

Speed increases with current until exponential law fails at high currents

PET → FET (space-charge effect)

 τ limited by transit time across

Charge Injection Transistor (CHINT)

Real Space Transfer

 $f(E) \sim \delta(E-E_0)$

 ${\sf E}_0$ energy Lect 11 Real Space Transfer Transistors

Hot-Electron Instabilities in CHINT

Broken Symmetry States in CHINT

Broken Symmetry States in CHINT

Evolution of non-stationary states

Realization of anomalous states by rapid ramping of $\rm \,V_{\rm C}$

Critical ramping speed is determined by the rate at which the increasing fringing field (~ dV_c /dt) is screened by channel electrons (~ v_{sat})

0.0

0

1

Formation of Hot-Electron Domains

²³ Distance, um

5

4

Microwave Performance of top-collector CHINT

G. Belenky, P. Garbinski, P. Smith, S. Luryi A. Y. Cho, R. A. Hamm, D. L. Sivco (1993)

Speed Limits of CHINT

K. Maezawa and T. Mizutani, CHINT vs FET Jpn. J. Appl. Phys. 30, 1190 (1991)

Limiting mechanisms:

a. Establishment of hot-electron ensemble Phonons: ~ 1 ps

e-e interaction < 1ps (if concentration not too low)

b. Charging time

transit over high-field regions

c. Parasitic C-D capacitance presently dominates

Collector-top CHINT preferable

"FET like" **but** not limited by time of flight S->D in small-signal operation Physical Picture

Hot electron ensemble equilibrates via e-e interaction

RST is due to electrons in high-energy tails of the distribution function

Light-Emitting CHINT

S. Luryi, Appl. Phys. Lett. 58, 1727 (1990)

RST of electrons into a complementary collector

Light = xor (S, D)

Band alignment in InGaAs/InAIAs/InGaAs n-i-p heterostructure

"Frequency Doubler"

Symmetry under interchange does not imply equivalence between + and - V_D

When $V_D < 0$ the D electrode acts as a source, gated by the collector voltage

Symmetry of the CHINT

$$[V_D, V_C] \equiv [-V_D, (V_C - V_D)]$$

a similar symmetry exists in FET:

$$[V_D, V_G] \equiv [-V_D, (V_G - V_D)]$$

but not so important, because G is not the output terminal

input V1,V2	0,1	0,0	1,0	1,1
or V ₃ = 0	$\begin{array}{c}1 \\ 3 \\ \end{array} \begin{array}{c}2 \\2 \end{array}$		$\tilde{3} \rightarrow 1$ $2 \rightarrow 1$	$\tilde{3} \rightarrow 1$ $3 \rightarrow 2$
nand V ₃ = 1	$1 \rightarrow \tilde{3}$ $1 \rightarrow 2$	$1 \tilde{3}$ $2 3$	$2 \rightarrow 1$ 2 $\rightarrow 3$	

"working" channels

Characteristics of nearest pairs of electrodes

holes injected in the channel recombine non-radiatively

In contrast: InGaAs/InP devices exhibit similar electrical and optical behavior

Physics with CHINT

Top collector complementary and unipolar devices

Microwave studies: slow roll-off at high frequencies Electroluminescence spectra of hot electron-hole plasma in active layer Hot-carrier thermometer

Hot-electron instabilities

Broken symmetry Collector-controlled states Formation of hot-electron domains Multiply-connected IV

Impact ionization studies

RST of secondary holes from the channel

Noise studies

Space-charge smoothing of shot noise ?

•••

Lot of fun

Summary

Transistor Principles

PETs & FETs Ballistic and Hot electrons Real Space Transfer CHINT

Charge Injection Logic

Symmetry of CHINT Multi-terminal logic elements NORAND

Light emitting RST devices

Complementary CHINT InGaAs/InAIAs implementation ORNAND

Future

More fun Reprogrammable circuits Self-organizing systems? Logic lasers Massively parallel systems