Lect 7 -1-
Bipolar transistor, continued

Ebers-Moll model
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Figure 1: Dashed line indicates the "intrinsic" portion of the device, excluding
"parasitic” extrinsic elements.

The model for the diode blocks can be further specified to include the internal
junction capacitance.
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Bipolar transistor, continued

Small-signal equivalent circuit of an abrupt junction HBT
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Figure 2: This model is good for "ballistic" propagation of carriers across the
base. For diffusive propagation, the intrinsic portion must be adjusted,t

t A. A. Grinberg and S. Luryi, IEEE Trans. Electron Devices ED-40, pp. 1512-1522 (1993).
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Bipolar transistor, continued

Elements of small-signal analysis
All variables A (t) are considered varying harmonically in a small range about
a dc point:
A(t) = Ay + A e'®t
I (t)
V() = Vo + 3V e'®t

|0 + Ol ei“’t

Many alternative notations, e.g., i and v instead of &l and dV.
The dA’s are complex quantitites, may be position-dependent fields, dA (X).

The relationship between different dA’s, e.g. between 8V and &l (generalized
impedances or admittances) depend on the chosen dc point.
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Figure 3: General two-port. Transformers are 2-ports ("passive’). From the
small-signal point of view, transistors are two-port amplifiers.

Admittance matrix:

ool O Oyn yi2 OO0V O
O =0 o0
D6|2 O Dy21 Y22 ] D6V2 O
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Bipolar transistor, continued

Admittance matrix:

D5|1 O OYu Yo D D6V1 O
0= 0 [l
6|2 o Ya VYaq Dévz 0

For example:
Odi, O _ _
yiu = 0O 0 , input admittance
ndVvig,

Impedance matrix:

DéVl O 0Ozn z1p 0001 O
O= 0 o0 O
6V2 0 DZZJ_ Z9o 0 D6|2 0

For example:
Hdv, U

z,0 = O 0 , output impedance
ndl, Dll

Hybrid matrix (h-parameters):

D5V1 0 Ohqg hio D D6|1 O

0= 0 t
For example:
Udi, U _
hyy = O0——0 , forward current gain
ndlg DVZ

Definition of these parameters essentially involves specification of the
boundary condition at one or another port. Thus

h,, is the output admittance for open-circuit input port.
Y, is the output admittance for short-circuit input port.
h,, is the forward current gain for short-circuit output port, etc.

Each set of parameters (z-parameters, y-parameters, h-parameters) is complete
in the sense that it can be used to derive the other sets unambiguously.
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Bipolar transistor, continued

Common terminal configurations
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Figure 4: Different common-terminal configurations give rise to very different
parameters. Thus, the short-circuit current gains are

hyi = B h2blEO(

and hence



Lect 7 -6 -
Bipolar transistor, continued

Indefinite parameters
All of the parameter sets corresponding to different configurations (common-
base, common-emitter, common-collector) are derivable from one another.

A convenient trick (works best in y-parameter representation) is to disregard
the common reference and treat the third terminal as an additional port:

51, 5,
3V, 3V,

Vs
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Figure 5: indefinite matrix:

B{”l B BYM Y12 Y13 Bgévl B
0o, O = Oyy Y22 yo3 O0OOV, B

U 0

0%ls g gYaa Y2 Yz gpod9Vap
From Kirhhoff’s Law and the fact that the matrix should work for arbitrary set
of {dV;} it follows that the sum of all columns (or rows) in the indefinite
matrix is zero.

Thus, if we assume a short circuit at ports 1 and 2, the fact that the sum of all
currents must be zero implies that the 3 of y-parameters in the third column
vanishes, and so on.

To prove that the 5 must vanish in each row, we note that if all three { dV;}
are equal no ac current can flow at any port.

It is exceedingly simple to transform from one common-terminal configuration
to another. Thus, if we know the y-matrix in common base configuration, the
corresponding common-emitter matrix is:

b b
Bylbl Y1b2 Yi3 B Byn Y12 Y13 B Byn Y12 Y13 B
Oy2r Y2 YO - Oyxn Y YO - 0Oyn yi YO
O | O O U O
O

OYst Y32 Y3 OYst Y32 Y3 OYar Y51 Yo
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Bipolar transistor, continued

Power gain definitions:

- Power gain G is the ratio of power delivered to the load to power input
into the network.

It depends on both the input and the load circuits.

= Maximum available gain (MAG) is the maximum gain achievable from a
particular transistor without external feedback.

MAG equals the value of forward gain G which results when both the
input and the output are simultaneously matched in an optimum way. For
example, realization of MAG requires that the load resistance be matched
to the output resistance Re (z,,).

- Unilateral gain U is the maximum available power gain of a device after it
has been made unilateral by adding a lossless reciprocal feedback circuit.
This means that the lossless network around the amplifier (inductances and
capacitances) is adjusted so as to set the reverse power gain to zero.

Unilateral gain is independentt of common-lead configuration !

The unilateral gain U can be calculated from any of the following equivalent
expressions:

Ozpy = 21 0P ,
4[Re (z11)Re (z2) - Re (z12)Re (z21)1

Oyor = Y1 7 _
4[Re (y11)Re (y22) - Re (yi2)Re (y21)]
Ohyy + hqp 02
4[Re (hy1)Re (hgo) +Im (hyp) IM (hp)]

where z;;, yjj, and h;; are the impedance, the admittance, and the hybrid
parameters of a transistor, respectively, for any configuration.

t This remarkable result (Mason’s theorem) is the main reason for the wide-spread use of U.
See S.J. Mason, "Power gain in feedback amplifiers", IRE Trans. Circuit Theory CT-1,
pp. 20-25 (1954).
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Bipolar transistor, continued

Small-signal model of an abrupt junction HBT

Figure 6: Small-signal analysis of this simple model, including frequency
dependence of the power gain in both ballistic and diffusive regimes, has been
carried out by Grinberg and Luryi (1993).1

t A. A. Grinberg and S. Luryi, "Coherent transistor", IEEE Trans. Electron Devices ED-40,
pp. 1512-1522 (1993).
A. A. Grinberg and S. Luryi, "Dynamic Early effect in heterojunction bipolar transistors",
IEEE Electron Device Lett. EDL-14, pp. 292-294 (1993).
Quiasi-static (Ebers-Moll-like) model of abrupt-junction HBT can be found in
A. A. Grinberg and S. Luryi, "On the thermionic-diffusion theory of minority transport in
heterostructure bipolar transistors”, IEEE Trans. Electron Devices ED-40, pp. 859-866 (1993).
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Coherent transistor

Base transport factor
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Coherent transistor
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Coherent transistor after Grinberg & Luryi, 1993

Example: partial coherence
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Coherent transistor after Grinberg & Luryi, 1993

Partial coherence

base transit time is arandom variable with distribution
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Coherent transistor

- 13 -
after Grinberg & Luryi, 1993

Inclusion of collector transit
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Coherent transistor after Grinberg & Luryi, 1993

What is special about base transit ?

why is the phase gained _ i@

in constant-velocity Og = €

collector transit - —
not as good as that Oc = sin © e 0

gained in base transit ? S

Shockley-Ramo theorem
(Shockley, 1938)

I-:ev-Ej

l=evld
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Coherent transistor

Power gain

- 15 -
after Grinberg & Luryi, 1993
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Coherent transistor after Grinberg & Luryi, 1993

Coherent transistor loaded with parasitics
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Ty = RyC¢ where Ry combination of parasitic resistances
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Coherent transistor after Grinberg & Luryi, 1993

Example: CT loaded with parasitics
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Limitations

Ultra-high frequencies, cryogenic temperatures

WT, < 1 parasitics coherence
KT << A < E opt
impurity scattering ballistics

base cannot betoo long (We < 02um)
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Coherent by other means after Luryi et al., 1993

Coherence by other means
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Coherent by other means after Luryi et al., 1993

Coherence by Diffusion
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Coherent by other means after Luryi et al., 1993

"Stepped up" diffusion
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Essential condition: no return at the step
Steps larger than optical phonon energy



Lect 7 =21 -
Coherent by other means after Luryi et al., 1993
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Coherent by other means after Luryi et al., 1993

Exemplary AlGaAs HBT
loaded with parasitics
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Coherent by other means after Luryi et al., 1993

Comparison
Step-base Graded-gap
2 2
— 07y —i —Q/o —i
a=e /3Ne'(p a=e /Zrel(P
AEg _ Tdii — AEc
where N < Eon where I = T .o > KT
For N=5 in AlGaAs Same effect requires r=7.5
need AEg > 180 meV need AEg =15KT =380 meV

Consider W =2000 A and D =40 cnm? / Vs
Peakin U corresponding tothe @ =Tt
resonance will occur at the frequency

f =500 GHz f=750 GHz
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Coherent by other means after Luryi et al., 1993
Anatoly A. Grinberg & SL

Summary |IEEE TED 40, pp. 1512-1522 (August 93)

SL, AAG & Vera B. Gorfinkel
APL 63, pp. 1537-1539 (September 13, 1993)

Coherent ballistic transistor

Nature of gain roll-off with frequency
in collisionless base transport

It is possible to suppress Landau damping
in a cryogenic HBT with abrupt junction

Phaseshift in coherent base propagation
can be used to obtain active transistor
behavior above conventional cutoff frequencies

Current gain at f>>f ¢
Power gain at f>>f a5«

Role of parasitics

Oscillation frequencies up to 1 THz

are perhaps feasible at low temperatures;
"slow" operation is not possible...

very stringent requirements on the parasitics.

Coherent drift-diffusion transistor

It is possible to slow down and obtain
coherent effects at room temperature
in a graded-gap HBT

Step-base approach appears preferable

Reduction of the parasitic base-collector
capacitance is necessary...

Need:

top collector HBT technology



