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I. INTRODUCTION

The processing of massive amounts of data on
distributed and parallel networks is becoming more
and more common. Aerospace applications include
radar and infrared tracking, satellite imaging, and
sensor networks. Over the past 15 years, a number
of researchers have mathematically modeled such
processing using a divisible load scheduling model
[1—3] that is useful for data parallelism applications.
Divisible loads are ones that consist of data that

can be arbitrarily partitioned among a number of
processors interconnected through some network.
Divisible load modeling usually assumes no
precedence relations among the data. For instance,
a satellite image processing system may involve a
stream of independent images arriving at a robotic
tape silo for storage and then being distributed to
processors on a cluster computer. In this situation
divisible load scheduling theory can answer the
question of how to optimally schedule image
transmissions and assign load to processors to
maximize parallel system speedup and minimize
overall processing time.
One reason that motivated the creation of divisible

load theory was the need for a means of modeling
integrated measurements, communication, and
computation in sensor networks [4]. At the time
of [4] there was a recognized need to combine the
communication and computation aspects of sensor
networks modeling. Divisible load theory allows
such integration. Because of its underlying linear
model, continuous mathematics framework, divisible
load modeling is very tractable. It has been used
to accurately and directly model such features as
specific network topologies and scheduling policies
[2, 4—11, 14] computation versus communication load
intensity [2, 4], time-varying inputs [15], multiple job
submission [2, 16—18], and numerous applications
such as image processing, databases, and multimedia.

A. Our Contribution

The goal of this paper is to quantify the superiority
of virtual cut through switching to store and forward
switching for networks processing divisible loads.
Under store and forward like switching, a node in
a tree must receive load for all of its descendants
before beginning to distribute load to them [19]. This
clearly can be improved upon. The way to do this is
to use virtual cut through switching [12, 13] which
allows a node to distribute load to its descendants
even as it continues to receive its descendants’ load.
Both strategies are used here, which ends with a
comparison. Note that the majority of the divisible
load scheduling literature to date involves store and
forward switching.
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Fig. 1. Structure of a heterogeneous single level tree with
sequential distribution, simultaneous start.

To achieve our goal we discuss tree networks.
Tree networks, though of interest in their own right,
can be used to span any interconnection topology to
deliver load to processors. They are thus relevant for
many load distribution policies in such commonly
used interconnection networks as hypercubes and
meshes. Moreover a logical (Ethernet or wireless
channel like) bus can be modeled as a single level tree
(root and adjacent children only) with load distributed
sequentially to children and all links having the
same transmission speed. Multilevel trees can model
cascaded networks as discussed in Section IIIB.
A multilevel tree is considered here where at time

t= 0 the divisible load is available at the root node.
Load is optimally (in a solution time or speedup
sense) distributed throughout the tree to gain the
benefit of parallel processing of the load. Our main
results are closed-form solutions under a variety of
scheduling scenarios (including the use of fat trees)
for the solution time and speedup of single level tree
networks and recursive expressions for homogeneous
multilevel tree networks. These recursive expressions
are novel. Calculating speedup for heterogeneous trees
is also discussed.
This paper begins with the development of some

notation and analytic background in Section II. The
scheduling method using cut through switching from
level to level is derived in Section III. The scheduling
method using store and forward switching from level
to level is derived in Section IV. In Section V we
compare the performance of cut through switching
scheduling and store and forward scheduling. The
conclusion appears in Section VI.

II. MODEL AND NOTATION

A. Model and Notation for Single Level Tree

If a node begins to process its load as soon as the
load begins to be received, we call this simultaneous
start. It is illustrated in Fig. 1 (where each node
contains a miniature timing diagram–such diagrams
are explained later.)
For a heterogeneous single level tree, which can

be collapsed into an equivalent node, the notation is
presented as follows.

®0 Load fraction assigned to root processor
®i Load fraction assigned to ith link processor pair
wi Inverse computing speed on ith processor
weq Inverse computing speed of equivalent node

collapsed from single level tree
zi Inverse link speed on ith link
Tcp Computing intensity constant. Entire load can

be processed in wiTcp seconds on ith processor
Tcm Communication intensity constant. Entire load

can be transmitted in ziTcm seconds over ith link
Tf,m Finish time of an equivalent node collapsed

from single level tree composed of one root
node and m children nodes. Tf,m is equal to
weqTcp

Tf,0 Finish time for entire divisible load solved on
root processor, (i.e., tree without any children
nodes but the root node). Tf,0 is equal to
1£w0Tcp, that is w0Tcp.

DEFINITION 1 First °eq is the ratio of the inverse
computing speed on an equivalent node to that on the
root node

°eq = weq=w0 = Tf,m=Tf,0: (1)

An equivalent node can exactly present the operation
characteristics of a subnetwork it replaces. Equivalent
element modeling is a feature of linear models, such
as circuit theory, queueing theory, and divisible load
theory.

DEFINITION 2 Speedup, the ratio of finish time on
one processor (i.e., the root node) to that on an
equivalent node collapsed from a single level tree. It is
thus a measure of parallel processing advantage. This
value is equal to the ratio of the inverse computing
speed on the root node to that on an equivalent node,
i.e., the inverse of °eq. Hence,

Speedup = Tf,0=Tf,m = w0=weq = 1=°eq: (2)

B. Model and Notation for Multilevel Tree

A heterogeneous multilevel tree network is too
complex to obtain a closed-form solution of speedup.
Therefore, a homogeneous multilevel tree network
where root processors are equipped with a front-end
processor for off-loading communications is evaluated.
Suppose that after a subroot receives all of the

assigned fraction of load for its descendants, it starts
distributing these loads to its descendants
concurrently. This strategy is called “store and
forward switching with simultaneous distribution” (see
Fig. 2).
The notation for a multilevel homogeneous fat tree

is denoted as follows.
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Fig. 2. Structure of multilevel homogeneous tree using cut
through switching, sequential distribution, simultaneous start.

®j,0 Load fraction assigned to root processor of
jth level subtrees

®j,i Load fraction assigned to ith link-processor
pair of jth level subtrees

wieqj¡1
Inverse computing speed of equivalent ith
node which represents (j¡ 1)th level subtree,
which consists of collapsed single level
subtrees from level 1 ascending to level j¡1.
In a homogeneous multilevel tree, we assume
that weqj¡1 = wieqj¡1 (i= 1,2, : : : ,m)

Th,kf,m Processing finish time of k level homogeneous
tree with one root node and m equivalent
children nodes.

DEFINITION 3 pj¡1,i; the multiplier of the inverse
capacity of the ith link at level j (see Fig. 2). The
value of the multiplier pj¡1,i is defined as the inverse
of the total number of children processor descendants
at and below layer j¡ 1 for the ith subtree. The
variable pj¡1,i allows fat tree modeling. A fat tree
allocates more capacity to nodes near the root to
improve the transmission speed. In a homogeneous
multilevel fat tree, pj¡1 = pj¡1,i (i= 1,2, : : : ,m). Hence,

pj¡1 =

Ã
j¡1X
l=0

ml

!¡1
, 0< pj¡1 · 1: (3)

With this choice of pj¡1, the transmission capacity
between a level j parent node and its children nodes is
1=(pj¡1z), which is larger than the capacity of
bottommost level links by 1=pj¡1. This implicitly
indicates that each node within an equivalent subtree
from layer j¡ 1 down to layer 0 has an equivalent
transmission capacity of 1=z to the root.

DEFINITION 4 °j , the ratio of the inverse computing
speed on an equivalent node at level j to that on the
root node

°j = weqj =w: (4)

DEFINITION 5 Speedup, the ratio of finish time on
one processor (i.e., the root node) to that on an
equivalent node collapsed from a subtree from
level k to level 1. This value is also equal to the ratio
of the inverse computing speed on the root node to
that on an equivalent node, i.e., the inverse of °k.
Hence,

Speedup = Tf,0=T
h,k
f,m = w=weqk = 1=°k: (5)

III. CUT THROUGH SWITCHING WITH
SEQUENTIAL DISTRIBUTION

For the purposes of determining the optimal load
allocations, the single level trees within the overall
multilevel tree are divided into a root single level
subtree (level k) and single level subtrees below the
root subtree (level 1,2, : : : ,k¡ 1). It is assumed that
all data is available (and stored) at the root at t= 0.
Thus the root can immediately deliver load to its
children at level k. This is the root node with data
storage case.
For the other single level trees, it is assumed that a

root’s load must be completely received by a single
level tree root before load is distributed to its children.
After this, load is relayed through the root to its
children in virtual cut through mode. This is the root
node without data storage case. Note that the root
node without data storage policy is particularly
appropriate when bandwidth is limited, as in a
homogeneous tree.
In both cases, only the simultaneous start strategy

is considered. In the simultaneous start strategy each
processor begins processing the received data while it
continues to receive the data. This strategy was
originally described by Kim [20].
In the following both cases are examined, first in

the context of a single level tree in isolation and then
in the context of multilevel trees.
In this section we evaluate the performance of the

multilevel tree model using sequential distribution
model under the cut through switching and the
simultaneous start strategy. The complexity of
sequential distribution model is more involved
than that of the better performing simultaneous
distribution. This model is applied to situations when
the parent nodes do not have enough capacity and
ability to enable the simultaneous distribution
model.
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Fig. 3. Timing diagram of single level tree with sequential
distribution, simultaneous start, and root node with data storage.

A. Processors Using Simultaneous Start Model in a
Single Level Tree

The following two subsections discuss sequential
distribution in single level trees: one model with data
storage and the second model without data storage.
1) Single Level Tree: Root Node with Data Storage:

The process of sequential load distribution can be
represented by Gantt chart-like timing diagrams,
as illustrated in Fig. 3. Here the horizontal axis is
time and communication appears above the axis and
computation appears below the axis. According to
the figure, the fundamental recursive equations of the
system can be formulated as follows:

®0w0Tcp = ®1w1Tcp (6)

®i¡1wi¡1Tcp = ®i¡1zi¡1Tcm+®iwiTcp, i= 2,3, : : : ,m:

(7)

The normalization equation for the single level tree
with intelligent root is

®0 +®1 +®2 + ¢ ¢ ¢+®m = 1: (8)

This gives m+1 linear equations with m+1
unknowns. From (6)

®0 =
w1
w0
®1 =

1
k1
®1 where k1 = w0=w1: (9)

From (7)

®i =
wi¡1Tcp¡ zi¡1Tcm

wiTcp
®i¡1 = qi®i¡1 =

Ã
iY
l=2

ql

!
£®1,

i= 2,3, : : : ,m (10)

where qi = (wi¡1Tcp¡ zi¡1Tcm)=wiTcp. We assume
wi¡1Tcp > zi¡1Tcm; that is, communication time must
be faster than computation time. See also [2] for a
discussion of the best choices of wi and zi. According
to (9) and (10), the normalization equation (8) leads to"

1
k1
+1+

mX
i=2

Ã
iY
l=2

ql

!#
®1 = 1 (11)

Then the value of ®1 is

®1 =
1

1
k1
+1+

Pm
i=2

³Qi
l=2ql

´ (12)

Therefore, the finish solution time is derived as
follows:

Tf,m = ®0w0Tcp =
1
k1
®1w0Tcp

=
1

1+ k1
h
1+

Pm
i=2

³Qi
l=2 ql

´iw0Tcp: (13)

Since a single level tree can be collapsed into a single
equivalent node, the equivalent inverse computation
speed weq of a collapsed node can be derived as
follows:

weqTcp = Tf,m =
1

1+ k1
h
1+

Pm
i=2

³Qi
l=2 ql

´iw0Tcp:
(14)

According to Definition 1 in Section II, °eq is equal to
weq=w0. Thus, from (14)

°eq =
weq
w0

=
1

1+ k1
h
1+

Pm
i=2

³Qi
l=2ql

´i : (15)

Since
Tf,0 = ®0w0Tcp = 1 ¢w0Tcp (16)

where ®0 = 1, and speedup is the ratio of computation
time on one processor to computation time on the
entire tree with m children, we obtain

Speedup =
Tf,0
Tf,m

=
1
°eq

= 1+ k1

"
1+

mX
i=2

Ã
iY
l=2

ql

!#
:

(17)

As a special case, consider the situation of a
homogeneous network where all children processors
have the same inverse computing speed and all links
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Fig. 4. Timing diagram of single level tree with sequential
distribution, simultaneous start, and root node without data

storage.

have the same inverse transmission speed (i.e., wi = w
and zi = z for i= 1,2, : : : ,m). Note the root w0 can be
different from wi. Therefore

qi =
wi¡1Tcp¡ zi¡1Tcm

wiTcp
=
wTcp¡ zTcm
wTcp

= 1¡¾

(18)

where ¾ = zTcm=wTcp and i= 2,3, : : : ,m. Consequently,

Speedup = 1+
w0
w

·
1¡ (1¡¾)m

¾

¸
: (19)

2) Single Level Tree: Root Node without Data
Storage: The process of load distribution can be
represented by Gantt chart-like timing diagrams, as
illustrated in Fig. 4.
The fundamental recursive equations of the system

can be formulated as follows:

®0w0Tcp = ®1w1Tcp+®0z0Tcm (20)

®i¡1wi¡1Tcp = ®i¡1zi¡1Tcm+®iwiTcp, i= 2,3, : : : ,m:

(21)

The normalization equation for the single level tree
with intelligent root is

®0 +®1 +®2 + ¢ ¢ ¢+®m = 1: (22)

This gives m+1 linear equations with m+1
unknowns. Now from (20)

®0 =
w1Tcp

w0Tcp¡ z0Tcm
®1 =

1
k1
®1 (23)

where k1 = (w0Tcp¡ z0Tcm)=w1Tcp.
It is assumed that w0Tcp > z0Tcm (communication

speed is faster than computation speed for the 0th
link and root). Following the similar derivation in
Section IIIA1, the expressions of °eq and speedup can
be obtained as follows:

°eq =
weq
w0

=
1

1+ k1
h
1+

Pm
i=2

³Qi
l=2ql

´i : (24)

Therefore,

Speedup =
Tf,0
Tf,m

=
1
°eq

= 1+ k1

"
1+

mX
i=2

Ã
iY
l=2

ql

!#
:

(25)

As a special case, consider the situation of a
homogeneous network where all children processors
have the same inverse computing speed and all links
have the same inverse transmission speed (i.e., wi = w
and zi = z for i= 1,2, : : : ,m). Note the root w0 can be
different from wi. Then

Speedup = 1+
w0Tcp¡ z0Tcm

wTcp

·
1¡ (1¡¾)m

¾

¸
:

(26)

B. Processors with Simultaneous Start. Homogeneous
Multilevel Tree Analysis

For purposes of illustration we consider two
types of multilevel tree scheduling for homogeneous
trees. Here homogeneous trees have processors with
identical computing speeds and links with identical
transmission speeds. Homogeneous networks arise
in practice in such instances as cluster computer
installations. Calculating speedup for heterogeneous
trees is discussed in Section IIIC.
One type of multilevel tree scheduling discussed

here uses sequential distribution of load from a
node to its children for all tree levels. This is a good
model for a cascaded series of Ethernets (utilizing
collision domain interface cards) or a cascaded series
of wireless channels. The second type of multilevel
tree scheduling uses simultaneous distribution of
load from the tree root to its children (in the topmost
level of the tree) and sequential distribution for tree
levels below that (levels j, j = 1,2, : : : ,k¡ 1). By way
of example, this can model a large capacity robotic
tape silo feeding a number of clusters simultaneously
using ATM links. Each cluster consists of one of
more cascaded Ethernet implementing sequential
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distribution (because of the use of collision domain
interface cards).
In this section we develop recursive expressions

for solution time and for speedup for the two
scenarios. This is done first for levels j = 1,2, : : : ,
k¡ 1 (with sequential distribution) and then in
two subsections for the topmost level k (for both
sequential and simultaneous distribution). At the
end of these two subsections the overall recursive
expressions are presented.
The methodology developed in this section can

be applied to other combinations or exclusive uses
of scheduling policies at each tree level. The ones
discussed here are natural for a first study. Note
also that if one is interested solely in the optimal
allocations of load to processors, rather than speedup
calculations, the methodology of [21] can be used.
1) Level j Subtree: Root Node without Data

Storage: Consider now a homogeneous multilevel
fat tree network where all processors have the same
inverse computing speed w and links of level j+1
have the inverse transmission speed pjz. The value of
pj¡1 is also defined in Definition 3 in Section II, that
is,

pjz =

24Ã jX
l=0

ml

!¡135z: (27)

The process of load distribution for the multilevel
fat tree network using cut through switching for
computing and communicating can be represented
by Gantt chart-like timing diagrams. According to an
equivalent single level fat tree, level j (see Fig. 5),
the fundamental recursive equation can formulated as
follows:

®j,0wTcp = ®j,1weqj¡1Tcp+®j,0pjzTcm (28)

®j,i¡1weqj¡1Tcp = ®j,iweqj¡1Tcp+®j,i¡1pj¡1zTcm

where i= 2,3, : : : ,m: (29)

The normalization equation for the single level tree
with an intelligent root (that can process load as well
as distribute it) is

®j,0 +®j,1 +®j,2 + ¢ ¢ ¢+®j,m = 1: (30)

This gives m+1 linear equations with m+1
unknowns.
Now from (28)

®j,0 =
weqj¡1Tcp

wTcp¡pjzTcm
®j,1 =

1
keqj¡1

®j,1: (31)

Here the expression of keqj¡1 is manipulated as
follows:

keqj¡1 =
wTcp¡pjzTcm
weqj¡1Tcp

=
w

weqj¡1
¡ wpjzTcm
weqj¡1wTcp

(32)

Fig. 5. Timing diagram of level j subtree with sequential
distribution and simultaneous start.

=
w

weqj¡1
(1¡pj¾) =

1
°j¡1

(1¡pj¾) (33)

where ¾ = zTcm=wTcp.
It is also assumed that wTcp > pjzTcm

(communication is faster than computing). Here (29)

®j,i =
weqj¡1Tcp¡pj¡1zTcm

weqj¡1Tcp
®j,i¡1 = qeqj¡1®j,i¡1

=

"
iY
l=2

(qeqj¡1)

#
®j,1 = (qeqj¡1 )

i¡1®j,1 (34)

where i= 2,3, : : : ,m and qeqj¡1 = (weqj¡1Tcp¡pj¡1zTcm)=
weqj¡1Tcp. It is assumed as before that weqj¡1Tcp >
pj¡1zTcm. The expression of qeqj¡1 can be manipulated
as follows:

qeqj¡1 = 1¡
wpj¡1zTcm
weqj¡1wTcp

= 1¡ wpj¡1
weqj¡1

¾ = 1¡ pj¡1
°j¡1

¾

(35)

where ¾ = zTcm=wTcp and °j¡1 = weqj¡1=w.
According to (31) and (34), the normalization

equation (30) for the jth subtree leads to(
1

keqj¡1
+ 1+

mX
i=2

"
iY
l=2

(qeqj¡1 )

#)
£®j,1 = 1: (36)
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Hence the value of ®j,1 is expressed as

®j,1 =
1

1
keqj¡1

+ 1+
Pm

i=2

hQi
l=2(qeqj¡1 )

i : (37)

Consequently, the equivalent finish time becomes

Th,jf,m = ®j,0wTcp =
1

keqj¡1
®j,1wTcp

=
1

1+ keqj¡1

n
1+

Pm
i=2

hQi
l=2(qeqj¡1 )

iowTcp:
(38)

Since weqjTcp = T
h,j
f,m, (38) becomes

weqjTcp =
1

1+ keqj¡1

n
1+

Pm
i=2

hQi
l=2(qeqj¡1 )

iowTcp:
(39)

According to (34), (35), and (39), the expression of °j
is derived as follows:

°j =
weqj
w

=
1

1+ keqj¡1

n
1+

Pm
i=2(qeqj¡1 )

i¡1
o

=
1

1+ keqj¡1

(
1+

qeqj¡1 ¡ qmeqj¡1
1¡ qeqj¡1

)

=
1

1+
1¡pj¾
pj¡1¾

(
1¡

Ã
1¡ pj¡1

°j¡1
¾

!m) ,
j = 1,2, : : : ,k¡ 1: (40)

Since the inverse computation capability of each
node is w, it concludes that weq0 = w. Hence the initial
value of °j is obtained as follows:

°0 =
weq0
w

=
w

w
= 1: (41)

For a homogeneous multilevel nonfat tree, the
bandwidth of each transmission links is the same, that
is, pj = 1. So from (40)

°j =
1

1+
1¡¾
¾

(
1¡

Ã
1¡ 1

°j¡1
¾

!m)

=
¾

1¡ (1¡¾)
Ã
1¡ ¾

°j¡1

!m , j = 1,2, : : : ,k¡ 1:

(42)

According to (42) and °0 = 1, we can derive

°1 =
¾

1¡ (1¡¾)
µ
1¡ ¾

°0

¶m = ¾

1¡ (1¡¾)m+1

°2 =
¾

1¡ (1¡¾)
µ
1¡ ¾

°1

¶m = ¾

1¡ (1¡¾)m2+m+1

°3 =
¾

1¡ (1¡¾)
µ
1¡ ¾

°2

¶m = ¾

1¡ (1¡¾)m3+m2+m+1

=
¾

1¡ (1¡¾)§3l=0ml

...

Consequently, the general form of °j of nonfat tree is
obtained as

°j =
¾

1¡ (1¡¾)§jl=0ml
, j = 0,1,2, : : : ,k¡ 1:

(43)

2) Level k Subtree: Root Node with Data Storage:
In this subsection two types of distribution model for
the topmost level subtree, level k, are discussed. One
is sequential distribution, the other is simultaneous
distribution. Generally simultaneous distribution
requires a central processing unit (CPU) be fast
enough to continually load all output buffers to its
children. If the buffer capacity of the parent node
cannot satisfy this basic requirement for simultaneous
distribution, the sequential distribution model
discussed in IIIB2a can be used. The simultaneous
model is described in IIIB2b.
2a) Level k subtree using sequential distribution:

In this part the expression for the topmost level
subtree using sequential distribution is derived. The
start strategy used here is simultaneous start.
The timing diagram of level k subtree using

sequential distribution is illustrated in Fig. 6.
According to this figure, the fundamental recursive
equation can be obtained as follows:

®k,0wTcp = ®k,1weqk¡1Tcp (44)

®k,i¡1weqk¡1Tcp = ®k,iweqk¡1Tcp+®k,i¡1pk¡1zTcm,

i= 2,3, : : : ,m: (45)

The normalization equation for the topmost subtree is

®k,0 +®k,1 +®k,2 + ¢ ¢ ¢+®k,m = 1: (46)

This gives m+1 linear equations with m+1
unknowns. Then from (44)

®k,0 =
weqk¡1Tcp
wTcp

®k,1 =
1

keqk¡1
®k,1: (47)
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Fig. 6. Timing diagram of level k subtree using sequential
distribution and simultaneous start.

Here, we let

keqk¡1 =
wTcp

weqj¡1Tcp
=

w

weqj¡1
=

1
°k¡1

: (48)

Now from (45)

®k,i =
weqk¡1Tcp¡pk¡1zTcm

weqk¡1Tcp
®k,i¡1 = qeqk¡1®k,i¡1

=

"
iY
l=2

(qeqk¡1)

#
®k,1 (49)

= (qeqk¡1 )
i¡1®k,1, i= 2,3, : : : ,m: (50)

Let

qeqk¡1 = 1¡
wpk¡1zTcm
weqk¡1wTcp

= 1¡ wpk¡1
weqk¡1

¾ = 1¡ pk¡1
°k¡1

¾

where ¾ = zTcm=wTcp. (51)

According to (48) and (49), the normalization
equation becomes(

1
keqk¡1

+1+
mX
i=2

"
iY
l=2

(qeqk¡1 )

#)
£®k,1 = 1: (52)

Consequently, the value of ®k,1 can be obtained as
follows:

®k,1 =
1

1
keqk¡1

+ 1+
Pm
i=2

hQi
l=2(qeqk¡1 )

i : (53)

The equivalent finish time Th,kf,m is derived as

Th,kf,m = ®k,0wTcp =
1

keqk¡1
®k,1wTcp

=
1

1+ keqk¡1

n
1+

Pm
i=2

hQi
l=2(qeqk¡1 )

iowTcp:
(54)

Because weqkTcp = T
h,k
f,m, (54) becomes

weqkTcp =
1

1+ keqk¡1

n
1+

Pm
i=2

hQi
l=2(qeqk¡1 )

iowTcp:
(55)

Thus
weqk
w

=
1

1+ keqk¡1

n
1+

Pm
i=2

hQi
l=2(qeqk¡1 )

io : (56)
According to Definition 1 in Section II and equations
from (48), (50), and (51) we obtain the expression of
°k as follows:

°k =
weqk
w

=
1

1+ keqk¡1

n
1+

Pm
i=2

hQi
l=2(qeqk¡1 )

io
=

1

1+ keqk¡1

n
1+

Pm
i=2(qeqk¡1 )

i¡1
o (57)

=
1

1+
1
°k¡1

8>>><>>>:1+
µ
1¡ pk¡1

°k¡1
¾

¶
¡
µ
1¡ pk¡1

°k¡1
¾

¶m
1¡

µ
1¡ pk¡1

°k¡1
¾

¶
9>>>=>>>;

=
1

1+
1

pk¡1¾

½
1¡

µ
1¡ pk¡1

°k¡1
¾

¶m¾ : (58)

Then the speedup is

Speedup = 1+
1

pk¡1¾

½
1¡

µ
1¡ pk¡1

°k¡1
¾

¶m¾
:

(59)

1) For a homogeneous multilevel nonfat tree the
bandwidth of each transmission links is the same, that
is, pj = 1. Then from (42), if j = k¡ 1, then

°k¡1 =
¾

1¡ (1¡¾)§k¡1l=0 m
l
: (60)

Hence, (58) can be solved as follows:

°k =
1

1+
1
¾

½
1¡

µ
1¡ ¾

°k¡1

¶m¾
=

1

1+
1
¾
f1¡ (1¡¾)§kl=1mlg

: (61)
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This leads to a closed solution and the speedup of the
multilevel nonfat tree is

Speedup =
1
°k
= 1+

1
¾
f1¡ (1¡¾)§kl=1mlg

where °0 = 1: (62)

2) For a homogeneous multilevel nonfat tree, the
expressions of °s are as follows:

°0 = 1 (63)

°j =
¾

1¡ (1¡¾)
Ã
1¡ ¾

°j¡1

!m
where j = 1,2, : : : ,k¡ 1 (64)

°k =
1

1+
1
¾
f1¡ (1¡¾)§kl=1mlg

: (65)

Consequently, the speedup is expressed as

Speedup = 1+
1
¾
f1¡ (1¡¾)§kl=1mlg: (66)

2b) Level k subtree using simultaneous distribution:
In the topmost level subtree, the root of this level is
the topmost root for the entire tree. Since all the data
for distribution in the topmost root is already stored in
this node, it is not necessary for this node to wait for
data to come in from its parent (if the parent exists)
under cut through transmission. Therefore, unlike
the rest of the levels below level k, in a nonfat tree,
the topmost level k can use simultaneous distribution
instead of sequential distribution to improve the
performance.
Using simultaneous distribution, the top equivalent

subtree timing, level k, is illustrated in Fig. 7.
According to the Fig. 7, the fundamental recursive
equations are

®k,0wTcp = ®k,1weqk¡1Tcp (67)

®k,i¡1weqk¡1Tcp = ®k,iweqk¡1Tcp, i= 2,3, : : : ,m:

(68)

In addition, the normalization equation for the single
level subtree with intelligent root (that can process
load as well as distribute it) is

®k,0 +®k,1 +®k,2 + ¢ ¢ ¢+®k,m = 1: (69)

This gives m+1 linear equations with m+1
unknowns. These equations can be solved recursively
in the same manner as was done in the previous
sections to obtain

keqk¡1 =
wTcp

weqj¡1Tcp
=

w

weqj¡1
=

1
°k¡1

(70)

°k =
weqk
w

=
1

1+ keqk¡1 £m
=

1

1+
m

°k¡1

: (71)

Fig. 7. Timing diagram of level k subtree using simultaneous
distribution and simultaneous start.

The speedup of this multilevel tree using simultaneous
distribution in the topmost level subtree is

Speedup =
1
°k
= 1+

m

°k¡1
: (72)

1) Consider a homogeneous multilevel nonfat tree,
which uses simultaneous distribution in the topmost
level subtree but sequential distribution in the levels
below the topmost level. (Nonfat tree means that all
the bandwidth of each transmission links is the same,
pj = 1).
Now from (43), we obtain

°k¡1 =
¾

1¡ (1¡¾)§k¡1l=0 m
l
: (73)

Hence the value of °k can be obtained as follows:

°k =
1

1+
m

°k¡1

=
1

1+m

,
¾

1¡ (1¡¾)§k¡1l=0 m
l

=
1

1+
m

¾
[1¡ (1¡¾)§k¡1l=0 m

l
]
: (74)

Finally, the speedup of a multilevel nonfat tree using
sequential distribution but simultaneous distribution at
the topmost level is

Speedup =
1
°k
= 1+

m

¾
[1¡ (1¡¾)§k¡1l=0 m

l

]: (75)
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2) For a homogeneous multilevel fat tree, the
values of °s are as follows:

°0 = 0

°j =
1

1+
1¡pj¾
pj¡1¾

(
1¡

Ã
1¡ pj¡1

°j¡1
¾

!m) (76)

°k =
1

1+
m

°k¡1

: (77)

The speedup is

Speedup = 1+
m

°k¡1
: (78)

C. Speedup Calculation for Heterogeneous Trees

For tractability and to produce recursive
expressions, Section IIIA and Section IIIB assumed
a homogeneous symmetrical tree. Speedup can be
calculated for heterogeneous and nonsymmetrical trees
by collapsing single level subtrees, starting from the
bottom of the multilevel tree and working upwards,
until a single equivalent processor representing the
operating characteristics of the entire tree is found
[2, 21]. Using this, the calculation of speedup relative
to a reference processor is straight forward. Since
relatively simple recursive algebraic expressions are
not possible, this procedure is best done recursively
by a computer program.

D. Use of Multi-Installment Scheduling

A known technique for decreasing the time
processors wait to receive load under sequential
distribution is to distribute load sequentially and
periodically in small installments or rounds [7, 18].
Multi-installment scheduling can be used in
conjunction with the optimal cut through switching
presented here to boost speedup. If communication
speeds are faster than computation speeds (the
assumption in here) then as installment size shrinks
a (saturating) performance improvement results. If
communication speeds are relatively slower than
computation speeds (as is the case in some wireless
networks) “gaps” will result in the timing and the
equations presented here will not be valid. In this case
though the use of store and forward switching will
result in excessive store and forward delay. The use of
cut through switching, by comparison, will lead to a
dramatic performance improvement.

IV. SEQUENTIAL DISTRIBUTION USING STORE AND
FORWARD SWITCHING

Under store and forward switching, a node
must completely receive the load for itself and

its descendants before beginning to compute and
distribute load to its children.
Again, for the purposes of determining the optimal

load allocations, the single level trees within the
overall multilevel tree are divided into the root single
level subtree (level k) and the single level subtrees
below the root subtree (level 1,2, : : : ,k¡ 1). It is
assumed that all data is available (and stored) at the
root at t= 0. Thus the root can immediately deliver
load to its children at level k. This is the root node
with data storage case.
For the other single level trees, it is assumed that

its load must be completely received by a single level
tree root before being distributed to its children. After
this, load is relayed through the root to its children in
store and forward mode. This is the root node without
data storage case.
In both cases, only the simultaneous start strategy

is considered. In the simultaneous start strategy each
processor begins processing the received data while
it continues to receive the data. In the following both
cases are examined, first in the context of single level
trees in isolation and then in the context of multilevel
trees.

A. Processors with Sequential Distribution.
Homogeneous Multilevel Fat Tree Analysis

A fat tree architecture is now considered where
upper links have more capacity than lower links in
such a way that each node has bandwidth 1=z to the
root.
We proceed by aggregating single level subtrees

into equivalent processors, starting from the bottom
of the tree and working upwards [21]. The tree’s
bottommost single level subtrees are at level 1, and
the tree’s topmost (including the root) subtree is at
level k.
Consider a homogeneous multilevel fat tree

network where all processors have the same inverse
computing speed w, and all links of level j have
the same inverse transmission speed pj¡1z. We use
the same tree labeling as in Fig. 2. The value
of pj¡1 is defined in Definition 3 from Section II,
that is,

pj¡1z =

24Ã j¡1X
l=0

ml

!¡135z: (79)

Again, the process for the load distribution of a
multilevel fat tree network using the store and forward
switching for computing and communicating from
upper level to lower level can be represented by Gantt
chart-like timing diagram.
We derive the speedup of the whole multilevel

tree by successively collapsing single level trees into
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Fig. 8. Timing diagram of level j subtree using store and
forward switching, sequential distribution, and simultaneous start

for root node without data storage.

equivalent nodes until the entire tree is collapsed into
an equivalent node. We first use the root without data
storage model for levels (j = 1,2, : : : ,k¡ 1), and then
use the root with data storage model for the top level
(level k).

B. Level j Subtree. Root Node without Data Storage

The Gantt chart-like timing diagram for jth level
subtree is illustrated in Fig. 8. According to Fig. 8, the
fundamental recursive equations of the jth level tree
network are

®j,0wTcp = ®j,1weqj¡1Tcp+1£pjzTcm (80)

®j,i¡1weqj¡1Tcp = ®j,iweqj¡1Tcp+®j,i¡1pj¡1zTcm,

i= 2,3, : : : ,m: (81)

Here as we move up the tree, collapsing single
level trees into equivalent processors, the single
level trees consist of a root with inverse speed w
and children nodes of inverse speed weqj¡1 . The
normalization equation for the jth single level tree
with intelligent root is

®j,0 +®j,1 +®j,2 + ¢ ¢ ¢+®j,m = 1: (82)

This yields m+1 linear equations with m+1
unknowns. Now using (80),

®j,0 =
weqj¡1Tcp®j,1 +pjzTcm

wTcp
=

1
keqj¡1

®j,1 +pj¾

(83)

where

keqj¡1 = w=weqj¡1 = 1=°j¡1 and ¾ = zTcm=wTcp:

(84)
Now from (81),

®j,i =
weqj¡1Tcp¡pj¡1zTcm

weqj¡1Tcp
®j,i¡1 = qeqj¡1®j,i¡1

=

"
iY
l=2

qeqj¡1

#
®j,1 = (qeqj¡1 )

i¡1®j,1 (85)

where i= 2,3, : : : ,m.
Naturally weqj¡1Tcp > pj¡1zTcm as communication

time is assumed as be faster than computation time.
We note that

qeqj¡1 =
weqj¡1Tcp¡pj¡1zTcm

weqj¡1Tcp
= 1¡ pj¡1zTcm

weqj¡1Tcp
£ w
w

= 1¡ pj¡1
°j¡1

£¾: (86)

Consequently,

iY
l=2

qeqj¡1 =

Ã
1¡ pj¡1

°j¡1
£¾

!i¡1
: (87)

According to (83) and (85), the normalization
equation (82) becomes

pj¾+
1

keqj¡1
®j,1 +®j,1 +

mX
i=2

®j,i = 1

(
1

keqj¡1
+ 1+

mX
i=2

"
iY
l=2

qeqj¡1

#)
£®j,1 = 1¡pj¾:

Finally, one obtains the value of ®j,1:

®j,1 =
1¡pj¾

1
keqj¡1

+ 1+
Pm

i=2

hQi
l=2 qeqj¡1

i : (88)

Proceeding as in the previous section, one can find °j ,
the inverse of speedup as

°j =
weqj
w

=

pj¡1¾+pj¾

"
1¡

Ã
1¡ pj¡1

°j¡1
¾

!m#

pj¡1¾+

"
1¡

Ã
1¡ pj¡1

°j¡1
¾

!m# :

(89)
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C. Level k Subtree. Root Node with Data Storage

In this subsection two types of distribution
models for the topmost level subtree, level k, are
discussed. One is sequential distribution, the other
is simultaneous distribution. Generally simultaneous
distribution requires a CPU be fast enough to
continually load all output buffers to its children.
According to the specification as above, the timing
diagram and recursive formulae for speedup are the
same as Section IIIB2.
1) Level k Subtree Using Sequential Distribution:

The timing diagram of level k subtree using sequential
distribution is the same as illustrated in Fig. 6.
According to Fig. 6, the solution of °k and speedup
are obtained as (58) and (59) as follows:

°k =
1

1+
1

pk¡1¾

½
1¡

µ
1¡ pk¡1

°k¡1
¾

¶m¾ (90)

Speedup = 1+
1

pk¡1¾

½
1¡

µ
1¡ pk¡1

°k¡1
¾

¶m¾
:

(91)

2) Level k Subtree Using Simultaneous Distribution:
The timing diagram of level k subtree using sequential
distribution is the same as illustrated in Fig. 7.
According to Fig. 7, the solution of °k and speedup
are obtained as (92) and (93) as follows:

°k =
1

1+
m

°k¡1

(92)

Speedup =
1
°k
: (93)

V. SUMMARY AND PERFORMANCE EVALUATION

For cut through switching and store and forward
switching the recursive speedup formulae are
developed as above and summarized as follows.

A. Homogeneous Multilevel Fat Tree

In this part, we summarize the recursive formulae
for a multilevel fat tree using sequential distribution
under cut through switching and store and forward
switching.
For level j:

°0 = 1 (94)

°j (cut through) =
1

1+
1¡pj¾
pj¡1¾

½
1¡
µ
1¡ pj¡1

°j¡1
¾

¶m¾
(95)

°j (store and forward) =

pj¡1¾+pj¾

·
1¡
µ
1¡ pj¡1

°j¡1
¾

¶m¸
pj¡1¾+

·
1¡
µ
1¡ pj¡1

°j¡1
¾

¶m¸
(96)

where j = 1,2, : : : ,k¡ 1.
1) If the distribution of the k level is sequential,

°k =
1

1+
1

pk¡1¾

½
1¡

µ
1¡ pk¡1

°k¡1
¾

¶m¾ : (97)

The speedup is

Speedup =
1
°k
= 1+

1
pk¡1¾

½
1¡

µ
1¡ pk¡1

°k¡1
¾

¶m¾
:

(98)

2) If the distribution of the k level is simultaneous,

°k =
1

1+
m

°k¡1

: (99)

The speedup is

Speedup =
1
°k
= 1+

m

°k¡1
: (100)

B. Homogeneous Multilevel Nonfat Tree

The homogeneous multilevel nonfat tree using cut
through switching and store and forward switching
under the sequential distribution and simultaneous
start and method assume all the bandwidth of each
transmission link is the same, pj = 1. This is one
special case of the homogeneous multilevel fat
tree. The formulae of the tree using cut through
switching can be obtained as closed-form formulae.
The following formulae apply only to the model using
cut through switching.

°0 = 1 (101)

°j =
¾

1¡ (1¡¾)§jl=0ml
, j = 1,2, : : : ,k¡ 1:

(102)

1) If the distribution of the k level is sequential

°k =
1

1+
1
¾
f1¡ (1¡¾)§kl=1mlg

: (103)

The speedup is

Speedup =
1
°k
= 1+

1
¾
f1¡ (1¡¾)§kl=1mlg:

(104)

2) If the distribution of the k level is simultaneous,

°k =
1

1+
m

¾
[1¡ (1¡¾)§k¡1l=0 m

l
]
: (105)
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Fig. 9. Ratio of speedup for multilevel tree models using simultaneous start or staggered start to that for an ideal model.

The speedup is

Speedup =
1
°k
= 1+

m

¾
[1¡ (1¡¾)§k¡1l=0 m

l

]:

(106)

C. Performance Evaluation

According to the recursive equation (95), (96),
(97), and (99) for the fat tree model and setting pj = 1
(where j = 0,1, : : : ,k¡1) for the nonfat tree model, we
obtain the ratio of the speedup for these eight cases
to the speedup of the ideal model and then illustrate
the result in Fig. 9. The ideal model has extremely fast
communication time.
As shown in Fig. 9, the ratio of the speedup of the

store and forward models for the fat tree and nonfat
tree networks to that of the ideal model approaches
zero very quickly as the number of tree levels is
increased. This means that even if the store and
forward model uses a fat tree network, the speedup
saturates quickly under the sequential distribution.
The cut through model has the best performance with
a fat tree network. Even this model with a nonfat
tree network also has better performance than that
of a store and forward model with a fat tree
network.

VI. CONCLUSION

The most important results of this paper are simple
recursive solutions for speedup and solution time for
a divisible load optimally scheduled on a multilevel
tree with virtual cut through switching. This is done
for a variety of scheduling features under a number

of scenarios. This work is more general than the
exact situations discussed here and the methodology
can be applied to a wide variety of load distribution
scheduling policies.
Aerospace applications will certainly see the

increasing use of multiple sensor/multiple processor
systems. In such systems the ability to do processing
in a solution time optimal manner decreases response
time and minimizes the amount of hardware necessary
to accomplish a task. With the increasing ubiquity
and decreasing cost of such systems, this tractable
performance evaluation approach should be of interest.
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