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SCALABLE SCHEDULING FOR CLUSTERS
AND GRIDS USING CUT THROUGH

SWITCHING
J. T. Hung and T. G. Robertazzi

Abstract

A new scalable scheduling strategy using cut through switching is proposed in this paper. Recursive and closed form expressions
for speedup are found in heterogeneous single level trees and in homogeneous multilevel trees, respectively. The ratio of speedup
using cut through switching to that using store and forward switching is presented so as to illustrate the amount of improvement
in speedup between these two different techniques.
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1 INTRODUCTION

The processing of massive amounts of data on distributed and parallel networks is becoming more and more common.
Applications include grid computing, database applications, multimedia, and sensor network processing. Over the past 15
years, a number of researchers have mathematically modeled such processing using a divisible load scheduling model [1],
which is useful for data parallel applications.

Divisible loads are ones that consist of data that can be arbitrarily partitioned among a number of processors interconnected
through some network. Divisible load modeling usually assumes no precedence relations amongst the data. Due to the linearity
of the divisible model, optimal scheduling strategies under a variety of environments can be devised.

The majority of the divisible load scheduling literature has appeared in computer engineering periodicals. Divisible load
modeling should be of interest as it models, both computation and network communication in a completely seamless integrated
manner. Moreover, it is tractable with its linearity assumption. It has been used to accurately and directly model such features as
specific network topologies and scheduling policies [1], [2], [3], [4], [5], [6], [7], [8], [9], computation versus communication
load intensity [1], [2], time varying inputs [10], multiple job submission [1], [11], [12], [13], and numerous applications.
However, researchers in this field have noted an saturation limit. If speedup (or solution time) is considered as a function of
the number of processors, an asymptotic constant is reached as the number of processors is increased. Beyond a certain point,
adding processors results in minimal performance improvement.

For the first interconnection topology considered in the literature, the linear daisy chain [2], the saturation limit is usually
explained by noting that, if load originates at a processor at a boundary of the chain, data must be transmitted and retransmitted
i − 1 times from processor to processor before it arrives at theith processor (assuming nodes with store and forward
transmission). However, for subsequent interconnection topologies considered (e.g. bus, single level tree, hypercube), the
reason for this lack of scalability has been less obvious.

The reason why the saturation occurs in a single level tree is because of the assumption that a node distributes load
sequentially to one of its children at a time. This is true for both single and multi-installment scheduling strategies discussed
to date [1], [5]. In a single level tree (star topology), if a processor can distribute load to all of its children simultaneously,
the speedup is a linear function of the number of processors [14].

How to implement simultaneous (concurrent) distribution is indicated in [14] as follows:
How might one implement the strategy that a processor distributes load concurrently to all its neighbors? A direct

method, similar to what is done in packet switches, is to envision that a processor has a CPU and an output buffer for
each output link. Scalability can be achieved as long as the CPU can effectively distribute load to all of its output buffers
concurrently.

In a multilevel tree, even though the hardware can support the mechanism that the processors distribute load to their children
simultaneously, saturation can also occur if scheduling policies do not adopt the cut through switching policy from upper level
to lower level and the simultaneous distribution policy in the same level. A fat tree network architecture was introduced as
one means for hardware to implement simultaneous distribution so as to avoid the saturation problem [14]. The actual problem

Thomas G. Robertazzi, Cosine Laboratory, Department of Electrical and Computer Engineering, Stony Brook University, Stony Brook, NY 11794. E-mail:
tom@ece.sunysb.edu. The support of NSF grant CCR-99-12331 is acknowledged.

Jui Tsun Hung, Cosine Laboratory, Department of Electrical and Computer Engineering, Stony Brook University, Stony Brook, NY 11794. E-mail:
trent@ece.sunysb.edu



IJCA03 DECEMBER 22, 2003 2

0α w

zmz
2

z1 zm-1

2α m-1α
mα1α

...
mα wmm-1α wm-12α w21α w1

0

Fig. 1. Structure of a heterogeneous single level tree with simultaneous distribution, simultaneous start.

in multilevel trees is the nature of store and forward switching, which is used in [14], down a path in such a tree. With an
efficient scheduling policy (such as cut through switching with simultaneous distribution) it is ultimately hardware that limits
the performance. This is in the sense that single level tree scheduling is scalable as long as outputs of the root are continually
loaded.

This paper considers the use of cut through switching to overcome this problem. In cut through switching, load proceeding
down a multilevel tree path need not be completely received by a node before it can be forwarded to the node’s descendants.
Rather, a node can simultaneously receive load from its parent node and transmit (from the portion received so far) to its
children at the same time. Intuitively one can see that this should lead to a performance improvement but we seek here to
quantify that performance.

Note that simultaneous load scheduling was proposed by Piriyakumar and Murthy in [15]. While they stated this should
lead to improve performance, the scalable nature of simultaneous scheduling was not known until [14]. Previous related work
on scalability issues for parallel processing includes an experimental study of several real time load balancing schemes [16]
and an experimental study of scalable scheduling for function parallelism on distributed memory multiprocessors [17]. It has
been known on an intuitive basis that network elements should be kept constantly busy for good performance [18].

This paper presents the types of notation and analytic background in Section 2. In Section 3 the speedup formulas for
processors are derived for a single level and a multilevel tree, respectively. We also compare the speedup using cut through
switching (with simultaneous start) with that using store and forward switching (with simultaneous start) [19]. The conclusion
is stated in Section 4.

2 MODEL AND NOTATION

2.1 Model and Notation for Single Level Tree

To evaluate a homogeneous multilevel tree, we must analyze a single level tree first. Here we present a heterogeneous single
level tree, (see Figure 1), with intelligent root. All the children processors are connected to the root (parent) processor via
communication links. An intelligent root can process a fraction of the load as well as distribute the remaining load to its
children processors at the same time. Timing diagrams within each node of Figure 1 show communication above the horizontal
time axis and computation below it. In this paper we assume that a node begins to process its load as soon as load is received
by the nodes as proposed by Kim [20]. This is simultaneous start.

For a heterogeneous single level tree, which can be collapsed into an equivalent node, the notation is presented as follows.
α0: The load fraction assigned to the root processor.
αi: The load fraction assigned to theith link processor pair.
wi: The inverse computing speed on theith processor.
weq: The inverse computing speed on an equivalent node collapsed from a single level tree.
zi: The inverse link speed on theith link.
Tcp: Computing intensity constant. The entire load can be processed inwiTcp seconds on theith processor.
Tcm: Communication intensity constant. The entire load can be transmitted inziTcm seconds over theith link.
Tf,m: The finish time of an equivalent node collapsed from a single level tree composed of one root node andm children

nodes. HereTf,m is equal toweqTcp .
Tf,0: The finish time for the entire divisible load solved on the root processor, (i.e. a tree without any children nodes but the

root node). HereTf,0 is equal to1× w0Tcp, that isw0Tcp .

Definition 1: γeq, the ratio of the inverse computing speed on an equivalent node to that on the root node:

γeq = weq/w0 = Tf,m/Tf,0 (1)

Definition 2: Speedup, the ratio of finish time on one processor (i.e. the root node) to that on an equivalent node collapsed
from a single level tree. It is thus a measure of parallel processing advantage. This value is equal to the ratio of the inverse
computing speed on the root node to that on an equivalent node, i.e. the inverse ofγeq. Hence:

Speedup = Tf,0/Tf,m = w0/weq = 1/γeq (2)
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Fig. 2. Structure of a homogeneous multilevel fat tree using cut through switching, simultaneous distribution, and simultaneous start.

2.2 Model and Notation for Multilevel Tree

A heterogeneous multilevel tree network is too complex for a closed form speedup solution. Therefore, in this paper a
homogeneous multilevel tree network is evaluated. A homogeneous multilevel tree network where root processors are equipped
with a front-end processor for off-loading communications is considered. Root nodes, called intelligent roots, process a fraction
of the load as well as distribute the remaining load to their children processors at the same time (see Figure 2). Note that
each child processor starts computing and transmitting immediately as soon as it receives its assigned fraction of load and
continues without any interruption until all of its assigned load fraction has been processed. Under simultaneous distribution
load is distributed from a node to its children simultaneously, as opposed to sequentially. This is the operation of “cut through
switching with simultaneous distribution” for computation and communication.

An equivalent subtree can be obtained by collapsing the lower level subtrees into an equivalent node [21]. Therefore, an
equivalent network for a levelj subtree in a multilevel tree can be derived and is illustrated in Figure 3.
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Fig. 3. Structure of j-level subtree in a multilevel tree using cut through switching, simultaneous distribution, and simultaneous start.

The notation for a multilevel homogeneous fat tree is denoted as follows.
αj,0: The load fraction assigned to a root processor of thejth level subtrees.
αj,i: The load fraction assigned to theith link-processor pair of thejth level subtrees.
wieqj−1

: The inverse computing speed of an equivalentith node collapsed from the (j − 1)th level subtree, which consists of
collapsed single level subtrees from levelj − 1 descending to level1. In a homogeneous multilevel tree, we assume
that weqj−1 = wieqj−1

(i = 1, 2, . . . , m).

Th,k
f,m: The finish time of ak level homogeneous tree with one root node andm equivalent children nodes.
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Definition 3: pj−1,i , the multiplier of the inverse capacity of theith link at levelj (see Figure 3). The value of the multiplier
pj−1,i is defined as the inverse of the total number of children processor descendants at and below layerj − 1 for the ith
subtree. The variablepj−1,i allows fat tree modeling. A fat tree allocates more capacity to nodes near the root to improve the
transmission speed. In a homogeneous multilevel fat tree,pj−1 = pj−1,i (i = 1, 2, . . . ,m). Hence:

pj−1 =

(
j−1∑

l=0

ml

)−1

0 < pj−1 ≤ 1 (3)

With this natural choice ofpj−1, the transmission capacity between parent nodes and children nodes is1/(pj−1z), which is
larger than the capacity of bottommost level links by1/pj−1. This implicitly indicates that each node within an equivalent
subtree from layerj − 1 down to layer0 has an equivalent capacity of1/z in the channel at levelj.

Definition 4: γj , the ratio of the inverse computing speed on an equivalent node at levelj to that on the root node:

γj = weqj
/w (4)

Definition 5: Speedup, the ratio of finish time on one processor (i.e. the root node) to that on an equivalent node collapsed
from a subtree from levelk to level 1. This value is also equal to the ratio of the inverse computing speed on the root node
to that on an equivalent node, i.e. the inverse ofγk. Hence:

Speedup = Tf,0/Th,k
f,m = w/weqk

= 1/γk (5)
We make three major assumptions. First, the computing and communication loads are divisible (i.e. perfectly divisible with
no precedence constraints [1]). Second, transmission and computation time are proportional (linear) to the size of the problem
transmitted or computed. Finally, each node transmits load simultaneously to its children.

3 CUT THROUGH SWITCHING WITH SIMULTANEOUS DISTRIBUTION AND SIMULTANEOUS START

This section examines scalable scheduling with two improved features. One feature is the use of cut through switching, rather
than store and forward switching [14], for load distribution from level to level in a tree network. The second feature is to
allow a child node receiving load from its parent node to begin computing as soon as load starts to arrive. This type of timing,
referred to here as simultaneous start, was first proposed by Kim [20].

An ideal form of cut through switching would provide sufficient virtual circuits (one from the root to each node) so that
all nodes in the multilevel tree receive load simultaneously with effective root to individual node data rate of1/z (or some
variation for a heterogeneous network). Neglecting propagation delays, this creates a logical single level tree (star) network.
However, because there is more traffic as one approaches the root, a fat tree like assignment of link capacity is needed.

The form of cut through switching used in this study is to have the multilevel tree root start to transmit simultaneously to
all its children. After a node receives its own load, load for the node’s children will be relayed (in virtual cut through) through
the node to its children. Each node distributes load to its children in a similar manner. Each node receiving load commences
processing on its fraction as it starts to receive it. Once a node has received its own load it continues processing and relays
load to its children and descendants.

Finally, in this work we proceed by aggregating single level subtrees into equivalent processors, starting from the bottom to
the tree and working upwards [1].

The tree’s bottommost single level subtrees are at level1, the tree’s topmost (including the root) subtree is at levelk. A
little thought will show that the topmost single level subtree can have all processors commence computation simultaneously
at time zero (root node with data storage case).

In the lower level sub-trees there is a delay between the time that a subtree’s root commences computation and reception
of its load and the time it finishes reception of its own load and can begin distributing load to its children, so they can start
processing (root node without data storage case).

In this paper the single level tree root node with data storage and root node without data storage cases are first examined.
Then these results are applied to a multi-level tree. Again, root node without data storage scheduling is applied to lower levels,
1, 2, . . . , k − 1, and root node with data storage scheduling is applied to topmost levelk.

3.1 Processors with Simultaneous Start: Single Level Tree

3.1.1 Single Level Tree: Root Node with Data Storage:Consider a single level tree network with an intelligent root,m + 1
processors, andm links. All children processors are connected to the root processor via direct communication links. The
intelligent root processor, assumed to be the only processor at which the divisible load arrives, partitions a total processing
load intom+1 fractions, keeps its own fractionα0, and distributes the other fractionsα1, α2, . . . ,αm to the children processors
respectively and simultaneously.

Each processor begins computing immediately as soon as load starts to arrive and continues without any interruption until all
of its assigned load fraction has been processed. In order to minimize the processing finish time, all of the utilized processors
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Fig. 4. Timing diagram of single level tree with simultaneous distribution, simultaneous start, and root node with data storage.

in the network must finish computing at the same time [1]. The process of load distribution can be represented by Gantt
chart-like timing diagrams, as illustrated in Figure 4. Note that this is a completely deterministic model. The fundamental
recursive equations of the system can be formulated as follows:

α0w0Tcp = α1w1Tcp (6)

αi−1wi−1Tcp = αiwiTcp i = 2, 3, . . . , m (7)

The normalization equation for the single level tree with intelligent root is:

α0 + α1 + α2 + · · ·+ αm = 1 (8)

This givesm + 1 linear equations withm + 1 unknowns.
Now from (6):

α0 =
w1

w0
α1 =

1
k1

α1 where k1 = w0/w1. (9)

Then from (7),

αi =
wi−1Tcp

wiTcp
αi−1 = qiαi−1 where qi = wi−1/wi. (10)

= (
i∏

l=2

ql)× α1 i = 2, 3, . . . ,m (11)

Then the normalization equation (8) becomes:
[

1
k1

+ 1 +
m∑

i=2

(
i∏

l=2

ql)

]
α1 = 1

α1 =
1

1
k1

+ 1 +
∑m

i=2(
∏i

l=2 ql)
(12)
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The finish time is:

Tf,m = α0w0Tcp =
1
k1

α1w0Tcp (13)

=
1

1 + k1

[
1 +

∑m
i=2(

∏i
l=2 ql)

]w0Tcp (14)

The single level tree can be collapsed into a single equivalent node, and the equivalent computation speedweq is:

weqTcp = Tf,m =
1

1 + k1

[
1 +

∑m
i=2(

∏i
l=2 ql)

]w0Tcp

According to Definition 1 in Section 2:

γeq =
weq

w0
=

1

1 + k1

[
1 +

∑m
i=2

w1
wi

] (15)

SinceTf,0 = α0w0Tcp andα0 = 1: the speedup is derived as follows:

Speedup =
Tf,0

Tf,m
=

1
γeq

= 1 + k1

[
1 +

m∑

i=2

w1

wi

]
(16)

As a special case, consider the situation of a homogeneous network where all children processors have the same inverse
computing speed and all links have the same inverse transmission speed (i.e.wi = w and zi = z for i = 1, 2, . . . ,m). Note
that w0 can be different fromwi, and thenk1 = w0/w and qi = 1 (i = 2, 3, . . . , m). Consequently, the speedup can be a
linear function of the number of children processors as follows.

Speedup = 1 + k1

[
1 +

m∑

i=2

w1

wi

]
= 1 + m

w0

w
(17)

3.1.2 Single Level Tree: Root Node without Data Storage:Here we assume that the children nodes in the subtree begin
computing when the root node finishes receiving its load. It is assumed that communication speed is fast enough on links that
no node “starves” for load. The Gantt chart-like timing diagram of this process of load distribution can be illustrated in Figure
5.

The fundamental recursive equations of the system can be formulated as follows:

α0w0Tcp = α1w1Tcp + α0z0Tcm (18)

αi−1wi−1Tcp = αiwiTcp i = 2, 3, . . . , m (19)

The normalization equation for the single level tree with intelligent root is:

α0 + α1 + α2 + · · ·+ αm = 1 (20)

This givesm + 1 linear equations withm + 1 unknowns. Now from (18),

α0 =
w1Tcp

w0Tcp − z0Tcm
α1 =

1
k1

α1 (21)

Here:
k1 =

w0Tcp − z0Tcm

w1Tcp
(22)

Here we assume thatw0Tcp > z0Tcm. That is, communication speed is faster than computation speed. Following the
derivations in section 3.1.1, we can obtain the following results:

Tf,m = α0w0Tcp =
1
k1

α1w0Tcp (23)

=
1

1 + k1

[
1 +

∑m
i=2(

∏i
l=2 ql)

]w0Tcp (24)

γeq =
weq

w0
=

1

1 + k1

[
1 +

∑m
i=2

w1
wi

] (25)



IJCA03 DECEMBER 22, 2003 7

Communication

Computation
α

0
Tcpw0

Root Node

T
f

(Parent 0)

Communication

Computation

Communication

Computation

Communication

Computation
(Child m-1)

.

.

.

.

Communication

Computation

(Child m-2)

Communication

Computation

(Child m  )

T
f

T
f

T
f

αm-2w Tcpm-2

αm-1w Tcpm-1

αmw Tcpm

z T
cmm-2αm-2

z T
cmm-1αm-1

z T
cmmαm

(Child 1)

(Child 2)

z T
cm1α1

z T
cm2

α2

T
f

T
f

Single Level 

α1 Tcpw1

α2w2Tcp

z T
cm0α0

Heterogeneous single-level tree (Linear Type)
- Simultaneous Distribution
- Simultaneous Start
- Root Node without Data Storage

Fig. 5. Timing diagram of single level tree with simultaneous distribution, simultaneous start, and root node without data storage.

Speedup =
Tf,0

Tf,m
=

1
γeq

= 1 + k1

[
1 +

m∑

i=2

w1

wi

]
(26)

As a special case, (i.e.wi = w andzi = z for i = 1, 2, . . . , m):

Speedup = 1 + m(w0/w − z0σ/z) (27)

Hereσ = zTcm/wTcp.

3.2 Processors with Simultaneous Start: Homogeneous Multiple Level Tree Analysis

The process of load distribution for the multilevel fat tree network using cut through strategy for computing and communicating
can be represented by Gantt chart-like timing diagram in Figure 6.

The dashed blocks at the communication parts denote the periods when data only passes through a node with cut through
switching and the solid blocks at the communication parts denote the periods when the indicated node receives the data assigned
for computation.

3.2.1 Levelj Subtree: Single Level Tree Root Node without Data Storage:The timing diagram of a single equivalentjth
level tree is analogous to Figure 5. However, the following notation is defined asαi = αj,i (i = 0, 1, 2, . . . ,m); z0 = pjz;
zi = pj−1z (i = 1, 2, . . . , m); w0 = w; andwi = weqj−1 (i = 1, 2, . . . , m). Consequently, the fundamental recursive equations
of the jth level subtree network are derived as follows:

αj,0wTcp = αj,1weqj−1Tcp + αj,0pjzTcm (28)

αj,i−1weqj−1Tcp = αj,iweqj−1Tcp i = 2, 3, . . . ,m (29)

The normalization equation for the single level subtree with intelligent root is:

αj,0 + αj,1 + αj,2 + · · ·+ αj,m = 1 (30)

This givesm + 1 linear equations withm + 1 unknowns. Then from (28):

αj,0 =
weqj−1Tcp

wTcp − pjzTcm
αj,1 =

1
keqj−1

αj,1 (31)
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According to Definition 4 in Section 2 andσ = zTcm/wTcp , keqj−1 becomes:

keqj−1 =
wTcp − pjzTcm

weqj−1Tcp
=

w

weqj−1

− wpjzTcm

weqj−1wTcp

=
w

weqj−1

(1− pjσ) =
1

γj−1
(1− pjσ) (32)

Now from (29):

αj,i =
weqj−1Tcp

weqj−1Tcp
αj,i−1 = qeqj−1αj,i−1 =

[
i∏

l=2

qeqj−1

]
αj,1

= (qeqj−1)
i−1αj,1 i = 2, 3, . . . , m (33)

Here, as the network is homogeneous (see (33)),qeqj−1 = 1. The normalization equation (30) becomes:

1
keqj−1

αj,1 + αj,1 +
m∑

i=2

αj,i = 1 (34)

αj,1 =
1

1
keqj−1

+ 1 +
∑m

i=2

[∏i
l=2 qeqj−1

] (35)

Therefore, the equivalent finish time is as follows:

Th,j
f,m = αj,0wTcp =

1
keqj−1

αj,1wTcp (36)

=
1

1 + keqj−1

{
1 +

∑m
i=2

[∏i
l=2 qeqj−1

]}wTcp (37)
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Sinceweqj Tcp = Th,j
f,m andkeqj−1 = (1− pjσ)/γj−1, we obtain

weqj
=

1

1 + keqj−1

{
1 +

∑m
i=2

[∏i
l=2 qeqj−1

]}w

γj =
weqj

w
=

1

1 + keqj−1

{
1 +

∑m
i=2

[∏i
l=2 qeqj−1

]}

=
1

1 + m
γj−1

(1− pjσ)
(38)

From (38), the closed forms of speedup for fat tree and non-fat tree networks are obtained as follows.

1) Homogeneous multilevel fat tree:
Since the computation capability of each node isw, weq0 is equal tow. Therefore, the initial value ofγ, (which isγ0),
is equal to 1 (becauseγ0 = weq0/w = w/w). Furthermore,γj can be derived as follows:

γ1 =
1

1 + m
γ0

(1− p1σ)
=

1
1 + m(1− p1σ)

(39)

γ2 =
1

1 + m
γ1

(1− p2σ)

=
1

1 + m(1− p2σ) + m2(1− p2σ)(1− p1σ)

γ3 =
1

R(σ,m)
(40)

...

γj =
1

1 +
∑j

i=1

[∏i−1
l=0 m(1− pj−lσ)

] (41)

wherej = 1, 2, . . . , k − 1 and

R(σ,m) = 1 + m(1− p3σ) + m2(1− p3σ)(1− p2σ)
+ m3(1− p3σ)(1− p2σ)(1− p1σ) (42)

The equivalent speedup of levelj subtree is described as the following equation:

Speedup =
1
γj

= 1 +
j∑

i=1

[
i−1∏

l=0

m(1− pj−lσ)

]
(43)

wherej = 1, 2, . . . , k − 1.
2) Homogeneous multilevel non-fat tree(all the bandwidth of each transmission link is the same,pj = 1):

In (41), pj = 1. Hence, the closed form solution ofγj is:

γj =
1∑j

i=0 [m(1− σ)]i
j = 1, 2, . . . , k − 1 (44)

The equivalent speedup of a subtree, level j, is obtained as follows:

Speedup =
1
γj

=
j∑

i=0

[m(1− σ)]i =
1− [m(1− σ)]j+1

1−m(1− σ)
(45)

wherej = 1, 2, . . . , k − 1.

3.2.2 Levelk Subtree: Root Node with Data Storage:The timing diagram of the top equivalent single level tree, level
k, is analogous to Figure 4. However, the following notation is defined asαi = αk,i (i = 0, 1, 2, . . . , m); zi = pk−1z
(i = 1, 2, . . . , m); w0 = w; and wi = weqk−1 (i = 1, 2, . . . , m). Consequently, the fundamental recursive equations of the
kth-level subtree are derived as follows:

αk,0wTcp = αk,1weqk−1Tcp (46)

αk,i−1weqk−1Tcp = αk,iweqk−1Tcp i = 2, 3, . . . , m (47)
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The normalization equation for the single level tree with intelligent root is

αk,0 + αk,1 + αk,2 + · · ·+ αk,m = 1 (48)

Applying the derivations in section 3.2.1, one obtained the following results. So from (46):

αk,0 =
weqk−1Tcp

wTcp
αk,1 =

1
keqk−1

αk,1 (49)

where

keqk−1 =
wTcp

weqj−1Tcp
=

w

weqj−1

=
1

γk−1
(50)

Th,k
f,m = αk,0wTcp =

1
keqk−1

αk,1wTcp (51)

=
1

1 + mkeqk−1

wTcp (52)

γk =
weqk

w
=

1
1 + mkeqk−1

=
1

1 + m
γk−1

(53)

Therefore, we can summarize the speedup of levelk. If k = 1, thenγ0 = 1 andγ1 = γ0/(m + γ0). If k ≥ 2, the closed form
solution for ak level fat tree is shown as follows.

1) Homogeneous multilevel fat tree:

Speedup =
1
γk

= 1 + m

{
1 +

k−1∑

i=1

[
i−1∏

l=0

m(1− p(k−1)−lσ)

]}

2) Homogeneous multilevel non-fat tree, (all the bandwidth of each transmission link is the same,pj = 1):

Speedup =
1
γk

= 1 + m

k−1∑

i=0

[m(1− σ)]i

3.2.3 Speedup Comparison Between Cut Through Switch and Store and Forward Switch:In [19] the recursive formulae for
a homogeneous multilevel fat tree with simultaneous start using store and forward switching areγ0 = 1; γj = (pj−1σ(γj−1 +
m) + γj−1)/(γj−1 + m) (j = 1, 2, . . . , k − 1); andγk = γk−1/(m + γk−1). We can thus solve these formulae to obtain the
ration of speedup using cut-through switching to that using store and forward switching (see Figure 7,σ = 0.1). As Figure 7

0

5

10

15

20

0

5

10

15

20

25
1

1.5

2

2.5

3

3.5

The number of children in each subtree

The ratio of speedup using cut through switching to that using store and forward (sigma=0.1)

The number of levels in a network

T
he

 r
at

io
 o

f s
pe

ed
up

Fig. 7. The ratio of speedup of cut-through switch to that of store and forward switch (σ = 0.1)

shows, speedup using cut through switching is faster than that using store and forward switching.
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4 CONCLUSIONS

Tree networks are of direct relevance to cluster and grid interconnection. Spanning trees are an efficient and commonly used
interconnection topology in large scale networks/grids for distributing load while minimizing the number (and inherent cost)
of links used. In clusters, single level trees (i.e. stars) are a natural topology for small scale interconnection and multilevel
trees are natural for larger system interconnection.

The performance analysis of a heterogeneous single level tree and a homogeneous multilevel tree using cut through switching
was derived in this paper. The speedup of scheduling using cut through switching outperforms than that of scheduling using
store and forward switching. A comparison in the performance between these two method becomes possible by solving the
recursive equations derived in this paper.
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