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Bipolar Junction Transistors

Junction Transistor

Figure 1. Schematic diagram of a npn transistor in equilibrium and under
applied bias. By Kirchhoff law:
le = 1c + 1g B I¢

Neglecting recombination in the base and parasitic injection of holes into
emitter,T the collector current flows through a much larger impedance than
the emitter current, whence the power gain.

t In a homojunction transistor, injection of holes into the emitter |s suppressed Egrrp]pare
It
p

Pno N A (base)

This means that the base must be lightly doped compared to the emitter and hence base
resistance is a concern.

The fundamental trade-off: thicker base for lower base resistance, thinner base for faster
diffusion across the base.

the useful injection of electrons into the base only by the factor
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Heterojunction bipolar transistor
(HBT)

Figure 2: Homojunction and heterojunction npn transistor
In homojunction transistor at the base-emitter junction
Jée) 0 e_Bch
Jéh) 0 e—Bqu
I Np(base)
1®  Np (emitter)
M
Emitter efficiency n = w H 1 - doping ratio.
+
In heterojunction transistor:
N _ Na(base)
1®  Np (emitter)

-BaEy
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Back to (homo)junction transistor.

We understand why the base doping must be much lower than emitter

doping. Now why the collector doping must be much lower than emitter
doping ?

Np (emitter) > N (base) > Np(collector)
Threefold answer:

— For Wg to have little dependence on V., (need high output impedance)

— to lower base-collector capacitance Cg,

— to lower the field in base-collector junction (increase breakdown voltage)

n

IC| J

lc (MA) 0.6 mA
IL=0.6m

60 — b J
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Figure 3: Common-emitter transistor characteristics. Base current is stepped
up by increment of 0.1 mA and the emitter current increases by much larger
amounts. Here current gain § E100.
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Base transport factor and current gain.

From the continuity equation:

n
nu - = O
L5
X -x
n(x) = Ae® +Be to
Boundary conditions at x and at W':
2
N pv
n(0 = — e
0 = g~
n.2
nw) = ' ePVe Ho
Na
. o nOsinh W - x)p o
[0 n(xx) = A sinh oW -xpg = ST

O O
cosh /(W = x)YLp
0 Jn(x):eDan _ eDn(0) 0 0

0X Lp sinh (W/Lp)

The base transport factor alpha:

I W) 1 g, W2
Jy (0) cosh (W/L p) 2L3

J(0) JW)

. By Kirchhoff’s law, B = a

C tgain: B =
urrent gain: 3 I =g

Combined with emitter efficiency n, we take instead of a the product an.
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Frequency dependence of the current gain.

B 4 (dB)
10* + 40
I static gain
103 -
102 1
fr
10 A+ slope
10 dB/dec
1 —+
] ] ] ] ]
I I I I I
0.1 1 10 100 1000

frequency f (GHz)

Figure 5. High-frequency gain. At high frequencies the current gain rolls-off
at 10 dB/per decade (i.e. as I/f). This behavior is quite universal and has
nothing to do with either recombination or emitter efficiency.

The characteristic cut-off frequency f is defined by the condition of unity
current gain (B - 1) and is mainly due to the propagation delay 1 of minority
carrierst through the base.

In general, T =WA/, where v is the average velocity of minority carrier
propagation. For diffusive transport,

WZ
TIp = — < T¢c .
D 5D C

t Do not confuse this T with the minority carrier lifetime (which is typically much longer).
Let us denote the minority-carrier lifetime by T¢ (“capture” time).
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Let us derive an expression for a (f ). Begin with the continuity equation:

Take
nt) = ny + dne'™

where ng=ngy(x) is the static solution and on =0on (x) is the harmonic
variation amplitude at frequency w = 27tf .

Both the static equation for n, and the dynamic equation for dn are of similar
form:

2
2:20 ~ L32ng = 0
‘ff;‘ - L7250 =0
where
L3 = D1c
L2 = L’ l+iwte) H v

wie>1 D

The solutions to both equations are similar too (in form):

| _yv 4
No(X) = A sinh DW X0
0O Lo O
Ow _ o O
n (x @) = B sinh 0¥ ~X [
O O
. . 1
whence we find (in analogy to a, =
( % 0 cosh(W/Lp)
0J(W,w) _ 1

o(w) =

0J(0,w)  cosh(W/L)
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At sufficiently high w’s (nothing "spectacular”, just wtc > 1) we have

W — w?
—— = V2wt where Tp = ——
C '@to ° = 725
— . 1+i
V2iwt,  remember Vi = e 75
1 B(1+iooTD)‘l for wip < 1
a(w = cosh(W/L) ~ O2e Wogive  for wip p 1

Im modern transistors, typically, W g£1,000A and D 050cm?s™t.
Therefore, at frequencies easily accessible to the measurement (up to, say 20
GHz) one has, typically, 1o § 107 s and wrp < 1.

1 _i(A)TD
o (w S — e
(@ H 1+ iwtp .
B(w) _ a ~ e—ier _ —i e—ier/Z
1-a 1 —g 'O 2sin (wtp/2)
B ()0 = ! !

2 Usin (wtp/2) O WTp

Uisng heterostructures, it is possible to design an HBT such that o (w) does
not spiral in significantly, even for large w’s — remaing close to the circle
exp (iwt) for phase angles @=wTt as large as @=2m. Such coherent
transistors,t are capable of "life after death", showing current gain above f;
and power gain above f ...

t A. A. Grinberg and S. Luryi, "Coherent transistor", IEEE Trans. Electron Devices ED-40,
pp. 1512-1522 (1993).

S. Luryi, A. A. Grinberg, and V. B. Gorfinkel, "Heterostructure bipolar transistor with
enhanced forward diffusion of minority carriers”, Appl. Phys. Lett. 63, pp. 1537-1539 (1993).
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Base shrinkage and finite output conductance.

Emitter

1

Ih= 0.6 mA

I¢ (MA)
0.4

0.2

Figure: Base shrinkage and Early effect.

Neglecting recombination, the injected minority current must be constant in
the base, 00:J = 0. If the current is by diffusion only, then

BVen
dn _ _ n(O)_n(W) npOe
- = nst =

X cons W @ W

W shrinks with the collector bias. Hence, at a fixed base current, one has an
increasing collector current (Early effect)

] VcbD
lc O 1 + O
O Va O

Finite output conductance is detrimental; we live better without it.
The Early voltage depends on the base width W and the Gummel number
Nnge =NAW . For W > than the BC junction depletion width, one has
e N W? engW
€ 3

VvV, B
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Ebers-Moll model

_____________________________________________

o, Ig ay e 5
- | Q _/ A
IE | | IC
E — - C
REX IR RCX
—

Figure 1: Dashed line indicates the "intrinsic" portion of the device, excluding
"parasitic” extrinsic elements.

The model for the diode blocks can be further specified to include the internal
junction capacitance.
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Small-signal equivalent circuit of an abrupt junction HBT

aj_a
Ce BE C
: [ D
| I N
i ! i
E 1 C
il i S
.—\N\NW X 'V‘N‘N‘ 17
Rex ! Re Rex
2%
|]
11
CCx
iBT%RBX

Figure 2: This model is good for "ballistic" propagation of carriers across the
base. For diffusive propagation, the intrinsic portion must be adjusted,t

t A. A. Grinberg and S. Luryi, IEEE Trans. Electron Devices ED-40, pp. 1512-1522 (1993).
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Elements of small-signal analysis

All variables A (t) are considered varying harmonically in a small range
about a dc point:

A(t) = A, + 3A e'®t
| (t) = 1, + 31 e'®t
V() = Vy + 3V el®t

Many alternative notations, e.g., i and v instead of dl and dV.
The dA ’s are complex quantitites, may be position-dependent fields, dA (X).

The relationship between different dA ’s, e.g. between &V and dl (generalized
impedances or admittances) depend on the chosen dc point.

2 -PORT
ol ol,
oV, oV,
J_— common
terminal

Figure 3: General two-port. Transformers are 2-ports ("passive’). From the
small-signal point of view, transistors are two-port amplifiers.

Admittance matrix:
Osl1, O Oyq y, U008V, O

O "0O- O 00 O
00l, O OYar Y22 000V, [
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Admittance matrix:

a1, O [ Odgsgv, O
1 1 O Dyll Y12 00 1 T
00l, O OYa Y2 OO0V, [

For example:

Odi, O

O 0 , Input admittance
0dVi v

Yin =

Impedance matrix:

osv, O Oz z., 0081, O
a%Vig _ g 12 55%0 5
00V, O OZp Z,, O00Ool, O

For example:

U , output impedance

Hybrid matrix (h-parameters):

Ueov, O Uh h,, O0Os1, O
oot o 1 12 5 1 g

0ol O Ohoy hyp OO0V, O
For example:
Udi, U _
h,y = O_——0 , forward current gain
ndly ov,

Definition of these parameters essentially involves specification of the
boundary condition at one or another port. Thus

h,, is the output admittance for open-circuit input port.
Y 2o IS the output admittance for short-circuit input port.
h,, is the forward current gain for short-circuit output port, etc.

Each set of parameters (z-parameters, y-parameters, h-parameters) is complete
in the sense that it can be used to derive the other sets unambiguously.
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Common terminal configurations

ol ol,
—— common
terminal
ol ol,
— E | B C F—
oV, oV,
—— common base
ol, ol,
C b— E —
ol oV, oly oV,
— B — B
oV, oV,
E C
common emitter common collector

Figure 4: Different common-terminal configurations give rise to very different
parameters. Thus, the short-circuit current gains are

hay =B hjl = «a
and hence

21
h21
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Indefinite parameters
All of the parameter sets corresponding to different configurations (common-
base, common-emitter, common-collector) are derivable from one another.

A convenient trick (works best in y-parameter representation) is to disregard
the common reference and treat the third terminal as an additional port:

51, 5,
3V, 3V,

Vs

5|3[

Figure 5: indefinite matrix:

Béll B BYH Y12 Yi3 Bgévl B

B&z 0= 0Oy Yo Y3 OOV, B
0%ls O Ys1 Y32 Y33 009Vs O

From Kirhhoff’'s Law and the fact that the matrix should work for arbitrary set
of {dV;} it follows that the sum of all columns (or rows) in the indefinite

matrix is zero.

Thus, if we assume a short circuit at ports 1 and 2, the fact that the sum of all
currents must be zero implies that the > of y-parameters in the third column
vanishes, and so on.

To prove that the 3 must vanish in each row, we note that if all three { 3V, }
are equal no ac current can flow at any port.

It is exceedingly simple to transform from one common-terminal configuration
to another. Thus, if we know the y-matrix in common base configuration, the
corresponding common-emitter matrix is:

., b b []

DY1bl Y1bz Yi3 0 Byn Y2 Y13 B BYH Y12, Y13 B
Oyl v yas U - Oyxm Yo YO - Oyxy vy y5UO
[ N [l [l [l e e [l
OY31 Y32 Y3 O OYsr Y32 Y33 g OYs3r Y1 Y2 O
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Power gain definitions:

- Power gain G is the ratio of power delivered to the load to power input
into the network.

It depends on both the input and the load circuits.

= Maximum available gain (MAG) is the maximum gain achievable from a
particular transistor without external feedback.
MAG equals the value of forward gain G which results when both the
input and the output are simultaneously matched in an optimum way. For
example, realization of MAG requires that the load resistance be matched
to the output resistance Re (z,,).

- Unilateral gain U is the maximum available power gain of a device after it
has been made unilateral by adding a lossless reciprocal feedback circuit.
This means that the lossless network around the amplifier (inductances and
capacitances) is adjusted so as to set the reverse power gain to zero.

Unilateral gain is independentt of common-lead configuration !

The unilateral gain U can be calculated from any of the following equivalent
expressions:

2
DZZl - 212|:|

4TRe 210 RE (7)) - R @) R Zo0] |

Oy g1 = Y12 _
4[Re (Y1) Re (v2,) - Re () Re (y20)]
Ohyy + hy, 07
4[Re (hy)Re (hyy) + Im (hyy) Im (hy)]

where z;;, y;;, and h;; are the impedance, the admittance, and the hybrid
parameters of a transistor, respectively, for any configuration.

t This remarkable result (Mason’s theorem) is the main reason for the wide-spread use of U .
See S.J. Mason, "Power gain in feedback amplifiers", IRE Trans. Circuit Theory CT-1,
pp. 20-25 (1954).
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Small-signal model of an abrupt junction HBT

Figure 6: Small-signal analysis of this simple model, including frequency
dependence of the power gain in both ballistic and diffusive regimes, has been
carried out by Grinberg and Luryi (1993).1

t A. A. Grinberg and S. Luryi, "Coherent transistor", IEEE Trans. Electron Devices ED-40,
pp. 1512-1522 (1993).
A. A. Grinberg and S. Luryi, "Dynamic Early effect in heterojunction bipolar transistors",
IEEE Electron Device Lett. EDL-14, pp. 292-294 (1993).
Quiasi-static (Ebers-Moll-like) model of abrupt-junction HBT can be found in
A. A. Grinberg and S. Luryi, "On the thermionic-diffusion theory of minority transport in
heterostructure bipolar transistors”, IEEE Trans. Electron Devices ED-40, pp. 859-866 (1993).
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TRANSISTOR PRINCIPLES : FETs & PETs

Field Effect: Screening

Potential Effect: Control of a cathode work function

- 18 -
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"Biblical" principle:

"Transit time" limitation :

Q for Q

| for |

- 19 -
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Field Effect and Potential Effect Transistors

PETs ,/

- ® /KT
| ~ e .

= T ~ |
oPb ~ 6Qm

Speed increases with current until

exponential law fails at high currents

PET —=> FET (space-charge effect)

T limited by transit time across
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Two Dimensional Channel

en[cm™?] = %VG

Conductance of 3D sample:

U U
dl A 1
= _ = N _ N O O
av - ENBI . eNW o
Conductance of 2D sample:
u, O
dl w 1
= = — o=—10
g av [enH]L , enp 00 O
A
V// V
/4
I
L

Note: resistance of a square independent of its size (contrast with a cube!)
0 on
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Knowing the "resistance per square”

Current density per unit width [A cm~

J —
W

= €en

-22 -

one can simply count squares:

']

= enyv

\Y
F =
" en |

conductance per unit channel width [ g = enpL [m%mm]

Transconductance (also per unit width)

_ B
gm - aVG Ij/D
J =env

_ 0d(en)
Im T v "

Figure of Merit ("FOM"):

C

= Kv [MSYmm]

(delay time)
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Conduction Laws by dimensional analysis§

In the CGS system the conductivity has the units of a velocity.t Taking this
velocity to be an effective carrier velocity v, we can write a generic expression
for the diode current in the form

£ A

I DEVV?, (bulk)
£ W .

I O EVVT' (film)

where L is the length, A =D W the cross-sectional area, and W the width of
the diode. The relative permittivity € = /¢, of the material enters because it
scales the space-charge potential in Poisson’s equation.

The actual current-voltage dependence (up to a numerical coefficient) can be
“derived” from the above equation — whenever the conduction process
involves a dominant transport mechanism, which provides a unique scaling
relationship between v and V.

Thus, for free electron motion, the velocity scales as v2O (e/m )V and one
obtains laws appropriate for ballistic transport, e.g. for the bulk case Child’s
law of vacuum electronics:

o, ov

5
=72 0%0 v A where 7= [child]
ATt Om ] K 9

For the case when electron velocity is saturated, take v =vg .

For the case of constant mobility p, the velocity scales as v O uV/L , which
leads to the following expressions:

g pv? 9 ~
I _Z3ETA : (bulk) where (5= T [ Mott-Gurney ]
£ pV? .
| :zzﬁil_z_w . (film)

§ S. Luryi, "Device building blocks", Chap. 2 in High-Speed Semiconductor Devices, ed. by
S. M. Sze, Wiley Interscience (1990) pp. 57-136.

t Connection to the international units is obtained by replacing the dimensionless factor i
Tt

with € in farads per meter.
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Field-effect transistor characteristics

- 24 -
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Transistor channel
versus thin film diode

e j

/\pinch—off

Potential diagram
along the channel

"gated diode"

- 25 -
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Short channel effects

pinch-off

As the pinch off point moves left, the channel becomes shorter. The
decreasing L leads to increasing current (finite output conductance) Recall
Early effect in bipolars

For a given channel length, the closer the gate to the channel, the less
important are the short-channel effects
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MOS structure

Equilibrium

r \ 7 7A
Flatbands [
EN AW
J’E F 1% Ves
t

Figure 1: Built-in voltage V,; and flatband voltage V .

These quantities are not identical.
Vi Is the electrostatic potential drop in equilibrium: it equals sum of the
potential drops in the semiconductor and the oxide.

Vg is the voltage that must be applied to the gate to flatten the bands. Since
"voltage" means the Fermi level difference, the Vg equals the difference in
the work functions of the semiconductor and the metal.

t Not the same thing as the electrostatic potential difference, which can exist even in
equilibrium.
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vacuum level

Figure 2: Relevant energies in the MOS system at flatbands.

- Wy: work function of the semiconductor

W, : work function of the metal

Vg = Wg — W), : flatband gate voltage

Xs: electron affinity of the semiconductor

@ = E; — Er: bulk doping characteristic, @3 = KT In(N o/n;).

WS:XS+EG_AEF
=Xs + Ec-Eyv) - (Ee-EV)
=Xs * Ec—Ef
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o F (%)
¢= ®(x)
\ __(pS
>
©
° Fs
=)
(@)
o]
c
O
2 w
(]

Figure 3: Evaluation of the band bending in MOS structure

. ) . _ e(Na-p)

Poisson’s equation: @ = —
y eN
p=Ne P [ ¢ = - eA Bl_e-&pg
. . _ de _ de do _ dF

N k: = = = F

ote a tric (0] I do O 0
[ multiply Poisson’s equation (1) by dg and integrate
from X =-00 =0 F=0
to x = surface ®=@ F=Fs
using

*n kT O

0

_go O _ 0
[ ol-ePpde = — pe+e Pe_ 15

- 29 -

_1dF2

7d(p

1)
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Exact:
KT NAo [ _ 0
1 A
»Fé& = Bes +e PP -1
€
Approximate (Bgs > 1, i.e., @ > kTA):
2KT N 5 2e Ny
F2 = =
$ 5 Beps c 103
The same result is obtained in the depletion approximation:
eN , W? eN W _ _ _
@ = —e s = - where W is the depletion width
I:OX
F=0 Vox
=0 (%)

Figure 4: Threshold gate voltage evaluation:

Given bulk doping N 5 O e@=KT In(No/1)
e N A Qs
at threshold @5 = 2 @5 [ Fs=V _+(p5
S
€ /Zte NA G
SSFS = onFox D FOX = >
€ox &

Vox = dox Fox [ Vi=e@® + Vox + Vg
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Above Treshold we need to include the charge of the inversion layer itself;
this is a quantum mechanical problem, let us go back to
basic semiconductor physics

NI

Figure. Important extremal points in the band structure of cubic semiconductors. The
schematic picture (drawn not to scale) is appropriate for a direct-gap -V
semiconductor. For GaAs at room temperature the indicated energies are:
Er=142eV,E =171eV,Ex =190eV ,E,, =0.34eV.

In silicon the lowest conduction band point is in the A direction, 85% of the way to X

point. The indicated energies for silicon at 300 K are:
Er=4.08eV,E =187eV,E,=113eV,E,, =0.04eV .

In Ge the lowest conduction band point is at L but the [" point is not far away:
Er=0.89eV,E =0.76eV,E;,=0.96eV, E,, =0.29¢eV .

Bands: degenerate/nondegererate
isotropic/anisotropic
parabolic/nonparabolic

In the vicinity of a nondegenerate extremal point it is convenient to describe the
dispersion relation E,, (K) using the effective mass tensor M, L

_ 2 g, 2 0,10
En(ko+K) —E,(Kg) = (M2) k-My k= 5 M, i ki kj

2 j=1
where the components of Mn"1 can be written down in terms of the free electron mass

and parameters of the lattice potential (the periodic V (X ,y ,z ) characteristic of the
point K.
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In the vicinity of a nondegenerate band extremum, the surfaces of equal energy are
ellipsoids, as evident from Eq. (1). The symmetric tensor Mn'1 has, most generally,
six independent components. The coordinate axes can always be chosen so as to
diagonalize this tensor, i.e. along the ellipsoid’s principal directions:

Uym, o o G

O 0
M;l=00 1m, 0 O.
O 0

In general, the energy ellipsoid is determined by six independent parameters: three
diagonal values of Mn_1 and three directions of the principal axes. However, the
number of parameters can be often reduced by symmetry considerations. The
ellipsoid symmetry is determined uniquely by the symmetry of the extremal point K.
For an extremum located on a crystal symmetry axis, one of the principal directions of
the energy ellipsoid coincides with the symmetry axis. If the latter is an axis of 3-fold,
4-fold, or 6-fold symmetry, then the ellipsoid is an ellipsoid of revolution
(my=my,=m,, myg=m,). If more than one such axis intersects at K, then the
ellipsoid anisotropy disappears and energy surfaces become spherical
(My =m, =mgz=m). Such is the situation in the conduction band at the [ point of
cubic semiconductors:

R k2
2m

In silicon the conduction band minima are on the 4-fold rotation axes and the low-
energy isoenergetic surfaces are ellipsoids of revolution, their long axes being along
<100> directions. There are six symmetry related minima. Similar local minima exist
in the conduction band of germanium, but the true conduction band minima in Ge are
located at L points.

E (k) =

There are only four symmetry-related ellipsoids of constant energy in the vicinity of
the conduction band edge of Ge. It is convenient to picture these ellipsoids as eight
half-ellipsoids joined together on opposite faces by translations through suitable
reciprocal lattice vectors. In each ellipsoid, the band curvature is least in the direction
along the rotation axis and highest in the transverse directions. This means that the
longitudinal mass is heavier than the transverse mass. The anisotropy is particularly
high in Ge, my/m, = 20, but it is also considerable in Si, where my/m, B5.

In most cases, it is a reasonable approach to describe the electronic motion in a
uniform electric field by the effective mass equation.
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Figure . Surface of constant energy in the vicinity of the conduction band
edge in silicon represents six ellipsoids of revolution, extended along <100>
directions. The band curvature is least in the longitudinal direction (heavy
mass) and highest in the transverse direction (light mass) The effective mass
ratio mym, B5.

If the band edge in Si were at the zone boundary rather than at a general
point in the A direction (585% toward X), then there would be only three
ellipsoids. Location away from the zone boundary of the conduction band
edge in Si and the local A minimum in Ge is related to the inversion symmetry
of the diamond structure.
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Figure: Surface of constant energy in the vicinity of the conduction band edge
in germanium represents four ellipsoids of revolution, extended along <111>
directions. The effective mass ratio is very large, mym; =20, so that each
ellipsoid really looks like a sausage.

In order to exhibit a full ellipsoid we would have to chose a primitive cell for
which some L point would be internal. In the Brillouin zone picture, each
ellipsoid is cut in two by the boundary and the equivalent half is shifted to the
opposite face by a reciprocal lattice vector.
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Inversion layer in a silicon MOS structure

The schematic cross-section of a silicon MOS structure is illustrated on the next
page along with the band-bending near the Si/SiO, interface under a
sufficiently large positive gate bias. Let us look in more detail at the band
structure of the 2DEG in an inversion layer on the {100} surface.

In a (roughly triangular) quantum well formed near the Si/SiO, interface
under a positive gate bias, ellipsoids oriented differently with respect to the
surface give rise to a quite different subband structure. Let us specify the
actual {100} Si surface as a (100) crystal plane. Electrons in the two ellipsoids
elongated in [100] direction possess the heavy mass m; in z direction and an
isotropic light mass m; in any direction lying in the (100) plane. These
electrons give rise to the subbands whose bottom-edge energies are denoted
by E,. The other four ellipsoids, whose longitudinal axes lie in the (100)
plane, correspond to the light mass m; in the [100] direction, and their
subbands are denoted by E,, .

Because the quantum-well energy levels scale with ¥/m, one has E, < EO' , and
so the inversion-layer electrons in their ground subband have an isotropic light
mass. The order of the higher-lying subbands can be established only on the
basis of self-consistent numerical calculations. The subband energies depend
not only on the field and the background doping but also on the temperature,
which affects the relative population of higher-lying subbands and, hence, the
self-consistent field.

t Notation: equivalent crystallographic planes, e.g., (100), (010), etc., are collectively
denoted by {100}. Similarly, equivalent (symmetry-related) directions in the reciprocal
lattice, e.g., [100], [010], etc., are collectively referred to as the <100> direction.
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Figure: The order of the seven lowest subbands, calculated for an inversion
layer at a Si-{100} surface with ng=102cm™ in a lightly-doped
(Np =10 cm™) p-type material at room temperature. The levels E, and E;
are close in energy and, in fact, change their order at lower T and/or ng.
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Pinch off in a MOSFET

Recall the gradual channel approximation: Treat the potential diagram locally
at any channel cross-section (x) by ignoring the voltage difference between
the source and the drain, but taking the channel to be not not at ground
voltage but at V =V, (x), i.e., by replacing

N Vg - Vg = Vp(X)

The V., (x) is the imref (the quasi-Fermi level) which varies monotonically
from Eg = 0 in the source to Ef =V in the drain.

pinch off

Ve =Veh < V1
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Imref

The term Fermi level in semiconductor physics is synonymous with ‘“‘chemical
potential’’; in equilibrium it is defined by

n=[dEgE)f (E-E) B NgeF 5V
Eo
where f (E) = [exp (EAT) + 1] is the Fermi function and the approximation
is valid for nondegenerate semiconductors; here we may have

Ec=Ec(X) and n =n (x), but the chemical potential Er = const
In the presence of a current flow the concept of Fermi level is not defined.

However, let us define

n = Nce(EF—EC)/kT
where
n = n(x)
Ec Ec(X)
O Er = Er(x)

The drift diffusion equation then reduces to

J =e(npuF + DON) = enpuOE:

quasi-Fermi level
(imref)
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Example: use of imref to distinguish "pictorially" different transport
mechanisms.

Thermionic (Bethe) versus diffusion (Schottky) mechanism of conduction in
Schottky diodes.

Schottky diode (forward bias)

Semiconductor

Schottky\‘\\

\
\
\

‘ Metal

v

U] Imref varies little where the net current is much smaller than either the
diffusion or the drift components. These regions are "approximately in
equilibrium”.



