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1 Introduction

Divisible load scheduling theory (DLT) involves the study of the optimal distri-

bution of partitionable loads among a number of processors and links [1,2,3,4].

A partitionable data parallel load is one that can be arbitrarily distributed

among the processors and links in a system. Thus there are no precedence

relations among the data. Applications include grid computing, parallel and

distributed processor network scheduling, data intensive computing and meta-

computing. The approach is particularly suited to the processing of very large

data files as in signal processing, Kalman filtering, image processing, experi-

mental data processing, multimedia and computer utility applications.

There has been an increasing amount of study on divisible load scheduling the-

ory since the work of Cheng and Robertazzi [5] in 1988. Most of these studies

develop an efficient allocation of load to processors over a network by forcing

the processors to all stop processing at the same time. Intuitively, this is be-

cause the solution could be improved by transferring load if some processors

were idle while others are still busy [6]. Optimal allocation of loads for network

topologies including linear daisy chains, bus networks and tree networks using

a set of recursive equations were presented in [5][7][8] respectively. For complex

networks, the concept of equivalent networks was presented in [9]. There have

been further studies in terms of load distribution policies for two and three

dimensional meshes [10] and hypercubes [11]. In [12] the concept of time vary-

ing processor speed and link speed are introduced. In [13] the integration of

monetary cost optimization and divisible load theory is presented. Scheduling

policy research includes independent task scheduling [14,15], multi-installment

sequential scheduling [16], multi-round algorithms [17], fixed communication
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charges [18], detailed parameterization and solution reporting time optimiza-

tion [19] and combinatorial optimization [20]. An important reason for using

divisible load scheduling theory is its tractability, flexibility and realism for a

large class of data intensive, data parallel, computational problems.

In this paper equivalent continuous time Markov chain models [21,22,23] for

various network topologies and load scheduling policies currently modeled by

divisible load theory are introduced. Our initial motivation for introducing

this unification between divisible load theory and Markov chain models is

that they have a number of commonalities between them. In their basic form

the two theories are linear ones. That is, they can be solved in theory by

solving the associated linear set of equations. Other common features include

a schematic language, recursive or linear equation solutions, the concept of

equivalent networks, the possibility for time varying modeling and solutions

for infinite size homogeneous networks [24].

In fact we can show many, though not all, optimal divisible load schedules for

various network topologies have Markov chain analogs. This helps to explain

the similarity between queueing theory and divisible load theory. On the other

hand this equivalence is somewhat surprising since divisible load theory is

deterministic while Markov chain models are stochastic. This new equivalence

provides a novel and apparently powerful modeling tool.

This paper presents examples of this equivalence. While most of the Markov

chains are one dimensional in topology, the labeling of transitions is different

from the usual practice in queueing theory.

The remainder of this paper is organized as follows. In section 2, basic model

description and notation and definitions used through out this paper are pre-
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sented. Sections 3, 4 and 5 discuss models for linear daisy chains, single level

tree and two level tree networks, respectively. In section 6 some open problems

are presented as a guide for future work. Finally, the conclusion is contained

in section 7.

2 Model Description

In this section, some assumptions for scheduling in divisible load theory are

described along with some notation and definitions. As mentioned earlier,

the network topologies discussed in detail in this paper include linear daisy

chains, and single and two level tree networks. The models discussed in this

paper account also for both homogeneous and heterogeneous processing and

link speeds and various load scheduling policies.

As mentioned earlier, it will be assumed that the total data parallel process-

ing load is arbitrarily divisible into fractions of loads to be assigned to each

processor over a network. The root processor where the total processing load

originates, keeps some processing load for itself and sends out the rest of the

load to the remaining processors over the network. There are different sce-

narios for the processors, depending whether or not they can compute and

communicate at the same time. In general, we will consider two cases: with

front end processors and without front end processors. In the case of proces-

sors with front end processors, it is assumed that some of the processors in

the network are equipped with front ends so that they are able to compute

their own load fraction and communicate (if necessary) simultaneously. In the

case of networks without front end processors, it is assumed that none of the

processors are equipped with front ends and the processors can only compute
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or communicate at one time. It is assumed that solution reporting time (back

to the load originating node) is negligible compared to load distribution time

and so is neglected. However, solution reporting time can be naturally modeled

for divisible loads when necessary.

2.1 Notations and Definitions:

In this paper the following notations and their definitions will be used.

αi: The fraction of load that is assigned to processor i by the load origi-

nating processor.

ωi: A constant that is inversely proportional to the computation speed

of processor i in the network.

zi: A constant that is inversely proportional to the speed of link i in the

network.

Tcp: Computation intensity constant. This is the time that it takes the

ith processor to process the entire load when ωi = 1. The entire load can

be processed on the ith processor in time ωiTcp.

Tcm: Communication intensity constant. This is the time that it takes to

transmit the entire processing load over a link when zi = 1. The entire

load can be transmitted over the ith link in time ziTcm.

Ti: The total time that elapses between the beginning of the scheduling

process at t = 0 and the time when processor i completes its compu-

tation, i = 0, 1, ..., n. This includes, in addition to computation time,

communicating time and idle time.

Tf : processing finish time of total processing load, assuming load is de-
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livered to originator processor by t = 0. Naturally,

Tf = max
i

Ti.

In all of the sections the same definitions are used for αi, ωi, zi, Tcp, Tcm, Ti

and Tf unless otherwise stated. Another convention that is followed in is that

the load originating at the root processor is assumed to be normalized to be

a unit load.

3 Linear Daisy Chain Networks

Consider a linear daisy chain network consisting of N +1 processors connected

via N communication links as shown in Fig. 1. The root processor P0, where

the load originates keeps its own share of load α0 and communicates the

remaining load (1-α0) to its immediate successor P1. Similarly, the processor

P1 keeps the load α1 and communicates the remaining load (1-α0-α1) to its

successor P2. This process continues until the last processor obtains its share

of load αN . Each of the N + 1 processors in the network are equipped with

front ends. That is, each processor can compute its own fraction of load and

communicates the rest of the load to its successor simultaneously. Consider

the case where each processor begins to compute its fraction of load at the

moment that it finishes receiving its own data. An important observation in

considering linear networks is that, each processor in the network (except for

the last processor) receives the fraction of load that is not only its own share

of the load but also the fraction of loads that belongs to all of the rest of the

processors that are beyond it.
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Fig. 1. Linear daisy chain network with front end processors.

This process of communication and load distribution is shown through a

Gantt-chart-like timing diagram in Fig. 2. This protocol is referred to a “cut

through switching” as the load fragment of a node’s right neighbor is retrans-

mitted by the node to its right neighbor once it is received. That is, the node

does not wait for the entire load to be received before commencing retrans-

mission.

P0

P1

PN-1

PN

α0ω0Τcp

(α1+α2+....+αΝ)z1Tcm

Α

 αΝzNTcm

α1ω1Τcp

αΝ−1ωΝ−1Τcp

αΝωΝΤcp

computation

communication

computation

communication

computation

communication

computation

Tf

Tf

Tf

Tf

 α1 α2 αΝ

P2 α2ω2Τcp
computation

Tf

 α3

 (α2+....+αΝ)z2Tcm

Α communicationα2  α3

(α3+....+αΝ)z3Tcm

communication α3

αΝ

αΝ

αΝ

Fig. 2. Timing diagram: linear daisy chain network, with cut through switching and

front end processors and heterogeneous links.

As shown from the timing diagram, communication time appears above the
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axis and computation time appears below the axis. It is also shown that the

processors have the same finishing time Tf . This corresponds to the fact that,

for a minimum time solution all processors must stop computing at the same

time. Indeed, otherwise some work could be transferred from a busy processor

to an idle one in order to improve the solution time. Based on this result one

can write the following set of equations:

α0ω0Tcp = α1z1Tcm + α1ω1Tcp (1)

α1ω1Tcp = α2(z1 + z2)Tcm + α2ω2Tcp (2)

α2ω2Tcp = α3(z2 + z3)Tcm + α3ω3Tcp (3)

αN−2ωN−2Tcp = αN−1(zN−2 + zN−1)Tcm + αN−1ωN−1Tcp (4)

αN−1ωN−1Tcp = αN(zN−1 + zN)Tcm + αNωNTcp (5)

In this paper, the objective in presenting the above set of equations is to find a

continuous time Markov chain model with αi’s being analogous to the steady

state probabilities and the communication and computation time parameters

being accounted for as transition rates that satisfy a set of local balance equa-

tions which corresponds to the above set of equations. In this case the Markov

chain model which satisfies the requirements given above is shown in Fig. 3.

α0 α1

z1Tcm+ω1Tcp

ω0Tcp

α
2

ω1Tcp ω2Tcp ωN-2Tcp

α
Ν−1

ωN-1Tcp

α
Ν

(z1+z2)Tcm+ω2Tcp
(z2+z3)Tcm+ω3Tcp (zN-2+zN-1)Tcm+ωN-1Tcp (zN-1+zN)Tcm+ωNTcp

A LKCB

Fig. 3. Markov chain model for linear network with cut through switching and front

end processors and heterogeneous links.

As shown in the Markov chain, using the local boundaries, one can write the

following set of local balance equations as in the following manner. Using a

balance equation at boundary A one can write:
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α0ω0Tcp = α1z1Tcm + α1ω1Tcp (6)

At boundary B also one can write:

α1ω1Tcp = α2(z1 + z2)Tcm + α2ω2Tcp (7)

Similarly, for boundaries K and L one can have the following equations, re-

spectively:

αN−2ωN−2Tcp = αN−1(zN−2 + zN−1)Tcm + αN−1ωN−1Tcp (8)

αN−1ωN−1Tcp = αN(zN−1 + zN)Tcm + αNωNTcp (9)

This set of equations directly correspond to the set of equations that are

derived from the Gantt-chart-like timing diagram. This new modeling tool

combines both the equations and diagram into a Markov chain which is simple

and compact. Note that the pattern of transition rate labeling is unusual for

a Markov chain model in telecommunications and networking applications.

The load scheduling strategy discussed above is one of the many that may

be modeled using divisible load theory. Now consider the same network but

with a different load scheduling strategy, store and forward switching and

homogeneous links. In this case it will be assumed that each processor in

the network starts its computation after receiving all the fractions of load

that belong to all the processors that are beyond it. This process of load

distribution is shown in Fig. 4. In the previous case the processor starts its

computation immediately after receiving its own share. Again, it is assumed

that processors have front end processors. The set of equations for solving for

the minimum finish time can be written as:
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(a)

(b)

z

P2
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C = (α3+....+αΝ)zTcm

α2ω2Τcp
communication
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Fig. 4. Linear daisy chain network (a) with store and forward switching, front end

and homogeneous links (b) timing diagram.

α0ω0Tcp = (α1 + α2 + ... + αN)zTcm + α1ω1Tcp (10)

α1ω1Tcp = (α2 + α3 + ... + αN)zTcm + α2ω2Tcp (11)

αiωiTcp = (αi+1 + αi+2 + ... + αN)zTcm + αi+1ωi+1Tcp (12)

αN−1ωN−1Tcp = αNzTcm + αNωNTcp (13)

The corresponding Markov chain model which has the same set of local bal-

ance equations as the above set of equations is shown in Fig. 5. In this case the

communication speeds need to be homogeneous in order for this chain to be

equivalent. This provides a counterexample to show that not every divisible
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ω2Tcp
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Ν−1

ωN-1Tcp

ωN-1Tcp

ωNTcp

α
Ν

 zTcm

α3

 zTcm

ω3Tcp
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Fig. 5. Markov chain model for linear daisy chain with store and forward switching,

front end and homogeneous links.

load model has a corresponding Markov chain.

4 Single level tree networks

4.1 Single level tree without front end processors

A single level tree network of N +1 processors and N links is shown in Fig. 6.

The root processor P0, where the load originates keeps its fraction of the

total load for itself to compute and distributes sequentially the remaining

load to its child processors at the lower level. Each processor in the network

is assumed to have no front end processor. That is, the root processor will

first finish communicating all of the load to be transmitted to the lower level

before it starts computing its own fraction of load. The terminal processors

start computing only after completely receiving their respective fraction of

loads (known as staggered start). Note that if all zi’s have the same numerical

value, one has a bus network model. The timing diagram showing the process

of load distribution for a single level tree network with out front end processors

is shown Fig. 6.

Now one can write the following set of equations for solving for the optimal

solution time as:

11



Po

z2

ωoαo,
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α2ω2

Processing Load

P1
α1ω1

PN
αNωN

z1 zN

.....

P0

P1

PN-1

PN

α0ω0Τcp

 αιziTcm

Α

α1ω1Τcp

αΝ−1ωΝ−1Τcp

αΝωΝΤcp

communication

computation

communication

computation

communication

computation

communication

computation

Tf

Tf

Tf

Tf

 α1 α2 αΝ

(a)

(b)

P2 α2ω2Τcp

communication

computation

Tf

Fig. 6. Single level tree network - (a) network topology (b)Timing diagram without

front end at nodes.

α0ω0Tcp = αNωNTcp (14)

α1ω1Tcp = α2z2Tcm + α2ω2Tcp (15)

αiωiTcp = αi+1zi+1Tcm + αi+1ωi+1Tcp (16)

αN−2ωN−2Tcp = αN−1zN−1Tcm + αN−1ωN−1Tcp (17)

αN−1ωN−1Tcp = αNzNTcm + αNωNTcp (18)

The corresponding Markov chain model which has the same set of local balance

equations as the above set of equations is shown in Fig. 7. Note that state 0
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is a neighbor of state N , which is unusual for a typical telecommunications

Markov chain model.

α0α1

ω0Tcp

α
2

ω1Tcp ω2Tcp
ωN-2Tcp

α
Ν−1

ωN-1Tcp

α
Ν

z2Tcm+ω2Tcp
z3Tcm+ω3Tcp zN-1Tcm+ωN-1Tcp zNTcm+ωNTcp

ωNTcp

Fig. 7. Markov chain model for single level tree network without front end processors.

4.2 Single level tree networks with front end processors

Another single level tree network of N + 1 processors and N links is shown in

Fig. 8. As discussed earlier, the root processor P0, where the load originates

keeps its fraction of the total load for itself to compute and distributes the

remaining load to its child processors at the next lower level sequentially. The

root processor in the network is equipped with a front end. That is, the root

can compute its own fraction of load and communicates the rest of the load

to each of its children simultaneously. In this case each processor begins to

compute its fraction of load at the moment that it finishes receiving its data.

The timing diagram of the process of load distribution for a single level tree

network with front end processors is shown Fig. 8.

The set of equations for solving for the minimum finish time can be written

as:

α0ω0Tcp = α1z1Tcm + α1ω1Tcp (19)

α1ω1Tcp = α2z2Tcm + α2ω2Tcp (20)

αiωiTcp = αi+1zi+1Tcm + αi+1ωi+1Tcp (21)
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Fig. 8. Single level tree network - (a) network topology (b)Timing diagram for front

end case.

αN−2ωN−2Tcp = αN−1zN−1Tcm + αN−1ωN−1Tcp (22)

αN−1ωN−1Tcp = αNzNTcm + αNωNTcp (23)

The corresponding Markov chain model which has the same set of local balance

equations as the above set of equations is shown in Fig. 9.

α0 α1

z1Tcm+ω1Tcp

ω0Tcp

α
2

ω1Tcp ω2Tcp
ωN-2Tcp

α
Ν−1

ωN-1Tcp

α
Ν

z2Tcm+ω2Tcp z3Tcm+ω3Tcp zN-1Tcm+ωN-1Tcp zNTcm+ωNTcp

Fig. 9. Markov chain model for single level tree network with front end processor

at root.
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5 Two level tree networks

Consider a two level binary tree network of communicating processors as de-

picted in Fig. 10. As can be seen from the figure, there are three types of

nodes: root, intermediate and terminal nodes. The root is the node where the

processing load originates. Then there are intermediate nodes which can be

viewed as parents of the lower level nodes with which they have direct com-

munication. The terminal nodes are nodes that have no child processors and

hence can only be children nodes. In this section, consider the case where

the communication between the root processor and the intermediate nodes is

concurrent and the communication between the intermediate nodes and the

terminal nodes is sequential. As in section 3, “cut through switching” is used

at the intermediate nodes. These assumptions are made to show the ubiquity

of the divisible load schedule and Markov chain equivalence. This process of

load distribution and communication is shown in Fig. 11.

Po ωoαo,
Processing Load

P1 α1ω1 P4

z1 z4

P5 P6

z5 z6

P2 P3

z2 z3

ω2 ω3 ω5 ω6

ω4

α2 α3 α5 α6

α4

sequential
communication

concurrent
communication

Fig. 10. Two level tree network with front end processors.

The set of equations based on the minimum finish time can be written as:

For branch 1 (linking P0 to P1), one can write:
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communication

P0

P1

P5

P6

α0ω0Τcp

α1ω1Τcp

     α5ω5Τcp

α6ω6Τcp

communication

computation

communication

computation

communication

computation

communication

computation

Tf

Tf

Tf

Tf

concurrent

sequential

P2

P3

      α2ω2Τcp

α3ω3Τcp

communication

computation
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Tf

Tf

P4 α4ω4Τcp

communication Tf

sequential

 α2z2Tcm  α3z3Tcm

 α5z5Tcm  α6z6Tcm

 α4         α5           α6            z4Tcm

 α1       α2             α3              z1Tcm

Fig. 11. Timing diagram of a two level tree network with front end processors.

α0ω0Tcp = α1z1Tcm + α1ω1Tcp (24)

α1ω1Tcp = α2(z1 + z2)Tcm + α2ω2Tcp (25)

α2z2Tcm + α2ω2Tcp = α3(z1 + z3)Tcm + α3ω3Tcp (26)

Similarly, for branch 4 (linking P0 to P4):

α0ω0Tcp = α4z4Tcm + α4ω4Tcp (27)

α4ω4Tcp = α5(z4 + z5)Tcm + α5ω5Tcp (28)

α5ω5Tcp = α6z6Tcm + α6ω6Tcp (29)

Note that the two branches 1 and 4 have, as is possible, two structurally

different local balance equations based on the sequence of their fraction of

loads. In the first case the fraction of loads are arranged in such a way that

load fractions to children are in increasing order of load fragment size. Whereas
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in the second branch the load fractions to children are arranged in decreasing

order of load fragment size.

The corresponding Markov chain model which has the same set of local balance

equations as the above set of equations is shown in Fig. 12. Note that state 0 is

at the center of the Markov chain and states α1, α2, and α3 which correspond

to branch 1 are the left side neighbors of state 0. On the other hand states

α4, α5, and α6 which correspond to branch 4 are shown to be the right side

neighbors of state 0. This is, again, unusual for the typical telecommunications

Markov chain model.

α0 α4

ωoTcp

α5

ω4Tcp

α6

ω5Tcp

α1α2
α3

z1Tcm+ω1Tcp

ω1Tcp ω0Tcp

(z1+z2)Tcm+ω2Tcp(z1+z3)Tcm+ω3Tcp

z2Tcm+ω2Tcp (z4+z5)Tcm+ω5Tcp z6Tcm+ω6Tcpz4Tcm+ω4Tcp

Fig. 12. Markov chain model for two level tree network with front end processors.

As shown from the model considered earlier each processor can have at most

two child processors. However, tree networks can have more than two child

processors per node. Fig. 13 depicts the case where the root processor has

N child processors, P1, P2, ..., PN . Each of the N processors is also a parent

processor of the lower level processors or terminal nodes with which it has

direct communication. It is assumed that each of these parents has M child

processors. As shown in the figure the notation used for the first level of the

network has only one digit showing the branch number. On the other hand,

for the second level there are two digits used for notation. The first digit shows

the branch number of the processor and the second digit shows child number

within the same branch. That is, the notation P1,1 indicates that the parent

processor is from branch 1 and the second digit shows this is the first child.
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Similarly, PN,M denotes the M th child of the N th parent processor.

Po
Processing Load

P11

Z11

ω11 α11

P31

Z31

ω31 α31

PN2

ZN2

ωN2 αN2

P12

Z12

ω12 α12

P1 α1ω1

Z1
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Z3
ω3 α3
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P2

ω2 α2

Z2
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ωN αN

P32

Z32

ω32 α32

P22

ω22 α22

P21

ω21 α21

PN1

ωN1 αN1

ZN1

Z21

ZN

Z22

Fig. 13. Two level tree network with front end processors and N > 2 children.

The timing diagram showing the process of load distribution in this type of

network topology is shown in Fig. 14. In this case we again consider the case

where the communication between the root processor and the intermediate

nodes is concurrent, whereas the communication between the intermediate

nodes and the terminal nodes is sequential. The set of equations for obtaining

the minimum finish time can be written as:

For branch 1:

α0ω0Tcp = α1z1Tcm + α1ω1Tcp (30)

α1ω1Tcp = α1,1(z1 + z1,1)Tcm + α1,1ω1,1Tcp (31)

α1,1ω1,1Tcp + α1,1z1,1Tcm = α1,2(z1 + z1,2)Tcm + α1,2ω1,2Tcp (32)

For any child i where i > 2 in the lower level of the first branch, and with

increasing load fragment size, one can write:

α1,i−1ω1,i−1Tcp + α1,i−1z1,i−1Tcm = α1,i(z1 + z1,i)Tcm + α1,iω1,iTcp (33)

Similarly, for branch N , one can write the following:
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Fig. 14. Timing diagram of a tree network with front end processors and N > 2

children.

α0ω0Tcp = αNzNTcm + αNωNTcp (34)

αNωNTcp = αN,1(zN + zN,1)Tcm + αN,1ωN,1Tcp (35)

αN,1ωN,1Tcp = αN,2zN,2Tcm + αN,2ωN,2Tcp (36)

Again eqns. (42) and (46) are structurally different because of the different

order of load fragment sizes in this example realization.

For any child i, where i > 2 in the lower level of the N th branch, and with

decreasing load fragment size, one can write:

αN,i−1ωN,i−1Tcp = αN,izN,iTcm + αN,iωN,iTcp (37)
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The corresponding Markov chain model which has the same set of local balance

equations as the above set of equations is shown in Fig. 15.
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Fig. 15. Markov chain model for two level tree network with front end processors

and N > 2 children.

6 Open Problems

The unification introduced between divisible load theory and continuous time

Markov chain models, we believe is a potential cross-over of technology and

modeling from one discipline to another.

We mention two open problems, one a specific one and one a general one, in

that order. It is well known that for any arbitrary Markov chain, the steady

state probabilities can be computed by solving the associated set of linear

global balance equations. The set of global balance equations equate the net

inflow of probability flux at a state to the net out flow from the same state.

But the numerical solution techniques for N state arbitrary Markov chains can

involve a computational complexity of O(N3), allowing only Markov chains of

modest size to be exactly solved. However since the original work of Jackson

in 1957 [21], and later Gordon and Newel in 1967 [15], researchers are able
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to produce elegant and tractable analytic solutions of the product form type

from different complex system models. That is, for this product form class

of queueing networks any state equilibrium probability is a product of system

parameters and a reference probability (local balance equations). It is an open

question as to what type of divisible load scheduling model, if any, corresponds

to a product form solution of order greater than one.

A general open problem of interest is whether a combined stochastic (queue-

ing) and deterministic (scheduling) model is possible with a single solution.

This could be of use in situations such as multiple divisible jobs queueing in

buffers to be scheduled for transmission and processing on multiple links and

processors. It is not clear at this point whether joint stochastic/deterministic

modeling is possible. However, it is an exciting open research problem.

7 Conclusion

In this paper an alternative model for performance evaluation of divisible

load schedules using Markov chain models is presented. The model is based

on the principle of local balance equations. We have provided Markov chain

models for linear daisy chains, single level trees (with and without front end

processors) and two level tree networks. It was found that these models are

relatively simple and compact. Further areas of research would include multi

level tree networks. Moreover it would be interesting to explore how to extend

this result to networks that are more complex including hypercubes and two

dimensional meshes.

The many commonalities between queueing theory and divisible load theory
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(and even electric circuit theory) show that linear models share a common

foundation but differ in their detailed features. This latter point is emphasized

by the fact that not every parameterized divisible load scheduling model has

a corresponding Markov chain. This richness of the linear modeling paradigm,

as well as its tractability and breadth of applications will make divisible load

scheduling an intriguing field of study well into the future.
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