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Abstract
A product form solution for the optimal fractions of divisible load to distribute to processors

in a multi-level tree network is described. Here optimality involves parallel processing the load
in a minimal amount of time. This tractable solution is similar to the product form solution for
equilibrium state probabilities arising in Markovian queueing networks. The existence of this
product form solution answers a long standing open question for divisible load scheduling.
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1 Introduction

It is well known in queueing theory that there are product form solutions (solutions that are a

product of terms) for the equilibrium state probabilities of both open and closed queueing networks

with Markovian statistics [1,2,3]. Here open networks allow customers to enter and leave a network

of queues and closed networks are sealed systems. Under Markovian statistics the input arrival

processes for open networks are independent Poisson processes and the service times of customers

at queues are independent and follow negative exponential distributions. Product form solutions

in queueing networks are considered a simplifying feature. Moreover efficient numerical algorithms

for solving such product form networks have been developed such as Mean Value Analysis [4] and

the Convolution algorithm [5].

If pi(ni) is the marginal probability that there are ni customers in the ith queue and p(n) is

the joint equilibrium probability that there are n1 customers in the first queue, n2 customers in

the 2nd queue and nM customers in the Mth queue then under the product form solution for open

networks:

p(n) = p1(n1)p2(n2)p3(n3)...pM (nM ) (1)

For closed queueing networks the product form solution is of the same format with the inclusion

of a normalization constant factor.
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A “divisible” load is a computational/communication load that is for all purposes perfectly

partitionable among processors and links in a network. One can think of a divisible load as a

massive data file for which we want to assign fractions of it to a number of processors tied together

by an interconnection network to achieve the benefits of parallel processing. Moreover we seek a

time optimal solution: the load must be distributed from a source (or sources) to processors over

the network in a scheduled fashion so that all load is processed in a minimal amount of time. The

study of the scheduling of divisible loads began with the work of Aggrawal and Jagadish [6] and

Cheng and Robertazzi [7] published in 1988. This has been an active research area with over a

hundred journal papers [8], tutorials [9,10], a monograph [11] and a number of recent book chapters

[12,13,14] on the topic appearing over the years.

Linear divisible load theory is a theory of proportions. As an example, consider two processors

connected by a link of infinite data rate. Suppose that one processor is twice as fast as the

other. Then irregardless of which processor the load originates on, two thirds of the load should be

assigned to the faster processor and one third of the load should be assigned to the slower processor.

Generalizing this example of proportions, divisible load theory allows the amount of load as well

as when the load should be placed on processors and links to be calculated. For linear divisible

load theory this is done by mathematical programming, or more relevant to this paper, by linear

equation solution or in many cases by algebraic recursions.

Such solutions are based on an “optimality principle” [11]. For a given interconnection network

and load distribution policy, the minimal time optimal solution results when all of the processors

stop processing at the same instant. Analytical proofs of this principle are available [11,15]. However

the simple intuition behind the proofs is that if the processors didn’t stop processing at the same

instant, load could be transferred from busy to idle processors to improve the solution so that the

solution where the processors do not stop at the same time is not optimal.

For many years solutions for optimal load allocation in single layer tree networks that are

essentially a one dimensional product form solution have been known [15]. However it has been

an open problem, explicitly recognized in [21], as to what type of network an M dimensional

product form solution corresponds to. This paper demonstrates that there is an M dimensional

product form solution for load distribution from a single source (root) node in a multi-level tree type

interconnection network. This is significant as tree type networks are often used in an embedded

fashion in other interconnection networks for load distribution [16,17,18,19,23].

In fact it has been known since 1990 [20] that optimal load distribution to processors from a

root node in a multiple level tree network could be solved recursively by collapsing single layer

subtrees, working from the bottom of the tree to the root, into equivalent processors and tying the

solutions together. But this has not been done in explicit analytical form to date as is done in this

letter.
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Figure 1: A multi-level tree.

Section 2 describes the model and notation used in this letter. The product form solution itself

is presented in section 3. The conclusion appears in section 4.

2 Model and Notation

Consider the multilevel tree of Figure 1. The root is at “level” 0, the root’s children are at level 1,

the root’s grandchildren are at level 2 and the lowest level of the finite tree is level M . Also defined

are single layer ”subtrees” consisting of a node and its children. The root and its children form

subtree 0 at “layer” 0. A child of the root and its children are at the subtree 1 layer. Going down

the tree the last subtrees are at the subtree M-1 layer. The difference between “level” and “layer”

is illustrated in the figure. The nodes at the ith level, across all subtrees, are numbered from left

to right as 1,2,3 ... ci.

It is assumed that a divisible load of volume V originates at the root at time 0. The load is

distributed throughout the tree to the other nodes. each one of which can process load. There are

several load distribution policies that can be used [14,22] which are discussed below.

In terms of the processing and transmission of divisible load the following parameters are defined:

wr: the inverse of the constant computing speed of the rth node.

zt: the inverse of the constant transmission speed of the tth link.

Tcp: the computation intensity constant. The entire load can be processed on the rth processor
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in time wrTcp.

Tcm: the communication intensity constant. The entire load can be transmitted over the tth

link in time ztTcm.

For the allocation of load the following variables are defined:

βi,j : the fraction of load received at the root of an ith layer subtree that is sent to its jth child.

αi,j: the fraction of the total load that is processed at the ith level by the jth processor.

For the α if the normalized total load is unity (V = 1):

M∑
i=0

ci∑
j=1

αi,j = 1 (2)

If the total amount of load is V:

M∑
i=0

ci∑
j=1

αi,jV = V (3)

3 The M Level Subtree Product Form Solution

A little thought will show that the fraction of load received at a leaf (i.e. bottom most) node in an

M level tree can be written as a product of the fractions of load passed to each node above it in a

path back to the root for i = M and j = 1, 2, 3...ci :

αi,j = β0,dβ1,eβ2,f ...βi−2,hβi−1,jV (4)

In this equation d is the dth child in subtree 0 along the path from the root to the node of

interest. Then e is the eth child in subtree 1 along the same path and so on.

This equation expresses the optimal load assigned to each (bottom level) leaf processor as a

product of terms of the fractions of load received at each node along a path from the root to the

leaf node of interest. These β fractions are relative. As an example, consider a three level tree. If

β0,1 = 0.5 and β1,1 = 0.2, then the absolute amount of load received by the leftmost grandchild

of the root is 0.10. That is, twenty percent of the load received by the leftmost child of the root

(which is fifty percent of the total load) or ten percent of the total load is sent to the leftmost

grandchild of the root.

Note also that all processors participate in load processing. This equation allows the optimal

fraction of load at any leaf node to be calculated.

One may be interested in the optimal load allocation to a node in the interior of the multi-level

tree. In this case the optimal load allocated to processor i,j (i.e. αi,j) can be found from a partial
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product form equation similar to equation (4) for the total load delivered to node i,j minus the

load node i,j gives to its children (also computed from partial product form equations similar to

equation (4)). Here a “partial” product form equation is similar to (4) but treats an interior node as

a leaf node of a partial tree, computing the load delivered to the interior node (which includes load

for itself and for its descendants). However even in the case of interior node load allocation the β’s

must be calculated from the bottom most layer working upwards. That is, with the node of interest

being a root node in a single layer subtree, the children nodes in the subtree have inverse processing

speeds equivalent to the (possibly multi-level) subtrees below them that they replace. Thus one

starts with the single layer subtree at the bottom of the overall multi-level tree network, collapsing

them into equivalent processors and continuing this process working upwards in the multi-level tree

until the β’s for nodes along a path from the overall multi-level tree root to the node of interest

can be solved for [11,14].

How does one calculate the β? There is standard theory [14,22] available in the divisible load

literature for doing this. Specifically with some reuse of the i, j notation from the previous equation,

for the root of a single layer subtree:

βi,0 =
1
k1[

1
k1

+ 1 +
∑m

j=2(
∏j

l=2 ql)
] (5)

For the leftmost child of a single layer subtree (j = 1):

βi,1 =
1[

1
k1

+ 1 +
∑m

j=2(
∏j

l=2 ql)
] (6)

For the other children of a single level subtree (j = 2, 3...m):

βi,j =
(
∏j

l=2 ql)[
1
k1

+ 1 +
∑m

j=2(
∏j

l=2 ql)
] (7)

Here we have written expressions for the fraction of the load that each node receives of the load

given to the node’s subtree’s root. In this equation the j numbers the children in a specific subtree

as 1, 2, 3...m.

The k1 and ql are functions specific to a given load distribution policy in a single level tree

network where load originates at the root node. They are usually a function of w, z, Tcp, and Tcm.

They can also be functions of intermediate equivalent processing speeds of equivalent processors

replacing a subnetwork consisting of a node and all the children/grandchildren... below it.

Several k and q functions appear in [14,22]. For instance consider a sequential load distribution

where load is distributed in turn to each child once. Assume each child commences processing as
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soon as load begins to be received and that the root also does load processing starting at time 0.

Then:

k1 =
w0

w1
(8)

ql =
wl−1Tcp − zl−1Tcm

wlTcp
l = 2, 3...m (9)

In a multi-level tree for instance, the wl−1 and wl are inverse equivalent processing speeds of

the subtree networks that these single layer subtree children nodes replace.

As a second example, consider a policy with the simultaneous distribution of load to all children

from the root. Let processing at a child start when all load for that child has been received and let

the root process some of the load starting at time 0. Then:

k1 =
w0Tcp

z1Tcm + w1Tcp
(10)

ql =
wl−1Tcp + zl−1Tcm

wlTcp + zlTcm
(11)

Many policies can be substituted into the main equations. These policies differ in whether load

distribution is sequential or simultaneous, whether the root does processing and whether processing

at each child starts as load begins to be received or when load is completely received at a child.

If one substitutes equation (7) into equation (4) for j = 2, ...m one has a product of terms

where each term has a
∏j

l=2 ql component in its numerator. This product of products is akin to the

product form solution of queueing networks. Note that the node 0 and node 1 numerator terms for

β in a subtree have somewhat different values. This is because of the manner in which the β are

determined in a single level tree here (i.e. using the leftmost child, node 1, as a reference processor

with unnormalized allocation value of 1).

A normalization constant like term can be found from the product of the denominators of the

individual β.

Thus the product form solution for the optimal load to assign to processors in a multilevel

tree with divisible load distribution from the root has a finite “state” space and thus it also has a

normalization constant (also called a partition function). Here the processors play a role analogous

to the states of a closed queueing network Markov chain.

To summarize, to evaluate the α’s for every node in a tree (a) working from the bottom to the

top of the tree find the β’s (b) calculate the α’s for the leaf nodes using equation (4) and finally (c)

working from the bottom to the top of the tree find the remaining interior node α’s as described

above.
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4 Conclusion

This letter presents novel and compact analytical results for optimal load distribution in multilevel

tree networks. As mentioned such trees are very general, being used as distribution networks in

other interconnection topologies.

While it might be surprising that both queueing networks (a stochastic model) and divisible

load scheduling (a deterministic model) admit product form solutions, the underlying reason is

that, in their basic form, both are linear models. Certain patterned labelings of the elements of a

linear system lead to recursive and product form solutions.

The results in this letter will be of interest theoretically, for devising simple code for optimal

load distribution and also as one starting point for research on very large grid and cloud networks.
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