Junctions and Barriers

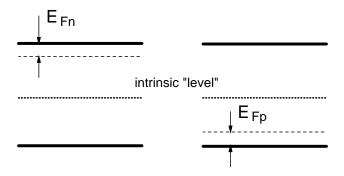


Figure 1: *n*- and *p*-type semiconductors

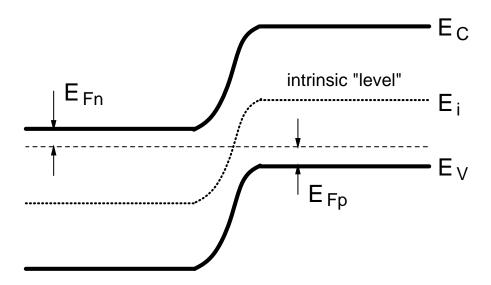


Figure 2: Metallurgical junction of two materials

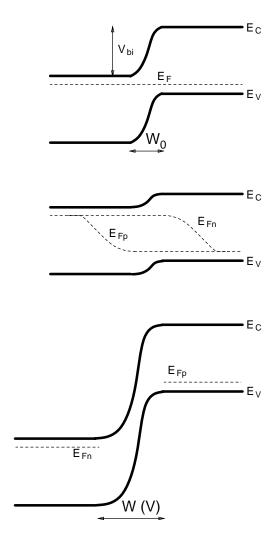


Figure 3: In forward bias, electrons flood the *p*-region and the holes flood the *n* region; this phenomenon is called *injection*. The region where the substantial amount of minority carriers reside is 0.ds 0 $\sqrt{}$ determined by the *diffusion length* $L_{\rm D}=$.

In reverse bias, there are 2 components of the current (in the ideal *pn* junction): *generation* current ($\propto n_i \times W(V)$) and *diffusion* current [$\propto (n_i^2/N_A) \times L_D/\tau$].

Junctions and barriers

Diffusion. distance covered from home in time *t* on average is

$$L =$$

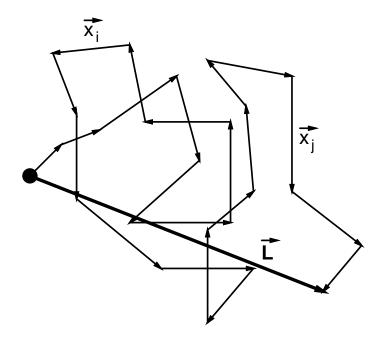


Figure 4: Random walk problem

$$\overrightarrow{L} = \overrightarrow{x_1} + \overrightarrow{x_2} + \overrightarrow{x_3} + \cdots$$

$$L^2 = \sum_{i,j} x_i x_j$$

$$\langle L^2 \rangle = \sum_i \langle x_i^2 \rangle + \sum_{i \neq j} \langle x_i x_j \rangle = N \langle x^2 \rangle$$

$$\overline{L} \equiv \overline{x}$$

If $t = \tau$ is the lifetime, $L = L_D$ is called the diffusion length,

$$L_{\rm D} =$$

 $L_{\rm D}$ is a characteristic of the material. It is long (can be millimeters) in indirect materials (where τ is slow) and short in direct-gap III-V compounds (typically, several microns). $L_{\rm D}$ depends very much on traps, dislocations, grain boundaries, etc., which all affect primarily τ .

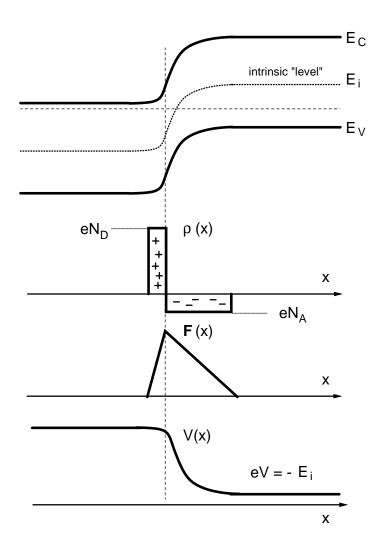


Figure 5: Charge, Field, and Potential profiles in a *pn*-junction

$$\frac{\mathrm{d}\,F}{\mathrm{d}x} = \frac{\rho}{\varepsilon} \qquad \text{Poisson}$$

$$\frac{\mathrm{d}\,V}{\mathrm{d}x} = -F \qquad \text{definition of potential}$$

$$\frac{\mathrm{d}\,E_{\mathrm{C}}}{\mathrm{d}x} = e\,F \qquad \text{definition of potential energy}$$

4 - 5 -

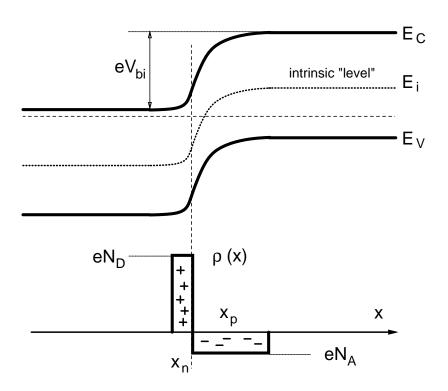


Figure 6: One-sided *pn*-junction $(N_D \gg N_A)$

Neutrality: $N_A x_p = N_D x_n$

Build-in voltage: $V_{\rm bi} = kT \ln \frac{N_{\rm D} N_{\rm A}}{n_i^2}$

intrinsic concentration: $n_i^2 = N_{\rm C} N_{\rm V} e^{-E_{\rm G}/kT}$

In equilibrium everywhere: $n p = n_i^2$

Junctions and barriers

To determine the electrostatic state of a *pn* junction (in equilibrium or under bias *V*)

- 1. Calculate or look up n_i [characteristic of the material, $n_i(T)$]
- 2. From $N_{\rm D}$, $N_{\rm A}$ calculate $V_{\rm bi}$ $V_{\rm bi} = kT \ln \frac{N_{\rm D} N_{\rm A}}{n_i^2}$
- 3. Calculate x_n and x_p from

$$\frac{e N_{\rm D} x_n^2}{2 \varepsilon} + \frac{e N_{\rm A} x_p^2}{2 \varepsilon} = V_{\rm bi} \pm V \qquad \text{(from Poisson's eq.)}$$

$$N_{\rm D} x_n = N_{\rm A} x_p \qquad \text{neutrality}$$

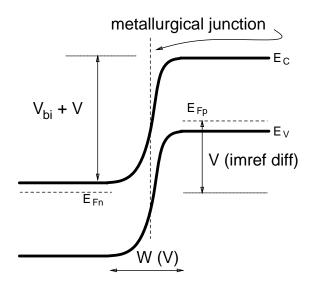
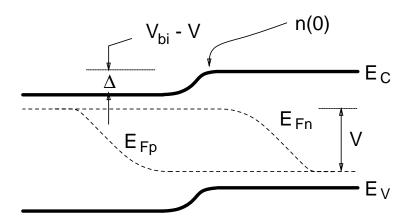
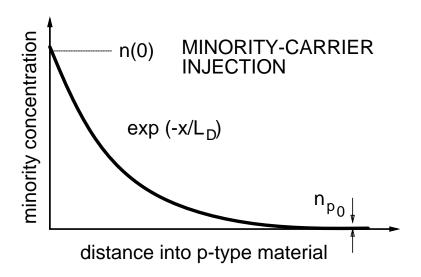


Figure 7: Reverse-biased *pn*-junction

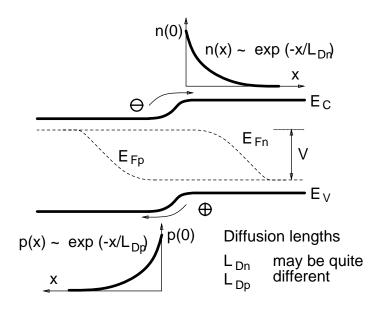
pn junction under forward bias

$$n\left(0\right) = n_{p0} e^{V/kT}$$
 where $n_{p0} \approx \frac{n_i^2}{N_A}$
 $n\left(0\right) = n_{n0} e^{-\Delta/kT}$ where $n_{n0} \approx N_D$





- 8 -



CONTINUITY EQUATION

$$\frac{\text{flux (1)}}{\left|\begin{array}{c} \Delta \\ \\ \end{array}\right|} \frac{\text{flux (2)}}{\text{recombination}}$$

$$\frac{d(n \Delta x)}{dt} = D \frac{dn (1)}{dx} - D \frac{dn (2)}{dx} - \frac{n - n_{p0}}{\tau} \Delta x$$

$$D \frac{d^2 n}{dx^2} = \frac{n}{\tau} \quad \text{(in steady state)}$$

$$n'' = \frac{n}{L_D^2} \quad \text{where} \quad L_D \equiv$$

Solutions: $e^{\pm x/L_D}$ (in general, $A e^{x/L_D} + B e^{-x/L_D}$)

Physical choice: $(n - n_{p0}) = [n(0) - n_{p0}] e^{-x/L_D}$

Electron Diffusion Current:

$$n - n_{p0} = [n(0) - n_{p0}] e^{-x/L_{D}}$$

$$e D \frac{dn}{dx} = \frac{e D}{L_{D}} [n(0) - n_{p0}] e^{-x/L_{D}}$$

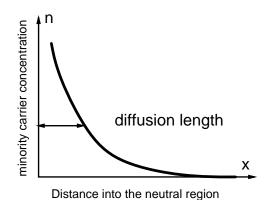
$$= e n_{p0} [e^{eV/kT} - 1] e^{-x/L_{D}}$$

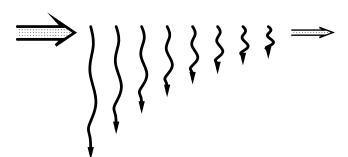
Conservation of charge:

$$\frac{\mathrm{d}\rho}{\mathrm{d}t} = 0 \qquad \Longrightarrow \quad \overrightarrow{\nabla} \cdot \overrightarrow{J} = 0$$

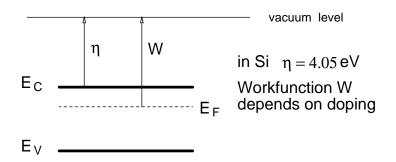
Hence

$$J_n + J_p = \text{Const}$$
 (independent of x)





Affinity and Work Function



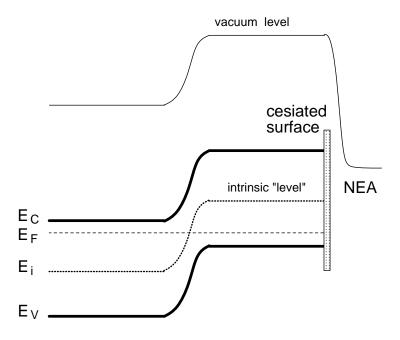


Figure 10: Illustration of electron affinity and the workfunction. Certain surface treatments (e.g., Cs or Cs oxide) produce surfaces with workfunctions as low as 1 or 2 eV. For a sufficiently widegap *p*-type semiconductor, this may result in a *negative affinity* (NEA) of the material near the surface.

Such a surface works as an "electron gun" or "cold cathode", shooting out any minority electrons injected in the region near the surface. Minority electrons can be injected by forward-biasing the *pn* junction.

- 11 -

Junction Capacitance

$$\frac{C}{A} = \frac{\varepsilon}{W} = \frac{\varepsilon}{x_n + x_p}$$

Exercise: small-signal derivation Check that the same result is obtained!

$$\frac{C}{A} = \frac{\delta Q}{\delta V}$$

where

$$\delta Q = e \, \delta x_n \, N_D = e \, \delta x_p \, N_A$$

