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Abstract— Communication delay in a processor network is 
very critical to the throughput for parallel video processing. We 
propose a simultaneous distribution and collection method (SD) 
from the root processor to children processors via a multi-port 
switch network. For the proposed mechanism, we analyze the 
video encoding time and derive a closed-form solution for a star 
interconnection network topology. The results show that the total 
encoding time is significantly faster than the previous method, 
Parallel Interlaced (PI). In addition, we achieve scalability in 
terms of the number of processors, which means that as the 
number of processors increases over the optimal number of 
processors of PI, one continues to achieve much better 
performance. 
 

Index Terms— Parallel video scheduling, divisible load theory, 
concurrent communication, star network.  
 

I. INTRODUCTION 
N parallel video processing, various scheduling 

algorithms were presented such as PI (parallel interlaced) 
and PR (parallel recursive) which can assign video frames to 

multiple processors. For these two algorithms the authors [3,4] 
found both the maximum processing throughput and I/O 
utilization, and the optimal number of processors for each of 
algorithms under a bus architecture, using divisible load 
analysis [1,2]. However the algorithms have inherent 
limitations of sequential I/O communication, due to the use of a  
bus based architecture, on communication in terms of 
throughput and the optimal number of processors.  
 

In this paper we propose an efficient scheduling mechanism, 
SD (Simultaneous Distribution), for parallel video processing 
which distributes raw video loads and collects encoded video 
results concurrently among the root (control) processor and 
each child worker processor on a multi-port star topology. Note 
that simultaneous distribution was proposed by Piriyakumar 
and Murthy [9] and analyzed by Hung and Robertazzi [10]. We 
consider two cases: one is that load is assigned to the root 
processor, the other is it is not assigned. For the two cases, we 
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obtain closed-form solutions for the total video processing time, 
and then compare them with the performance under the optimal 
number of processors which is proposed in previous scheduling 
algorithms, such as PI and PR. Both of the two cases show 
much better performance in video processing, more than 6 
times as much for the parameters we use as those under the 
optimal number of processors of previous methods, such as PI 
and PR.  In terms of the number of scalable processors, our 
proposed method, SD, reaches up to 30, more than the optimal 
number of processors (12) of PI or PR [4].  

 
We know that when the number of processors is small, the 

factors that affect the total processing time are  the method to 
distribute and collect load as well as the root processor 
participation in computation  and processing speed. As the 
number of processors increases, all of the SD methods show 
still better performance than PI and PR methods, because all of 
SD methods have good scalability. However when the number 
of processors is 30, the performance improvement of 
SD-COMP method (SD with computation) is relatively small, 
just 1.3 times, against the SD-NO method (SD with no 
computation). When we compare it with the sequential 
distribution method, PI, the improvement is 6 to 8 times. It 
means that when the number of processors increases enough to 
process the whole load, the most critical part is the way to 
distribute and collect load rather than whether the root 
processor receives and computes load.  

 
Also of practical interest is that we propose a multi-port star 

topology among the root (control) processor and children 
worker processors. This means that the control processor has 
multiple ports to each of the children processors for I/O 
communication. One of the reasons to select the multi-port star 
topology is that there is only communication between the root 
processor and each of children processors without 
communication among children processors. The other aspect is 
that the star topology is cost effective model for parallel video 
processing and relatively easy to implement compared with 
other complex architectures, such as 2D meshes, or Hypercube.  

 
This paper is organized as follows. Section II describes a 

multi-port star network for concurrent communication, system 
modeling, and mathematical definitions. In section III, our 
scheduling methods are proposed and analyzed mathematically. 
In section IV, several comparisons with the previous works are 
presented, and section V is the conclusion.  
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II. SYSTEM MODELING AND MATHEMATICAL DEFINITIONS 

A. System Modeling  
In this paper, a star network topology is considered, which 

consists of the one root (control) processor with multiple ports 
and m children processors.  The root (control) processor 
distributes raw video data (load) and collects the encoded video 
data (results) to/from each child processor concurrently via 
multiple ports. While the children processors encode the video, 
the root processor waits for the encoded video data from each 
child processor.  

We have two scenarios for concurrent scheduling. The first 
scenario is for the root processor to only distribute and collect 
load without computation. This is because we try to compare its 
performance with one in the previous papers [3, 4]. Here we 
assume that our multi-port star network is homogeneous, which 
means all of the children processors are identical in terms of the 
processing speed. In addition, the communication speed 
between the root processor and each child processor is also 
identical.  

The other case is for the root processor to do both 
communication, such as loads distribution and results 
collection, and computation (video encoding). Here we assume 
that all of the children processors are homogeneous in terms of 
processing speed and communication speed as in the previous 
scenario, but the root processor speed can be different from the 
children’s speed. We analyze how much processing power the 
root processor needs to do both communication and 
computation and achieve good performance.  

B. Mathematical definition 
The variables we will use in the following are based on the 

papers [1, 2, 4].  
 
αi  the load fraction assigned to the ith link-processor pair 
wi  the inverse of the computing speed of the ith processor 
zi   the inverse of the link speed of the ith link  
Tcp  computing intensity constant: the entire load is 

processed in wiTcp seconds by the ith processor 
Tcm communication intensity constant: the entire load can 

be transmitted in ziTcm seconds over the ith link 

Tf,m the finish time. Time at which the last processor of m 
children processors ceases computation. 

Tf,0 the finish time. Time at which (only) the root processor 
ceases computation. 

In Fig.2, the value of ‘k’ is defined as the ratio of the result 
(an encoded video) obtained from each child processor to the 
load sent (an original raw video). That is,  

k =  
sentload

receivedresult
_

_
 

 
We have the three cases as follows: 

 k = 1, if the amount of load sent is same as that of 
result received. 

 k < 1, if the amount of load sent is greater than that of 
result received. This case is typical in digital video 
processing.  

 k > 1, if the amount of load sent is less than that of 
result received. 

 

Then αiwiTcp is the time to process the fraction αi of the 
entire load on the ith processor. Note that the units of αiwiTcp 
are [load] x [sec/load] x [dimensionless quantity] = seconds.   
Likewise, αiziTcm is the time to transmit the fraction αi of the 
entire load over the ith link. Our goal is to propose more 
efficient scheduling methods and analyze the solution in 
parallel video processing through concurrent communication.  

III. CONCURRENT LOAD SCHEDULING METHOD 

A. The load is not assigned to the root processor (SD-NO) 
We consider the case of a homogenous processor network, 

which means all children processors except the root processor 
are identical; the inverse processor speed is wi = w and the 
inverse network speed is zi = z. The root processor does no 
computation by itself, and just distribute load and collect results 
to/from the children processors. The timing diagram for 
concurrent scheduling is shown in Fig. 3. 
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Fig.1. Block diagram for multi-ports star network 
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Fig.2. The fraction of load may or may not be assigned to the root processor. If 
it is assigned, the root processor not only distributes load and collects results 
to/from each child processor, but also joins computation itself. Otherwise, the 
root processor just distributes and collects load.  Here ‘k’ is the ratio of result
received to original load sent. 
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From the timing diagram in Fig.3, the equations for SD-NO 
scheduling are obtained as follows: 

α1zTcm +α1wTcp +α1kzTcm = α2zTcm +α2wTcp +α2kzTcm    (1) 

221 )(
)(

ααα =
++

++
=

cpcm

cpcm

wTTkzz
wTTkzz

         (2) 

From (2), we deduce as follows: 
α1 = α2 = α3 =  … = αm                  (3) 

The normalization equation is  

 ∑
=

m

i
i

1

α  = 1                       (4) 

From equation (4), we obtain   

 m×1α  = 1,    α1 =  m
1

               (5) 

mm ×α  = 1,    αm =  m
1

                  (6) 

The total processing time, T(m), is achieved as 
T(m) = α1zTcm +α1wTcp +α1kzTcm 

   = α1(1 + ρ+ kρ) wTcp               (7) 

  where 
cp

cm

wT
zT

=ρ  

From (5), the above equation, the total processing time for 
the entire load can be rewritten as follows: 

 T(m) = cpwT
m

k )1( ρρ ++
            (8) 

Our finding is that the total processing time decreases 
linearly as the number of children processors increases.   

 

B. The load is assigned to the root processor (SD-COMP) 
In case load is assigned to the root processor itself, we assume 

the root processor has more processing power than that of the 
children processors, while all of the children are identical in 
terms of processing power and link speed. We define the 
inverse computing speed of children processors as w1 = w2 = … 
= wm = w, and the inverse link speed of children processors as 
z1 = z2 = … = zm = z. As for the root processor, the processor 
speed is greater than those of children processors, which means 
the inverse value of the root processor, w0, is less than ‘w’. The 
link speed of the root processor is identical to children’s speed, 
so the inverse value, z0, is equal to ‘z’, since they all are 
connected to the same network.  

From the timing diagram in Fig.4, the equations for 
SD-COMP scheduling method, in which the root processor has 
load assigned to compute, are obtained as follows: 

 
α0w0Tcp  = α1z1Tcm +α1w1Tcp +α1kz1Tcm             (9) 

α1z1Tcm +α1w1Tcp +α1kz1Tcm  
= α2z2Tcm +α2w2Tcp +α2kz2Tcm  (10) 

… 
αm-1zm-1Tcm+αm-1wm-1Tcp+αm-1kzm-1Tcm 

= αmzmTcm+ αmwmTcp+αmkzmTcm  (11) 
 

The normalization equation is  
α0  +α1  + α2 + α3 +  … + αm  = 1           (12) 
 

From equation (9),  
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Fig.3 The timing diagram for concurrent load scheduling mechanism without 
load assigned to the root (control) processor. Here the root processor does not 
compute in itself, but just distributes and collects load (SD-NO).  
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Fig.4 The timing diagram for concurrent load scheduling with load assigned 
to the root processor. The root (control) processor computes load assigned to 
itself as well as distributes and collects load (SD-COMP).  
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From equation (11),   
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Equation (14) can be represented as  
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From (9), (11), the normalization equation (12) becomes  
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From the timing diagram, Fig. 4, we can get the finish time 
with m+1 processors, Tf,m, as follows: 

Tf,m=  α0w0Tcp = cpTw
k 01

1

1 α             (19) 

While the finish time with only one processor, Tf,o, is  
Tf,o=  α0w0Tcp = 1·w0Tcp =  w0Tcp          (20) 

 
The speed-up, which is the ratio of job solution time of one 
processor to that on m+1 processors, can be obtained like this: 
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the speed-up and the finish time, Tf,m,  can be derived as 
follows: 
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For a special case, a homogeneous network, in which all of 
children processors are same, the finish time, Tf,m, is  
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From (21), speed up for a homogeneous network is 

obtained as follows: 
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We know that the value of speed-up is linearly related to 

the number of processors in a simultaneous distribution and 
collection method.  

IV.   PERFORMANCE ANALYSIS AND COMPARISON 

A. Speed up without computation on the root processor 
In this section A, for SD-NO (Simultaneous Distribution 

with NO computation) scheduling method, we assume that the 
root processor is identical to each child processor in terms of 
processing speed. The root processor does not have load 
assigned to itself, but just distributes and collects load to/from 
children processors, We consider the same parameters as those 
of PI and PR in paper [4]. The inverse computing speed of the 
processor, w, is 1.0, and the inverse communication speed, z, is 
0.2.  Both Tcp and Tcm are 1.0. Three kinds of the ratio, k, is 
considered such as 0.2, 1.0, and 1.8.  
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Fig.5. Total processing time versus the number of processors for SD-NO
(Simultaneous Distribution with NO computation), PI and PR load 
scheduling methods. The load is not assigned to the root processor. 
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In Fig.5, our load scheduling mechanism, SD-NO shows a 
much better performance than the previous one, PI and PR. 
When the number of processors is 12, which is the optimal 
number of the processors in PI, the SD-NO method shows more 
than 2 times less processing time as PI and PR. Especially when 
we consider more processors added in the network, for example, 
30, the difference is much larger, which is more than 8 times for 
PI. This means our mechanism, SD-NO, is more scalable and 
cost effective in terms of the processing power. When the 
number of processors increases from 12 to 30, the performance 
of the system increases almost 6 times, while the number of 
processors only increases 2.5 times.  

 
In Fig. 6, we know that for all three cases of the ratio, k, 

where k <1, k=1, k>1, our mechanism shows a much better 
performance than that of PI. In terms of the optimal number of 
processors, SD-NO shows almost 2 times better performance 
than that of PI for three ‘k’ values.  When we consider 
processor scalability, for a number of processors of 30, SD-NO 
achieves much better performance than that of PI. That is more 
than 10 times, 8 times, and 6 times for each of k>1, k = 1, k < 1. 

B. Speed up with computation on the root processor 
In this section B, for the SD-COMP (Simultaneous 

Distribution with Computation) scheduling method, we assume 
that the root processor is different from the children in terms of 
processing power and has load to compute itself. So the root 
processor not only distributes and collects load to/from children 
processors, but also computes load.  The ratio of load received 
to load sent, k, is chosen as 0.2, since we suppose the case k is 
less than 1, as is usually the case for compressed results, like 
MPEG.  

 
In Fig.7, we assume that the processing power of the root 

processor for SD-COMP is twice as much as that of each child 
processor. That is the inverse computing speed of the root 
processor, w0, is half of that of each child, ‘w’. We see that 
SD-COMP method is continuously faster for SD-NO method, 
and much faster, for example more than 6 times, for PI and PR 
method up to the number of processors, 10. In terms of 

processor scalability, SD-COMP has more improved result. 
When the number of processors increases from 12 to 30, the 
performance of SD-COMP goes up 2.24 times to 6 times as fast 
as respectively that of PI. However, SD-COMP and SD-NO 
method shows similar performance and good scalability.  

 From Fig.8, we consider three cases of processing speed of 
the root processor for SD-COMP. Those are twice, 5 times, and 
10 times as fast as that of each child processor. When the 
number of processors is small, for example 2 to 5, the 
performance of the SD-COMP method is much better than 
SD-NO, PI, and PR method, because the root processor of 
SD-COMP method participates in computation itself, involving 
around half to 20% of the whole load.  
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Fig. 6. Total processing time versus the number of processors for SD-NO and PI 
load scheduling methods on a homogeneous network. Here three values of the 
ratio, k, are considered, where k = 1.8, k = 1.0, k = 0.2.  
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Fig.7. Total processing time versus the number of processors for SD-COMP, 
(SD with computation), SD-NO, PI, and PR load scheduling methods on a 
homogeneous network. As for SD-COMP, the computing speed of the root 
processor is twice as fast as that of each child processor and has load assigned.
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Fig.8. Total processing time versus the number of processors for SD-COMP 
2x, SD-COMP5x, SD-COMP10x, SD-NO, PI, and PR load scheduling 
methods. As for each SD-COMP above, the computing speed of the root 
processor is twice, 5 times, and 10 times as fast as that of each child processor. 
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While the number of processors increases to 12, all of the SD 
methods show 2.4 times, 3 times, 4 times, 5 times improvement 
in the processing time irrespective of load assigned to the root 
processor. As the number of processors increases up to 30, all 
of the SD methods show still better performance than PI and PR 
methods, because all of SD methods have good scalability in 
the number of processors. However when the number of 
processors is 30, the performance improvement of SD-COMP 
is small, just 1.3 times, against the SD-NO method as compared 
to 6 to 8 times against PI and PR.  

One point to note is that when the number of processors is 
small, it is the method to distribute load as well as the root 
processor speed that is important to total processing time. The 
other point is that when the number of processors increases 
enough, the most critical part is the method to distribute and 
collect load simultaneously or sequentially rather than whether 
load is assigned to the root processor.  

V. CONCLUSION 
We believe that this work is meaningful for showing not 

only a more efficient scheduling method for parallel video 
encoding, but also good scalability in the number of processors. 
Through simultaneous load distribution and collection, our 
proposed method, SD scheduling, achieves a minimum 3 times 
better performance under the optimal number of processors of 
the PI method, and 8 times better performance when the 
number of processors increases up to 30. In addition, in terms 
of a practical processor and network topology, we propose a 
mutil-port star network to achieve concurrent communication 
among the root processor and children processors.  In the future, 
other appropriate network topologies could be considered. 
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