRC from Korea.

References

[1] Adler, M., Gong, Y., and Rosenberg, A. L., ”Optimal sharing of bags of tasks in

heterogeneous clusters,” Proceedings of the Annual ACM Symposium on Par-

allel algorithms and Architectures, San Diego, California, USA, pp. 1-10, 2003.

[2] Bai, Y. and Robert, R. C., ”Parallel block tridiagonalization of real symmetric

matrices,” Journal of Parallel and Distributed Computing, vol. 68, pp. 703-715,

2008.

[3] Barlas, G. D., ”Collection aware optimum sequencing of operations and closed

form solutions for the distribution of divisible load on arbitrary processor trees,”

IEEE Transactions on Parallel and Distributed Systems, vol. 9, pp. 429-441,

1998.

[4] Bataineh, S., and Robertazzi, T. G., ”Bus oriented load sharing for a network

of sensor driven processors,” IEEE Transactions on Systems, Man and Cyber-

netics, vol. 21, pp. 1202-1205, 1991.

[5] Beaumont, O., Carter, L., Ferrante, J., Legrand, A., and Robert, Y.,

”Bandwidth-centric allocation of independent tasks on heterogeneous plat-

29

forms,” Proceedings of the International Parallel and Distributed Processing

Symposium, IEEE Computer Society Press, 2002.

[6] Bharadwaj, V., Ghose, D., and Mani, V., ”Multi-installment load distribution

in tree networks with delay,” IEEE Transactions on Aerospace and Electronic

Systems, vol. 31, pp. 555-567, 1995.

[7] Bharadwaj, V., Ghose, D., Mani, V., and Robertazzi, T. G., Scheduling Divis-

ible Loads in Parallel and Distributed Systems, IEEE Computer Society Press,

Los Alamitos CA, 1996.

[8] Bharadwaj, V., Ghose, D., and Robertazzi, T. G., ”Divisible load theory: A

new paradigm for load scheduling in distributed systems,” Cluster Computing,

vol. 6, pp. 7-18, 2003.

[9] Bharadwaj, V., Viswanadham, N., ”Suboptimal solutions using integer approx-

imation techniques for scheduling divisible loads on distributed bus networks,”

IEEE Transactions on System, Man, and Cybernetics-Part A: Systems and

Humans, vol. 30, pp. 680-691, 2000.

[10] Blazewicz, J., and Drozdowski, M., ”Scheduling divisible jobs on hypercubes,”

Parallel Computing, vol. 21, pp. 1945-1956, 1995.

[11] Blazewicz, J., Drozdowski, M., Guinand, F., and Trystram, D., ”Scheduling a

divisible task in a 2-dimensional mesh,” Discrete Applied Mathematics, vol. 94,

pp. 35-50, 1999.

[12] Cheng, Y. C., and Robertazzi, T. G., ”Distributed computation with commu-

nication delays,” IEEE Transactions on Aerospace and Electronic Systems, vol.

24, pp. 700-712, 1988.

30

[13] Drozdowski, M., and Wolniewicz, P., ”Out-of-core divisible load processing,”

IEEE Tranactions on Parallel and Distributed Systems, vol. 14, pp. 1048-1056,

2003.

[14] Duda, R. O. and Hart, P. E., ”Use of the Hough transformation to detect lines

and curves in pictures,” Communications of the ACM, vol. 15, pp. 11-15, 1972.

[15] Dutot, P.-F., ”Divisible load on heterogeneous linear array,” Proceedings of

the International Parallel and Distributed Processing Symposium, Nice, France

2003.

[16] W. Gropp, W., Lusk, E., and Skjellum, A., Using MPI: Portable Parallel Pro-

gramming with the Message-Passing Interface, MIT Press, 1994.

[17] Guil, N., Villalba, J., and Zapata, E. L., ”A fast Hough transform for segment

detection,” IEEE Transactions on Image Processing, vol. 4, no. 11, pp. 1541-

1548, 1995.

[18] Glazek, W., ”A multistage load distribution strategy for three dimensional

meshes,” Cluster Computing, vol. 6, pp. 31-40, 2003.

[19] Hung, J. T., Kim, H. J., and Robertazzi, T. G., ”Scalable scheduling in par-

allel processors,” Proceedings of the Conference on Information Sciences and

Systems, Princeton University, Princeton, NJ, 2002.

[20] Hung, J. T. and Robertazzi, T., ”Distributed scheduling of nonlinear com-

putational loads,” Proceedings of the Conference on Information Sciences and

Systems, The Johns Hopkins University, March 12-14, 2003.

31

[21] Hung, J. T., and Robertazzi, T. G., ”Divisible load cut through switching

in sequential tree networks,” IEEE Transactions on Aerospace and Electronic

Systems, vol. 40, pp. 968-982, 2004.

[22] Hung, J. T., and Robertazzi, T. G., ”Scalable scheduling for clusters and grids

using cut through switching,” International Journal of Computers and Their

Applications, vol. 26, pp. 147-156, 2004.

[23] Hung, J. T., and Robertazzi, T. G., ”Scheduling nonlinear computational

loads,” IEEE Trans. On Aerospace Electronics and Systems, vol. 44, no. 3,

pp. 1169-1182, 2008.

[24] Khalifa, K. B., Boubaker, M., Chelbi, N., and Bedoui, M. H., ”Learning vector

quantization neural network implementation using parallel and serial arith-

metic,” International Journal of Computer Sciences and Engineering Systems,

vol. 2, No. 4, pp. 251-256, 2008.

[25] Kim, H. J., ”A novel load distribution algorithm for divisible loads,” Cluster

Computing, vol. 6, pp. 41-46, 2003.

[26] Kim, H. J., Jee, G.-I., and Lee, J. G., ”Optimal load distribution for tree

network processors,” IEEE Transactions on Aerospace and Electronic Systems,

vol. 32, pp. 607-612, 1996.

[27] Li, K., ”Parallel processing of divisible loads on partitionable static intercon-

nection networks,” Cluster Computing, vol. 6, pp. 47-56, 2003.

[28] Othman, H. and Aboulnasr, T., ”A separable low complexity 2D HMM with

application to face recognition,” IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 25, no. 10, pp. 1229-1238, 2003.

32

[29] Piriyakumar, D. A. L., and Murthy, C. S. R., ”Distributed computation for

a hypercube network of sensor-driven processors with communication delays

including setup time,” IEEE Transactions on Systems, Man, and Cybernetics-

Part A: Systems and Humans, vol. 28, pp. 245-251, 1998.

[30] Robertazzi, T. G., ”Processor equivalence for a linear daisy chain of load sharing

processors,” IEEE Transaction on Aerospace and Electronic Systems, vol. 29,

pp. 1216-1221, 1993.

[31] Robertazzi, T. G., ”Ten reasons to use divisible load theory,” Computer, vol.

31, pp. 63-68, 2003.

[32] Suresh, S., Mani, V., Omkar, S. N., and Kim, H. J., ”Divisible load schedul-

ing in distributed system with buffer constraints: Genetic algorithm and linear

programming approach,” International Journal of Parallel, Emergent and Dis-

tributed Systems, vol. 21, no. 5, pp. 303-321, 2006.

[33] Suresh, S., Omkar, S. N., and Mani, V., ”The effect of start-up delays in schedul-

ing divisible loads on bus networks: An alternate approach”, Computer and

Mathematics with Applications, vol. 46, no. 10-11, pp. 1545-1557, 2003.

[34] Suresh, S., Omkar, S. N., and Mani, V., ”Parallel implementation of back-

propagation algorithm in networks of workstations”, IEEE Trans. on Parallel

and Distributed Systems, vol. 16, no. 1, pp. 24-34, 2005.

[35] Yang, Y., and Casanova, H., ”UMR: A multi-round algorithm for scheduling

divisible workloads,” Proceedings of the International Parallel and Distributed

Processing Symposium, Nice, France, 2003.

33

