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I. INTRODUCTION

It is well known that many algorithms have a
computational complexity that is nonlinear in the
problem size. These algorithms are widely used in
aerospace applications for such purposes as spectrum
computation, radar and sensor data processing, and
satellite image processing. Divisible loads can occur
in these target aerospace applications. Divisible load
scheduling techniques are employed in this paper
because of their tractability in order to make analytical
progress. A divisible load is an input load that can
be arbitrarily partitioned and assigned to distributed
processors to gain the benefits of parallel processing.
No precedence relationships between atomic units of
the entire load are assumed.
We note, and discuss below, that algorithms of

nonlinear complexity that assume the divisibility of
the input data are generally different from algorithms
of linear complexity, in terms of a need for significant
postprocessing. That is, generally the results of
nonlinear subproblems solved among individual
processors need to be integrated (postprocessed)
to obtain an overall solution. For a fundamental
example, a large list to be sorted can be partitioned
and distributed among processors (or nodes) of a
tree network. After being processed at each node, the
fractional loads become sorted sublists that need to
be merged (postprocessed) to a final sorted list. We
make an empirical observation that to some extent
the need to do significant postprocessing arises for
those algorithms with a nonlinear nature because
of dependencies among the data of such nonlinear
problem.
Single level tree networks are largely considered in

this paper as a single level tree (star network) forms
a fundamental interconnection topology. Multilevel
tree networks can be used as a spanning distribution
tree embedded in other interconnection topologies as
well as being an interconnection topology of interest
in itself.
Two representative types of solutions to the

scheduling problem of tree networks are considered
here. First, speedup and optimal load allocation for
simultaneous load distribution (i.e., the root can
transmit load to its children simultaneously) are found
for a single level tree. For simplicity, a computing
time function with a quadratic computational
complexity of the size of input load is considered
here. Secondly, an iterative solution for sequential
load distribution for a single level tree where the
computing time function is a power of Â is developed.
The order of optimal load allocation at a root node
or among parent nodes is assumed to conform to the
sequence of communication speeds of parent-child
links from highest to lowest. Optimal load allocation
of nonlinear loads in multilevel tree networks is also
briefly discussed in this paper.

IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 44, NO. 3 JULY 2008 1169

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on November 7, 2008 at 20:14 from IEEE Xplore.  Restrictions apply.



It should be noted that sequential and simultaneous
load distribution provide a wide variety of modeling
possibilities. Sequential load distribution has been well
studied as a scheduling model with linear complexity
where a root can communicate with only one child
at a time. The improved performance and scalability
of simultaneous distribution [2, 3] over sequential
distribution motivates future server architectures where
one server can distribute load on multiple outgoing
links concurrently. This fits in well with the needs of
grids such as the military Global Information Grid
or the ATLAS physics experiments at CERN (Center
European for Nuclear Research) where expensive
wide area links need to be kept at high utilizations.
While most of the works on divisible load

theory are of linear models, an exception has been
developed by Drozdowski and Wolniewicz [4],
who demonstrated superlinear speedup by defining
processing time as a piecewise linear (and thus
nonlinear) function of the size of input load for
modeling the memory hierarchy of a computer.
Drozdowski and Wolniewicz’s results were obtained
through mathematical programming, but analytic
results are presented in this paper.
A final note is that this study is somewhat limited

in scope compared with the wealth of findings
available for linear models. For instance, it is assumed
that we do not consider return commnications,
that communications is substantially faster than
computation, and processor ordering for sequential
distribution is fixed. However, this is an early study
and these issues are substantial topics in themselves.

A. Divisible Load Theory Review

Divisible loads are data parallel loads that are
perfectly partitionable among links and processors.
Such loads arise in the parallel and data intensive
processing with massive amounts of data in grid
computing, signal processing, image processing,
and aerospace data processing. Since 1988 works
by a number of researchers [1—24] have developed
algebraic means of determining optimal fractions of
a load distributed to processors via corresponding
links under a given interconnection topology and a
given scheduling policy. Here optimality is defined in
terms of speedup and execution time. The theory to
date largely involves loads of linear computational
complexity. In other words, computational or
communication time is proportional to the size
of fractional loads distributed to processors via
corresponding links. Divisible load modeling should
be of interest as it models both computation and
network communication in a completely integrated
manner. Moreover, it is tractable with its linearity
assumption. Optimal divisible load scheduling has
been developed for various interconnection topologies
[14], such as linear daisy chains [6], buses [8],

trees [7, 15, 27], hypercubes [9], and two- and
three-dimensional meshes [16, 17]. A number of
scheduling policies have been investigated including
multi-installments [18], and multi-round scheduling
[11, 28], simultaneous distribution [2, 13] and
simultaneous start [12]. Also studied are detailed
parameterizations and solution time optimization
[21], and combinatorial schedule optimization [19].
Generalizations have included models with limited
memory [30], and multiple loads [29]. Divisible
loads may be divisible in fact or as an approximation
as in the case of a large number of relatively small
independent tasks [10, 26]. Combinatorics relating
to divisible load scheduling is examined in [31].
Introductions to divisible load scheduling theory
appear in [1], [5], [20].
The next section describes models and notation.

The properties of the computing function are
described in Section III. The performance in
scheduling a heterogeneous single level tree using
store and forward switching, simultaneous distribution,
and staggered start protocols is derived in Section IV.
The computing function is considered a quadratic
function of the size of assigned fractional load. In
Section V the performance in scheduling a single level
tree using sequential distribution and staggered start
is explored. The computing function is a function of
power Â of the size of an assigned load. Section VI
briefly discusses optimal load distribution for
multilevel tree networks. The conclusion and lessons
learned are stated in Section VII.

II. MODELS AND NOTATION

In this paper we only consider staggered start.
Under staggered start a node cannot process any
partial assigned load in advance unless it has already
received the entire assigned load. In contrast to
staggered start, simultaneous start allows a node
to process the assigned load as soon as an atomic
piece of data arrives [12] (this is not discussed for
reasons of space). As to distribution policies in a
single level tree, we consider both simultaneous
distribution (Section IV) and sequential distribution
(Section V). Simultaneous distribution was first
proposed by Piriyakumar and Murthy [13] as a
mechanism whereby a parent node in a tree network
transmits fractional loads concurrently over multiple
links. In contrast, sequential distribution is a different
mechanism under which a parent node distributes
fractional loads to its children one at a time until all
fractional loads are delivered.

A. Model and Notations for A Single Level Tree

A heterogeneous single level tree using staggered
start is illustrated in Fig. 1. Each node in this figure
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Fig. 1. Single level tree using staggered start. Worst case temporal running cost of an algorithm at nodei is assumed to be £(n
2
i ).

is represented by a miniature timing diagram with a
distinct computing speed. This single level tree, rooted
at node0, can be collapsed into an equivalent nodeh0i
with an equivalent inverse computing speed !h0i that
describes the computing capability of the entire tree.
Collapsing a single tree into an equivalent node is
important in scheduling theory when evaluating the
performance in a scheduling model specified for a
multilevel tree. The concept of processor equivalence
was introduced by Robertazzi in 1993 [1, 24].
The following represent notations and symbols for

tree networks.

m The number of children in a single level
tree

n The total number of records (or
indivisible pieces, atomic pieces) forming
an entire load at the root node. As the
size of an entire load in a tree, it can be
denoted nh0i as well

®0 The load fraction assigned to the root
processor

®i The load fraction assigned to the ith
link-processor pair in a single level tree
(where i= 1,2, : : : ,m)

®hii The load fraction assigned to the ith
link-subtree pair in a multilevel tree
(where i= 1,2, : : : ,m)

ni = ®in The number of records processed at
nodei (where i= 0,1,2, : : : ,m)

nhii = ®hiin The number of records processed at
equivalent nodehii (where i= 1,2, : : : ,m),
which is a collapsed subtree rooted at
nodei in a multilevel tree

wi The inverse computing speed at the ith
processor (where i= 0,1,2, : : : ,m)

whii The equivalent inverse computing speed
at equivalent nodehii (where
i= 1,2, : : : ,m) for a collapsed subtree
with root at nodei

wh0i The equivalent inverse computing speed
at equivalent nodeh0i for an entire tree
with root at node0

zi The inverse communication speed on the
ith link (where i= 0,1,2, : : : ,m).

Tcp Computing intensity constant. The entire
load can be processed on the ith
processor in time wiTcp.

Tcm Communication intensity constant. The
entire load can be delivered over the ith
link in time ziTcp

Tf The finish time. Time at which every
processor completes computation.

DEFINITION 1 °h0i, the ratio of the inverse computing
speed at equivalent nodeh0i to that at root node0.

°h0i =
wh0i
w0

: (1)

DEFINITION 2 Speedup, the ratio of the computing
speed at the equivalent node to that at the root node.
In other words, speedup is the inverse of °h0i.

Speedup =
1
°h0i

=
!0
!h0i

: (2)

III. PROPERTIES OF COMPUTING FUNCTIONS

To analyze a scheduling model applied to a tree
network in terms of recursive equations describing
features of computation and communication time,
we propose an instance, a Gantt chart-like timing
diagram, as shown in Fig. 2. The instance illustrates
a scheduling process in a tree network. The tree
network can be either a single level tree or a subtree
in a multilevel tree and both employ simultaneous
distribution and staggered start here. Subscript
notation hii denotes an equivalent node collapsed
from a subtree rooted at nodei in a multilevel tree.
In a single level tree, the subscript notation hii can
be converted to subscript notation i, indicating a
physical nodei. An “equivalent” node, an established
concept [6, 24], has identical operating characteristics
to the subnetwork it replaces. Here we take a specific
policy that every node completes its computing (or
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Fig. 2. Timing diagram shows scheduling model for topmost level in multilevel tree with simultaneous distribution and staggered start.

conquering a certain problem) at the same time, then
data collecting and postprocessing ensue at the root
node to obtain a final outcome. In Fig. 2 Fcph0i(¢) is
composed of Fcp0 (¢), Dhd0 (¢), and Chd0 (¢), and the final
result is obtained at time Jobcomplete.
The following describes the notation in Fig. 2.

1) Fcpi (¢), the computing time function at nodei.
The arguments for this function are the size of the
input load, the range of certain parameters for an
algorithm, and the like. Here only the argument, the
size of input load, are emphasized.
2) Fcphii (¢), the computing time function at an

equivalent nodehii.
3) Fcmhii (¢), the communication time function at

link i. Link i is the link by which either nodei or
equivalent nodehii connects to its parent node, nodehii.
Fcmhii (¢) can be denoted as Fcmi (¢).
4) Fcp0 (¢), the computing time function at root

node0.
5) Dhd0 (¢), the temporal cost function of

partitioning data at root node0.
6) Chd0 (¢), the temporal cost function of data

collecting and postprocessing at root node0 for
obtaining the final outcome.

A computing time function is defined as a product
of an algorithm running time (or running steps,
an alternative) and the inverse of CPU speed of a

node where an input load is processed. The run
time of an algorithm is sometimes defined as the
number of steps [25] in the literature. This is an
appropriate description for running time because
the performance in executing an algorithm should
be based on a standard, which is independent of the
computing powers among distinct machines. Hence,
we use running steps instead of running time while an
algorithm is run at a node.
The optimal performance in scheduling for a tree

network is machine dependent. Here it is assumed
that all input loads are processed (to some extent)
concurrently. As mentioned earlier, a computing
function while an algorithm is executed at nodei is
defined as

Fcpi (¢) = Fcp¢algmi (¢)£Finv¢CPU¢spi (¢) (3)

where
1) Fcpi (¢) is the computing function at nodei (unit

second).
2) Fcp¢algmi (¢) is the function of running steps of an

algorithm at nodei (unit step).
3) Finv¢CPU¢spi (¢) is the function of the inverse of

CPU speed at nodei (unit seconds/per step).
As Finv¢CPU¢spi (¢) is the inverse of CPU speed, it can
be expressed as a conventional notation wi. On the
other hand, we assume that the argument of Fcp¢algmi (¢)
only refers to ni. Here F

cp¢algm
i (¢) can be either a linear
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or a nonlinear function of the size ni of an input
load. Furthermore, Fcp¢algmi (¢) can be induced into a
product of a function of the size of an input load
and a computing intensity constant Tcp. Hence (3)
becomes

Fcpi (¢) = Fcp¢algmi (¢)wi! Fcp¢algmi (ni)wiTcp: (4)

By contrast, the communication time function Fcmi (¢)
can be derived as follows.

Fcmi (¢) = Fcm¢algmi (¢)£Finv¢link¢spi (¢)

= Fcm¢algmi (¢)zi! Fcm¢algmi (ni)ziTcm: (5)

Provided that the communication time is linearly
proportional to the size of fractional load ni, then
Fcm¢algmi (ni) = kni+ c, where k,c are constants. For
simplicity, we assume Fcm¢algmi (ni) = ni = ®in and then
the communication time function becomes

Fcmi (¢) = Fcm¢algmi (ni)ziTcm = niziTcm = (®in)ziTcm

(6)
where
1) Fcmi (¢) is the communication time function at

link i (unit second).
2) Fcm¢algmi (¢) is the function of running steps of

an algorithm transmitting a fractional load (unit step)
via link i. For simplicity, Fcm¢algmi (¢) can be reduced to
a product of a function of distributing the size ni of a
fractional load via link i and the time constant Tcm.
3) Finv¢link¢spi (¢) is the inverse of link speed function

at link i (unit seconds/per step). It can be represented
by zi.
It is necessary to distinguish between a hardware

partition and a software partition. A hardware partition
means that a load is partitioned and distributed to
multiple processors. A software partition means that
a load is partitioned at a single machine according
to the algorithms used. Details of these two types of
partitions are described as follows.

A. Hardware Partition

The core of parallel computing is partitioning a
load into fractions, then distributing these fractions
to distinct nodes, and finally processing these
fractional input loads in parallel. This mechanism
is implemented in a hardware partition as defined.
The hardware partition considerably decreases the
finish time of a data-intensive processing job. In other
words, speedup for the job can significantly increase.
Unlike the hardware partition, a software partition
involves recursively partitioning a fractional load into
smaller sizes on a single machine while an algorithm
is required to be able to recursively process these
smaller divisions of data in a process. A more detailed
description of software partition is discussed in the
next subsection.

Referring to Fig. 2, fundamental recursive
equations for calculating the size of fractional loads
assigned to distinct nodes (i.e., the root node and
its equivalent child nodes) at the topmost level in a
multilevel tree are obtained as

Fcmhi¡1i(¢) +Fcphi¡1i(¢) = Fcmhii (¢)+Fcphii (¢),
i= 2,3, : : : ,m (7)

Fcp0 (¢) = Fcmh1i (¢)+Fcph1i(¢) (8)

®0 +®h1i+®h2i+ ¢ ¢ ¢+®hmi = 1
the normalization equation: (9)

The computing function at equivalent nodeh0i,
collapsed from the entire tree network, can be
expressed as

Fcph0i(¢) = Fcp0 (¢)+Dhd0 (¢) +Chd0 (¢) (10)

as mentioned earlier. Furthermore, as considering the
effectiveness of parallel computing, constraints should
be imposed on the hardware partition by the following
conditions

Fcph0i(¢)¿ Fcp0 (¢) (11)

Fcphii (¢)¿ Fcpi (¢): (12)

That is, the computing time function value at
an equivalent node is significantly less than the
computing time function value at the root node it
replaces.
If the algorithm running at the equivalent nodeh0i is

assumed to be equivalent to the algorithms used at all
physical nodes, (10) becomes

Fcph0i(¢) = Fcp¢algmh0i (¢)wh0i
= Fcp¢algmh0i (nh0i)wh0iTcp

= Fcp¢algmh0i (n)wh0iTcp

= Fcp¢algm0 (n0)w0Tcp+D
hd
0 (¢) +Chd0 (¢): (13)

Here the algm superscript indicates a specific
algorithm. As shown in Fig. 2, we specify n (a
sufficiently large number), the number of an entire
load, and ni, the size of load assigned to nodei (where
i= 0,1,2, : : : ,m).
Consequently, the hardware partition possesses

certain divide-and-conquer properties as follows.

Divide: The number of divide steps is constant
and of a linear function of m+1, supposed that there
are only m+1 nodes in the tree. This leads Dhd0 (n)
to the order of £(1), a computational complexity of
order 1.
Conquer: There are m+1 subproblems in

a processing task and each node is assigned a
subproblem with a fractional load.

HUNG & ROBERTAZZI: SCHEDULING NONLINEAR COMPUTATIONAL LOADS 1173

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on November 7, 2008 at 20:14 from IEEE Xplore.  Restrictions apply.



Combine: The combined procedure depends on
the specific algorithm. For instance, the combined
procedure of a sorting problem depends on the extent
to which the records are already somewhat sorted.
Provided that the outcome from each node is already
sorted, Chd0 (n) becomes a function of order £(n),
which is a computational complexity of order n.

According to the divide-and-conquer properties,
(13) can be further simplified as

Fcph0i(¢) = Fcp¢algmh0i (n)wh0iTcp

= Fcp¢algm0 (n0)w0Tcp+D
hd
0 (n)+C

hd
0 (n)

= Fcp¢algm0 (n0)w0Tcp+£(1)+£(n): (14)

B. Software Partition

Unlike the hardware partition, a software partition
is defined as a mechanism under which a fractional
load is processed by a divide-and-conquer algorithm
at a single machine (a node), rather than at an
equivalent node collapsed from multiple processors.
Considering that a fractional load of size ni is
processed at a physical nodei, if the overall running
time on the load of size ni can be expressed with
the running cost (or running steps) on smaller
(partitioned) portions of the load, the algorithm makes
recursive calls to itself and the running cost can be
represented by a recurrence equation [25]. As in the
literature, the recurrence equation of running cost
T(ni) for the divide-and-conquer algorithm at nodei
can be expressed as

T(ni) =

(
£(1) if ni · c,
aT(

ni
b
) +D(ni)+C(ni) otherwise

:

(15)

In (15), if the load of size ni is small enough (say
ni · c for some constant) and there is no need for
further partitioning, a straightforward solution of the
divide-and-conquer algorithm would take a constant
time £(1). On the other hand, if the load of size ni
is large enough and needs to be partitioned into a
subproblems, each of which is 1=b the size of the
original load, and assuming that dividing the problem
into subproblems takes D(ni) time and combining
these subsolutions for a final outcome takes C(ni)
time, it eventually takes a running time cost of
aT(ni=b)+D(ni) +C(ni) for the divide-and-conquer
algorithm. As a consequence, T(ni) can represent the
time function of Fcp¢algmi (ni)

Fcp¢algmi (ni) = T(ni) = aT
³ni
b

´
+D(ni) +C(ni):

(16)

Note here we use a, which is different from b, to be
more general.

In contrast to the hardware divide-and-conquer
properties, software divide-and-conquer properties are
expressed as follow.

Divide: The process of divide steps takes only
constant time because the data processing problem
partitioned into b computational subproblems results
D(ni) on the order of £(1).
Conquer: Generally, a subproblems with the size

ni=b are solved recursively.
Combine: If the combine procedure at nodei has

ni records, the combining cost is denoted as C(ni).
If an algorithm is a sorting algorithm, the cost of
its combing process is of the order of computing
complexity of £(ni).

According to the above discussion, the running
cost of a sorting problem is expressed as

Fcp¢algmi (ni) = T(ni) = aT
³ni
b

´
+£(1)+£(ni)

(17)

T(ni) can be of the order of growth ni logni, n
2
i , n

3
i ,

2ni , or ni!, and so on.

C. Applications

Two categories of linear and nonlinear applications
are illustrated as follows.
1) Linear Applications: Provided that the running

cost is a linear function of the number of records (the
size of an input load), then Fcp¢algmhii (ni) and F

cp¢algm
i (ni)

possess the computing complexity of order £(ni).
According to the linearity property, the outcomes of
indivisible pieces of load are independent of each
other. This leads to a usually negligible postprocessing
cost for linear problems of Chd0 (¢) of zero. However
in exceptional cases significant Chd0 (¢) could be
included. Because Fcp¢algmhii (ni) and F

cp¢algm
i (ni) are of

the order of £(ni), we further assume that both of
them are functions of ni. Ignoring the scale factor and
constant, Fcp¢algmhii (ni) and F

cp¢algm
i (ni) become ni. As a

consequence, (14) is further derived

Fcph0i(¢) = Fcp¢algmh0i (n)wh0iTcp = nwh0iTcp (18)

= Fcp¢algm0 (n0)w0Tcp+D
hd
0 (n) +C

hd
0 (n)

= n0w0Tcp+£(1)+0

= ®0nw0Tcp+£(1): (19)

Referring to (18) and (19), one obtains

nwh0iTcp = ®0nw0Tcp+£(1)

wh0iTcp = ®0w0Tcp+
£(1)
n
:

(20)

If the number of records is sufficiently large such that
£(1)=n approaches to zero, (20) becomes

wh0iTcp = ®0w0Tcp: (21)
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2) Nonlinear Applications: As an example,
provided that Fcp¢algmi (ni) is of order £(n

2
i ), and it

can be further simplified to n2i , without a loss of
generality, (14) becomes

Fcph0i(¢) = Fcp¢algmh0i (n2)wh0iTcp = n
2wh0iTcp (22)

= Fcp¢algm0 (n0)
2w0Tcp+D

hd
0 (n) +C

hd
0 (n)

= n20w0Tcp+£(1)+£(n)

= (®0n)
2w0Tcp+£(1)+£(n): (23)

The equivalent computing function Fcph0i(¢) at nodeh0i
becomes a quadratic equation of the load size ®0n
as shown in (23). According to (22) and (23), one
obtains

n2wh0iTcp = (®0n)
2w0Tcp+£(1)+£(n)

wh0iTcp = ®
2
0w0Tcp+

£(1)
n2

+
£(n)
n2

:
(24)

If the number n of records is sufficiently large such
that £(1)=n2 and £(n)=n2 approach zero, (24) would
be reduced to

wh0iTcp = ®
2
0w0Tcp: (25)

IV. SPEEDUP PERFORMANCE OF A SINGLE LEVEL
TREE USING SIMULTANEOUS DISTRIBUTION

In this section we consider a heterogeneous single
level tree in which processors use simultaneous load
distribution and the staggered start protocol to process
the load fractions assigned. Using the staggered start
protocol a processor must receive its load completely
before it begins to process the load. The root node
can distribute load to its children while processing
some fraction of the load. In this sense the root may
be considered to have a front-end subprocessor for
communications off-loading.

A. Speedup Derivation for A Single Level Tree with
Running Time £(n2i )

The structure of a single level tree network with
m+1 processors and m links is illustrated in Fig. 1.
All children processors are connected to the root
processor via direct communication links. Assumed
to be the only one where the divisible load arrives,
the root processor in a single level tree partitions the
load into m+1 fractions and subsequently distributes
fractions ®1,®2, : : :, and ®m to children processors
concurrently, while fraction ®0 of its own is processed
under computation. Given that the entire load received
is of n records (or n atomic pieces), the fractional
load at the root node0 is denoted n0 (where n0 =
®0n) and the other fractional load at child nodei is
represented ni (where ni = ®in, i= 1,2, : : : ,m).

As an example in this section we assume that
the worst case running cost of an algorithm is £(n2i )
(i= 0,1,2, : : : ,m) and the computation time function at
a node becomes a quadratic equation in the load size
ni. However, the communication time function on a
link is still assumed linear in load size transmitted via
the link.
In order to minimize the processing finish time,

all of the utilized processors in the network must
finish computing at the same time [1]. Intuitively,
otherwise the load could be transferred from busy
processors to idle processors to improve the solution
(see the Appendix for a proof). The process of load
distribution can be represented by Gantt chart-like
timing diagrams as illustrated in Fig. 3. It is assumed
that at the root node the entire load is available for
distribution at time t= 0.
To calculate the speedup of a tree network, four

types of equations are employed in this section,
which are the recursive, normalization, speedup, and
constraint equations.
1) Recursive Equations: As mentioned, it is

known that for an optimal solution in terms of
makespan for linear problems all processors should
stop at the same time [1]. The same is true for a
nonlinear problem such as in this section (see the
proof in Appendix). Thus according to the timing
diagram Fig. 3, the fundamental recursive equations
of the system can be formulated as follows

(®0n)
2w0Tcp = (®in)ziTcm+(®in)

2wiTcp,

i= 1,2, : : : ,m: (26)

In addition, the normalization equation for a single
level tree is

®0 +®1 +®2 + ¢ ¢ ¢+®m = 1: (27)

This yields m+1 equations with m+1 unknowns.
Manipulating the recursive equations and
normalization equation can yield the solution for
the fractions of load distribution. Now (26) can be
converted to

®2i +
ziTcm
nwiTcp

®i¡
w0Tcp
wiTcp

®20 = 0: (28)

Let

»i =
w0Tcp
wiTcp

=
w0
wi
, i= 1,2, : : : ,m (29)

and

&i =
ziTcm
nwiTcp

=
¾i
n

where ¾i =
ziTcm
wiTcp

,

i= 1,2, : : : ,m (30)

then recursive equation (28) becomes

®2i + &i®i¡ »i®20 = 0: (31)
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Fig. 3. Timing diagram of single level tree with simultaneous distribution, staggered start.

Applying the quadratic formula to (31), one
obtains

®i =
¡&i§

q
&2i +4»i®

2
0

2£ 1 : (32)

Since the value of ®i is the load fraction at nodei, it
does not make any physical sense if ®i < 0. Hence,
®i ¸ 0 and the solution of ®i becomes

®i =
¡&i+

q
&2i +4»i®

2
0

2
, i= 1,2, : : : ,m: (33)

2) Normalization Equation: Employing (33),
normalization equation (27) becomes

®0 +
mX
i=1

¡&i+
q
&2i +4»i®

2
0

2
= 1: (34)

To obtain the value of variable ®0, (34) is solved by
the quadratic formula. Here the value of variable ®0
is specified as C0 (a specific value), and then the load
fractions for children nodes in (33) can be represented
as follows:

®i =
¡&i+

q
&2i +4»iC

2
0

2
: (35)

3) Speedup Equation: Now if a single level tree
rooted at node0 is collapsed into an equivalent node
nodeh0i, and the total load size is n, the computational
time can be expressed as (n)2wh0iTcp (wh0i is the
inverse computing speed of the equivalent nodeh0i).
According to the Gantt chart-like timing diagrams
Fig. 3, the computational time of the equivalent node
(or the tree network) is equal to the computational
time at the root in the tree network. That is, the finish

time Tf becomes

Tf = (n)
2wh0iTcp = (®0£ n)2w0Tcp = (C0£ n)2w0Tcp:

(36)
Moreover,

wh0iTcp = ®
2
0w0Tcp = C

2
0w0Tcp: (37)

According to Definition 1 in Section II (i.e., °h0i =
wh0i=w0), the value of °h0i can be obtained from (37)
as

°h0i = C
2
0 = ®

2
0: (38)

In this section speedup is the ratio of job solution time
at one processor to job solution time at a tree network
with m+1 processors (see Definition 2 in Section II).
As a result,

Speedup =
1
°h0i

=
1
C20

=
μ
1
®0

¶2
: (39)

4) Conditions:
a) The value of ¾i: The definition of ¾i in (30) is
the ratio of communication time to computation
time at nodei. Under a simultaneous distribution
protocol, the communication speed on linki
is assumed to be significantly faster than the
computing speed at nodei, a node receiving the
fractional load via linki. This will guarantee that
the physical characteristics of tree networks
are well fitted for our analysis model. On the
other hand, if the communication time at some
node is too slow relative to its corresponding
computation time, not all nodes are needed
for an optimal solution [1]. Assuming ¾i is
significantly smaller than 1 (communication
time is assumed considerably less than
computing time) and n is large enough for
data-intensive problem, &i in (30) would become
infinitesimal.
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b) The range of »i: For isometric (balanced)
rather than drastically unbalanced computing
power for parallel computing, the computing
speed of each node in a tree network is
specified as less than or equal to the computing
speed of the child’s parent by a factor of m,
and greater than or equal to that of the parent
by a factor of 1=m. That is,

1
m
¢ 1
w0
· 1
wi
·m ¢ 1

w0
, i= 1,2, : : : ,m:

(40)

Hence, the condition of a balanced computing
tree network is given as follows.

1
m
· »i =

w0
wi
·m, i= 1,2, : : : ,m: (41)

The range of »i is not a required condition, but
here it makes a tree model better fitted to the
developed mathematical analysis if it follows
the above condition.

c) The speedup of the tree network: In (34)
given that &i = 0 (assuming communication time
is significantly smaller than computing time and
the total number n of records for data-intensive
problems is considerably large) and »i = 1 (the
root processor has the same processing speed as
the children processors), the value of variable
®0 becomes

®0 =
1

m+1
: (42)

This results in the speedup of the tree
model (39) as

Speedup = (m+1)2: (43)

Speedup is a measure of the achievable parallel
processing advantage. Note the speedup here
is greater than a linear speedup. This outcome
is different from linear models where speedup
growth is linear or less than linear. For instance,
a homogeneous single level tree with m child
nodes may have a speedup of m+1, which
is linear to the number of nodes within this
tree network. The superlinear speedup is a
consequence of the nonlinear computing time
assumption and was noted by Drozdowksi and
Wolniewicz [4].

V. SPEEDUP OF A SINGLE LEVEL TREE WITH
SEQUENTIAL DISTRIBUTION AND STAGGERED
START

Sequential load distribution is employed in this
section in a heterogeneous single level tree using
staggered start. Sequential load distribution is used
as the model in most of the divisible load scheduling
literature. Even though a closed-form solution for

optimal load allocation and speedup is not possible,
an iterative solution is developed.

A. Speedup Derivation for A Single Level Tree with
Running Time £(nÂi )

The structure of a single level tree network with
root, m+1 processors, and m links is illustrated
in Fig. 1. In this section we assume that the worst
case running cost of an algorthm is £(nÂi ) (i=
0,1,2, : : : ,m), then the computation time function at
a node becomes a power Â function (Â¸ 2) in load
size ni. Still, the communication time function on a
link is a linear function in its assigned load size.
In order to minimize the processing finish time, all

of the utilized processors in the network must finish
computing at the same time [1]. The process of load
distribution can be represented by Gantt chart-like
timing diagrams, as illustrated in Fig. 4. It is assumed
that all of the load is available at the root node at time
t= 0.
Four types of equations are again needed to

determine the speedup. They are the recursive,
normalization, constraints, and speedup equations.
1) Recursive Equations and Normalization

Equation: According to the timing diagram Fig. 4,
the fundamental recursive equations of the system can
be formulated as follows:

(®in)
ÂwiTcp = (®i+1n)

Âwi+1Tcp+(®i+1n)zi+1Tcm,

i= 0,1,2, : : : ,m¡ 1: (44)

The normalization equation is

®0 +®1 +®2 + ¢ ¢ ¢+®m = 1: (45)

This yields m+1 equations with m+1 unknowns.
Manipulating the recursive equations and
normalization equation can yield the solution for the
fractions of load distribution. Now from (44),

®Âi =
wi+1Tcp
wiTcp

®Âi+1 +
zi+1Tcm
nÂ¡1wiTcp

®i+1,

i= 0,1,2, : : : ,m¡ 1: (46)
Let

»i+1 =
wi+1Tcp
wiTcp

=
wi+1
wi

, i= 1,2, : : : ,m (47)

and

&i =
ziTcm

nÂ¡1wiTcp
=

¾i
nÂ¡1

where ¾i =
ziTcm
wiTcp

,

i= 1,2, : : : ,m: (48)
This results (46) in

(®i)
Â = »i+1(®i+1)

Â+ »i+1&i+1®i+1,

i= 0,1,2, : : : ,m¡ 1: (49)
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Fig. 4. Timing diagram of heterogeneous single level tree using sequential distribution and staggered start.

2) Conditions: The features of ¾i, &i, and the
range of »i are the same as in Section IV.
The matrix equation consisting of recursive

equations and the normalization equation is
represented as follows26666666666664

®Â0

®Â1

®Â2

®Â3

...

®Âm¡1

1

37777777777775
=

26666666666664

0 »1 0 0 ¢ ¢ ¢ 0 0

0 0 »2 0 ¢ ¢ ¢ 0 0

0 0 0 »3 ¢ ¢ ¢ 0 0

0 0 0 0 ¢ ¢ ¢ 0 0
...

...
...

...
. . .

...
...

0 0 0 0 ¢ ¢ ¢ 0 »m

0 0 0 0 ¢ ¢ ¢ 0 0

37777777777775

26666666666664

®Â0

®Â1

®Â2

®Â3

...

®Âm¡1

®Âm

37777777777775

+

26666666666664

0 »1&1 0 0 ¢ ¢ ¢ 0 0

0 0 »2&2 0 ¢ ¢ ¢ 0 0

0 0 0 »3&3 ¢ ¢ ¢ 0 0

0 0 0 0 ¢ ¢ ¢ 0 0
...

...
...

...
. . .

...
...

0 0 0 0 ¢ ¢ ¢ 0 »m&m

1 1 1 1 ¢ ¢ ¢ 1 1

37777777777775

26666666666664

®0

®1

®2

®3

...

®m¡1

®m

37777777777775
:

These unknowns, ®0,®1,®2, : : : ,®m, can be solved
by standard iterative techniques. That is, one
substitutes an initial guess of the ® (and ®Â) vector
into the right-hand side of the matrix equation,
to create the (left-hand side) new estimate of the
®Â vector which is then substituted into the right
side, and on and on, until convergence occurs.
Such iterative solution is a well-known applied
mathematics technique for implicit equation solution
and it is well known that it has robust convergence
properties.
3) Alternative Recursive Equations and

Normalization Equation: According to the timing
diagram Fig. 4, the fundamental recursive equations
of the system can be formulated as follows:

(®0n)
Âw0Tcp = (®in)

ÂwiTcp+
iX

h=1

(®hn)zhTcm,

i= 1,2, : : : ,m: (50)

The normalization equation is

®0 +®1 +®2 + ¢ ¢ ¢+®m = 1: (51)

This yields m+1 equations with m+1 unknowns.
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Equation (50) becomes

(®i)
Âwi+

iX
h=1

®h&hwh = (®0)
Âw0, i= 1,2, : : : ,m

(52)
where

&h =
zhTcm

nÂ¡1whTcp
=

¾h
nÂ¡1

: (53)

The matrix equation consists of recursive equations
and normalization equation, represented as follows26666666666664

1

®Â0w0

®Â0w0

®Â0w0

...

®Â0w0

®Â0w0

37777777777775
=

26666666666664

0

®Â1w1

®Â2w2

®Â3w3

...

®Âm¡1wm¡1

®Âmwm

37777777777775

+

26666666666664

1 1 1 1 ¢ ¢ ¢ 1 1

0 &1w1 0 0 ¢ ¢ ¢ 0 0

0 &1w1 &2w2 0 ¢ ¢ ¢ 0 0

0 &1w1 &2w2 &3w3 ¢ ¢ ¢ 0 0

0 &1w1 &2w2 &3w3 ¢ ¢ ¢ 0 0

...
...

...
...

. . .
...

...

0 &1w1 &2w2 &3w3 ¢ ¢ ¢ &m¡1wm¡1 &mwm

37777777777775

£

26666666666664

®0

®1

®2

®3

...

®m¡1

®m

37777777777775
:

These unknowns, ®0,®1,®2, : : : ,®m, can, again, be
solved iteratively.
4) Speedup Equation: Now, if a single level tree

rooted at node0 is collapsed into an equivalent node
nodeh0i, and the total load size is n, the computational
time can be expressed as (n)Âwh0iTcp (wh0i is the
inverse computing speed of equivalent nodeh0i).
According to the Gantt chart-like timing diagrams,
Fig. 4, the computational time of the equivalent node
(or the tree network) is equal to the computational
time at the root in the tree network. Consequently, the
finish time Tf becomes

Tf = (n)
Âwh0iTcp = (®0£ n)Âw0Tcp: (54)

Hence,
wh0iTcp = ®

Â
0w0Tcp: (55)

According to Definition 1 in Section II (i.e., °h0i =
wh0i=w0) and (55), the value of °h0i becomes

°h0i = ®
Â
0 : (56)

Thus, the expression for superlinear speedup is

Speedup =
1
°h0i

=
μ
1
®0

¶Â
: (57)

VI. EXTENSION TO MULTILEVEL TREE NETWORKS

Using available methods in the literature [1, 3, 23],
optimal load allocation can be determined for
multilevel tree networks where load originates at
the root node. This is true for both simultaneous
and sequential load distribution. The basic idea is
one solves for equivalent processing speed of one
single level subtree at a time, working from the
bottom of the tree upwards. As single level trees
within the multilevel tree are considered, they are
replaced by equivalent processors [1, 24] until
the entire tree is replaced by a single equivalent
processor. After this one can solve for the optimal
load allocations by considering subtrees of equivalent
processors from top to bottom of the tree. Tree
networks are important,from an applied point of view,
as the nodes in any general network topology can
be interconnected using a (spanning) tree overlay
network.

VII. CONCLUSION AND LESSONS LEARNED

The following are the findings that have resulted
from this study.

1) It is possible to solve for optimal load
allocations and speedup for models with nonlinear
power law computational complexity, either through
relatively simple equations or iteratively. A proof
has been provided of the condition for optimal load
distribution of nonlinear loads.
2) Nonlinear problems have a need for

postprocessing, because of the dependency of the
input data when processed by a nonlinear algorithm.
3) We analytically corroborate the results of

Drozdowksi and Wolniewicz [4] that superlinear
speedup can result for nonlinear divisible load
processing.
4) It should be pointed out that higher order

nonlinear equations can suffer from numerical error
(due to finite computer word size) problems and so
some care is warranted.
5) We note that the findings of this study are

somewhat limited compared with the wealth of
information available for linear models. This is due
to the early nature of this study and the simplifying
assumptions made in it (see Introduction).
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6) A proof of the simultaneous distribution
method’s optimality by contradiction appears
in the Appendix. It seems it would be true for
sequential distribution (by intuition) as well. However,
because of the apparent complexity of the sequential
distribution proof, it is not provided here.

We have sought to demonstrate the possibility of
optimal scheduling for a number of representative
scheduling policies on tree interconnection networks
under power law nonlinearties in the space available.
Of course for specific applications other scheduling
policies, nonlinear functional forms and topologies
may be of interest. Because of the superlinear
speedup, parallel processing of loads with nonlinear
computational complexity is a promising technique
to maximize computational efficiency on multiple
processor systems.

APPENDIX

The following theorem [1] is proved here.

THEOREM If all of the nodes of the nonlinear
computing model receiving non-zero load fractions
stop computing at the same time, the processing
time (makespan) is minimum for the simultaneous
distribution strategy.

A simultaneous distribution (See Fig. 3) in single level
trees with m+1 nodes (node0,node1, : : : ,nodem), and
m links (l1, : : : , lm) is taken into account. Before the
proof, some definitions need to be illustrated
first [1].
1) Load Distribution: ® is an ordered m+1 tuple

®= (®0,®1,®2, : : : ,®m) (58)

where ®i is the load fraction assigned to nodei.
Further, the normalization equation is

mX
i=0

®i = 1 where 0· ®i · 1, i= 0,1, : : : ,m:

(59)

The set of all feasible load distributions is denoted
by L.
2) Finish Time: The finish time of nodei is

denoted by Ti(®), for a given load distribution ® 2 L.
3) Processing Time: For a given ® 2 L, this is

defined as

T(®) = maxfT0(®),T1(®), : : : ,Tm(®)g: (60)

In other words, T(®) is the time at which the entire
load is processed.
4) Minimum Processing Time: This is defined as

T¤ =min
®2L

T(®): (61)

5) Optimal Load Distribution: This is defined as
the load distribution ®¤ 2 L such that the processing
time is a minimum. That is,

®¤ = argmin
®2L

T(®): (62)

Only the simultaneous distribution (See Fig. 3) is
proved by the contradiction method here.
We assume that a nonlinear computing function at

a node in a single level tree, such as the tree shown
in Fig. 3, is of power Â, where Â¸ 1. This condition
is used for the proof of simultaneous distribution and
illustrated as follows.

PROOF Let ®= (®0,®1,®2, : : : ,®m) 2 L be the
initial load distribution such that all the nodes stop
computing at the same time. Provided that the
processing time is not a minimum, there must exist
an ®¤ = (®¤0,®

¤
1,®

¤
2, : : : ,®

¤
m) 2 L such that ®¤ satisfiies

®¤ = argmin
®2L

T(®): (63)

This leads to

Ti(®
¤)< Ti(®) where i= 0,1,2, : : : ,m: (64)

1) At node0: Because the finish time at the root
node0 is (®0n)

Âw0Tcp, (64) becomes

(®¤0n)
Âw0Tcp < (®0n)

Âw0Tcp: (65)

Without loss of generality, let Â be an integer,
where Â¸ 1. Now, (65) is converted to ((®¤0)Â¡
(®0)

Â)nÂw0Tcp < 0, such that one may obtain

(®¤0¡®0)f(®¤0)Â¡1 + (®¤0)Â¡2®0 + ¢ ¢ ¢+(®¤0)1(®0)Â¡2

+ (®0)
Â¡1gnÂw0Tcp < 0: (66)

Because ®¤i , ®i, n, w0, and Tcp are all positive, this
leads to

f(®¤0)Â¡1 + (®¤0)Â¡2®0 + ¢ ¢ ¢+(®¤0)1(®0)Â¡2

+ (®0)
Â¡1gnÂw0Tcp > 0: (67)

Hence, one obtains (®¤0¡®0)< 0, such that
®¤0 < ®0: (68)

2) At nodei: According to (26) where the power
is replaced with Â, the finish time of the child node
nodei takes (®in)

ÂwiTcp+(®in)ziTcm. Regarding (64)
while i= 1,2, : : : ,m, this yields

(®¤i n)
ÂwiTcp+(®

¤
i n)ziTcm < (®in)

ÂwiTcp+(®in)ziTcm,

i= 1,2, : : : ,m: (69)

This can be transformed into

((®¤i )
Â¡ (®i)Â)nÂwiTcp+(®¤i ¡®i)nziTcm < 0 (70)

then

(®¤i ¡®i)f[(®¤i )Â¡1 + (®¤i )Â¡2®i+ ¢ ¢ ¢+(®¤i )1(®i)Â¡2

+ (®i)
Â¡1]nÂwiTcp+nziTcmg< 0: (71)
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Because ®¤i , ®i, n, wi, zi, Tcp, and Tcm are all positive,
this leads to

[(®¤i )
Â¡1 + (®¤i )

Â¡2®i+ ¢ ¢ ¢+(®¤i )1(®i)Â¡2

+ (®i)
Â¡1]nÂwiTcp+ nziTcm > 0: (72)

Hence, one obtains (®¤i ¡®i)< 0, such that
®¤i < ®i where i = 1,2, : : : ,m: (73)

According to (68) and (73), it turns out that

mX
j=0

®¤j <
mX
j=0

®j: (74)

This comes out a contradiction since both ® and
®¤ 2 L and their components should sum to one.
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