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Equation that determines the Fermi level E¢ is obtained from the neutrality
condition:

n+nD:ND_NA, (31)

where N and N, are the concentrations of donors and acceptors, Np > N 5,
n is the band electron concentration,

N =NgFy, (EAKT) BN (3.2)

and np is the concentration of electrons residing on donors (donor energy,
counted from the conduction band is Ep < 0):

= No 3.3
”D‘ie(ED—EFWTH' (33)
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Denoting Er=ep, and B=1KT or PB=ekT, depending on whether 3
multiplies an energy or a potential, we rewrite Eq. (3.1) in two equivalent
forms:

Bu No -
NCe + ieB(ED—u)_'_l - ND_NA’ (34)
2
n?+ (Na+Nc)n = (Np-NaN¢ =0, (3.5)
where Ng = 2N ePFe (3.6)
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Solution of Eq. (3.5) is of the form

Na+Nc 10 (2
n=-—2 +7D[NA+NDC]2+4(ND—NA)NDCD . (B
1
_______ ——— _BE
NANp <N¢ < Np n=V(Np-NaN¢ = \/7NDNCe2 i
Np-NaNe  NpN
NL < N2 n=(D ANc _ Np C oPEo

The range (3.8) occurs at not too low temperatures when N, < n < Np (the
existence of this range presupposes N < Np). The steeper temperature
dependence (3.9) occurs at lower temperatures, when n < N,. In an artificial
example of N =0 (totally uncompensated semiconductor) the range (3.9) does
not exist. In both of these low-T ranges the Fermi level lies above the donor
level:

EF:%ED+%kTIn(ND(2NC)>ED Nj<n <Np

Er=Ep + KT IN[(Np—(NAY2NA] > Ep n <Np

For N =0 (unphysical situation often treated in books) E¢(T - 0) = %ED; for

any realistic compensation Er(T - 0) = Ep. The slope of E¢(T) is positive at
T =0 (except if Na>N3).

At higher temperatures, Er goes below Ep. When Ep—-Eg > KT (saturation
regime), most donors are ionized and all available excess electrons are in the
conduction band.

(3.10)

(3.11)

(3.8)

(3.9)
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Lattice vibrations
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Debye model describes Acoustic phonons pretty well.
Einstein model is more appropriate for Optic phonons.
Both models can be used simultaneously.

Debye
Einstein

With the help of these models, one can successfullly describe even anisotropic
properties of the phonon field, see e.g.,

S. Luryi and J. Van Kranendonk, "Elastic constants and anisotropic pair correlations in

solid hydrogen and deuterium”, Can. J. Phys. 57, pp. 136-146 (1979).

Optic phonons which strongly interact with electrons are essentially monochromatic.

This can have amazing consequences, see, e.g. A. A. Grinberg and S. Luryi (1990)

"Nonstationary quasiperiodic energy distribution of an electron gas upon ultrafast

thermal excitation”, Phys. Rev. Lett. 65, pp. 1251-1254 (1990).

"Fine structure in the energy dependence of current density and oscillations in the
current-voltage characteristics of tunnel junctions", Phys. Rev. B 42, pp. 1705-1712

(1990).
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Transport
O— X N K
dv _ _
W—a bv
v =at t <1
v=ab t > 1

1: velocity (momentum) relaxation time
Loosely speaking: T is average time <t >between collisions

After "collision” (at t =0) take <v> =0

e
v(t) = —tF
t) = —

e
<v> = __T1F F
m H

M= WT Drude formula
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Drift Diffusion Equation
J =e(nuF + DON)

Mobility and diffusion coefficients are related (Einstein)
eD = pkT

[  from the consideration that in equilibrium one must have J - 0.

eF = HEC

n
On = - 0OE
: KT ¢

[1  the latter equation is obtained by differentiating

Degenerate version of Einstein relation:
d(logn)
eD —= 7 =
dE; H

E constant
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Imref

In the presence of current flow (non-equilibrium) the concept of Fermi level is
not defined.

However, let us define

n = Nce(EF—EC)/kT
where
n = n(x)
Ec = Ec(X)
O Er = Er(x)

The drift diffusion equation then reduces to

J =e(npF + DON) = enpOE:

guasi-Fermi level
(imref)
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Example: use of imref to distinguish "pictorially” different transport
mechanisms.

Thermionic (Bethe) versus diffusion (Schottky) mechanism of conduction in
Schottky diodes.

Schottky diode (forward bias)

Semiconductor
Bethe

Schottky . |t

Metal

B

[1  Imref varies little where the net current is much smaller than either the
diffusion or the drift components. These regions are "approximately in
equilibrium®”.
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Conduction Laws by dimensional analysis§

In the CGS system the conductivity has the units of a velocity. Taking this
velocity to be an effective carrier velocity v, we can write a generic expression
for the diode current in the form

€ A
I 0 —vV — Ik
4nv X (bulk)
€ W .
I DEVVT' (film)

where L is the length, A =D-W the cross-sectional area, and W the width of
the diode. The relative permittivity € = €/¢, of the material enters because it
scales the space-charge potential in Poisson’s equation.

The actual current-voltage dependence (up to a numerical coefficient) can be
“derived” from the above equation — whenever the conduction process
involves a dominant transport mechanism, which provides a unique scaling
relationship between v and V.

Thus, for free electron motion, the velocity scales as v20 (e/m )V and one
obtains laws appropriate for ballistic transport, e.g. for the bulk case Child’s
law of vacuum electronics:

0, 2

-
=7 2080 v A where z=2"2 [child]
ATT Om ] L? 9

For the case when electron velocity is saturated, take v =vg .

For the case of constant mobility , the velocity scales as v 00 uV/L , which
leads to the following expressions:

_, € uv? _ 9 _
I —Z3_4_E_LTA , (bulk) where (5= T [ Mott-Gurney ]
g€ uv?2 .
l =Z2E“L_2W . (film)

8§ S. Luryi, "Device building blocks”, Chap. 2 in High-Speed Semiconductor Devices, ed. by
S. M. Sze, Wiley Interscience (1990) pp. 57-136.

t Connection to the international units is obtained by replacing the dimensionless factor s
Tt

with € in farads per meter.



Lect 3 -10 -

Nonequilibrium electron ensembles.t

The term “*hot electrons™ purports a non-equilibrium ensemble of high-energy
carriers. It is often possible to pump external energy (e.g., by shining light or
applying an electric field) directly into the system of carriers. If the power
input into the electronic system exceeds the rate of energy loss by that system
to the lattice, then the carriers ““heat up” and their velocity distribution f (v)
deviates significantly from the equilibrium Maxwellian form.§ In general, the
time-dependent distribution function f (t,r,v) can be determined by solving
the Boltzmann transport equation,

of of of _Uof U
—+tV — +a—=0_—101 ,
ot or ov 00t O

where a is the acceleration and the collision integral in the right-hand side is a
linear functional on f. In a steady state, f (r,v) does not explicitly depend on
time but it may still be a function of the spatial position.

Solution of Boltzmann equation is a complicated task even for the simplest
scattering models involving scattering of electrons among themselves as well
as with phonons and impurities. It is expected from a reasonable model of
interaction between the electronic system and the thermal bath that collisions
will restore the equilibrium distribution function f,(r,v) from any initial
distribution — although this property is often difficult to prove mathematically.

t This discussion is from S. Luryi, "Hot electrons in semiconductor devices", in Hot Electrons
in Semiconductors, ed by N. Balkan, (Oxford University Press, 1997) pp. 385-427. The entire
chapter, including all figures and references is available on the internet:

Homepage: http://www.ee.sunysb.edu/"serge/152.dir/152.html

8§ Note that one can also cool the carrier system by making it do work against an external
field at a fast rate compared to power replenished by the lattice.
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Since we know that thermodynamic equilibrium cannot be destroyed by
scattering of electrons by a thermal bath, the collision integral must vanish if
feq(r, V) is substituted for f. These properties are manifestly expressed in the
model which approximates the collision integral by

Oot 0 _ 1V ~ feq)
00t Do T(V)

where for brevity we have omitted the possible position dependence. The
characteristic time constant t1(v) is called the relaxation time and the whole
model is called the relaxation time approximation. In this approximation the
perturbed distribution will exponentially relax to equilibrium when the
perturbing influence is removed.

The relaxation time approximation is too crude in practice, because different
characteristics of the distribution relax with different rates. Thus when
collisions are predominantly elastic, it is natural that the first moment <v> of
f (v) relaxes rapidly while the second moment <v?> takes a long time to relax.
The first moment characterizes the electron drift velocity (or average crystal
momentum) and the corresponding time constant, t,,, is called the momentum
relaxation time, while the longer time t. is called the energy relaxation time.
It is often a good approximation to characterize the electron ensemble by a
model distribution function, which embodies the relevant relaxation Kinetics.
The choice of an appropriate distribution function may also depend on time t
if the electric fields rapidly vary (on the scale of 1, or 1,,). Similarly, the choice
of a model f (v) may depend on the position r in the device. Consider hot-
electron models, commonly occurring in devices.
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Quasi-thermal

An effective temperature T, is always established in an electronic ensemble of
sufficiently high concentration, when the electron-electron (ee) interaction
dominates over both phonon and impurity scattering. Starting from any initial
distribution, ee collisions lead to an equilibrium within the electron gas. Since
the center-of-mass velocity of colliding electrons does not change, the drift
velocity <v> of the electron gas remains a constant of the motion. The
distribution function is then of the form

f(v) = T rexpl(mMvi2-mavsv-ENT D F)
called the displaced Fermi distribution. It is characterized by the effective
temperature T, the drift velocity <v>, and the Fermi level E¢, determined
respectively by the conservation of energy, momentum, and the number of
particles. In the reference frame that travels with the velocity <v>, this
distribution looks like an ordinary Fermi function. For a non-degenerate gas,
it reduces to the form of a displaced Maxwellian distribution,

_MVZ2 -m<v>-v

f(v)=e KTe . (M)

In the nondegenerate limit T, >E¢, the effective temperature T, is related to
the average electron energy <E > by the well-known formula,

3 1 2
<E> = KT, + —m <v>" .

2 ¢ 2
In the opposite limit, Ef > KT, the average energy does not depend on T,
and is determined only by the carrier density n:

<E> = EEF + Tmavs? | where Er = (3112)%ﬁ_2n2/3
5 2 2m

In the intermediate range, the expression of <E> in terms of parameters T,
and Er can be written in the form of a quadrature.

Any function of the form (F) will make vanish the collision integral that
contains only ee interaction. If interaction with impurities is included, the
collision integral will vanish only provided <v>=10. Including interaction
with phonons, the collision integral will vanish only if T, coincides with the
lattice temperature T.
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Overshoot

In the situation when energy is continuously pumped into the electron gas by an
electric field or electromagnetic radiation, one cannot ignore other forms of scattering,
however slow they may be compared to ee interaction. Indeed, otherwise there
would be nothing to check a runaway of the average energy and/or drift velocity.
The correct approach is to use the so-called adiabatic approximation in which the
distribution function is assumed in the form (F) with the effective parameters assumed
to follow the variations in the external input, as governed by the balance equations for
energy and momentum,

d<E > _<p> - <E> 1
dt T,
d<v> <>
—<a> - — |
dt Tm

where <P > and <a> are, respectively, the average power input and acceleration. For
the electronic ensemble (F) moving under a force F, one has approximately
<a>=Fm and <P>=F-<v>. Parameters T, and T, in these equations are
determined self-consistently from the Boltzmann equation — by substituting into the
collision integral for slow processes the distribution function in the form (F) — which
is assumed maintained by the rapid ee interaction.

Thus, in the adiabatic approximation parameters T, and T,, of the balance equations
themselves become functions of the effective temperature T,. The momentum
relaxation time is usually much shorter than the energy relaxation time, T,, < T,.
Indeed, elastic collisions are dominant for momentum relaxation, whereas an effective
energy relaxation requires several inelastic interactions with phonons. Therefore, on
the time scale of the momentum relaxation, the average electron energy can be
considered quasi-static and while T, = 1,,(T,) in the balance equation, the effective
temperature T, itself is a function of time, “slowly” rising with a characteristic time
T,. Thus, at short times (t <Tg ) after the imposition of a strong electric field, the
carrier drift occurs with a low-field mobility and the velocity can substantially
overshoot its steady-state value. The overshoot phenomenon has become quite
important in determining the speed of modern transistors with ultra-short gate
lengths. For a 0.25um n-channel Si MOSFET this hot-electron effect contributes a
20% enhancement in the transistor speed.

The gqualitative explanation given above is quite adequate for describing the overshoot
in Si and Ge, where there is a strong dependence of the phonon scattering rates on the
carrier energy. In GaAs and some other Ill1-V compounds, the dominant scattering
process in the I' valley is due to polar optical phonons, and the rate of these processes
at sufficiently high electron energies becomes nearly independent of energy. In such
materials the mobility degradation at high energies is associated with the transfer of
electrons to the lower-mobility upper valleys. Consequently the overshoot is not seen
below the threshold field for the negative differential mobility effect (F 33.2kV/cm in
GaAs and 11kV/cm in InP).
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Ballistic.

If the force acting on electrons suddenly changes, their subsequent motion for
a short time may be considered without taking collisions into account.! The
time interval t gtz when this is possible, is determined not only by the
momentum relaxation time Tt,, but also by the characteristic time t, of
interelectron scattering. By definition, the ee scattering rate is included neither
in the rate 11, nor in the expression pu = (e/m)t,, for steady-state mobility,
because ee collisions have no direct effect on <v>. Of course, they can have a
very strong effect indirectly, by influencing other collision processes through
the shape of the distribution function f (v). At carrier concentrations
n 10" cm™3 the characteristic time tp for ballistic transport,

1 1 1

o+

?[3_ Tm Tee
may be considerably shorter than t,,.

The concept of ballistic motion also applies to the steady-state transport. In this
case one considers regions a short distance d g Ag away from an abrupt
potential variation. The characteristic length Ag is related to 13 by
Ag =<v>Tz and both quantities depend on the shape of the distribution
function f (v). Instead of parameters pertaining to an electron ensemble, one
often defines similar parameters for a given state of electron motion, viz. its
lifetime t(v) and the mean free path A(v), as limited by collisions with the
lattice and other electrons. These definitions practically coincide for narrow
distributions.

1. The common term ‘“‘ballistic”’ applied to this time of motion, conjures up the image of a
projectile moving in airless space. This image is not very apt, since interesting properties
of the electronic motion in the ballistic regime often depend crucially on the band structure,
which defies cannonball analogy.
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Steady-state ballistic transport was first demonstrated experimentally in
unipolar heterostructures.

In an external field ballistic electrons can be accelerated to velocities much
higher than the steady-state saturated velocity v, [up to the maximum band
velocity dE/d(hk); for electrons in the conduction band of GaAs accelerated in
a <100> direction this limit is H108cm/sec] and such an enhancement is
important and beneficial for the performance of semiconductor devices. It
appears attractive to realize ballistic transport in short-channel field effect
transistors, so that the carrier velocity at any point in the channel would be
determined by the conservation of energy. Such a situation is realized in
vacuum diodes, where the current is space charge limited and is described by
the Child-Langmuir law. Despite considerable efforts, no semiconductor
device structure has been demonstrated to-date in which the current-voltage
characteristics would convincingly conform to a similar law. In practice,
conditions for collisionless transport in a 2D channel (where sheet carrier
concentrations typically much exceed 10! cm~2) are very difficult to realize
because of ee collisions (which typically result in Ag<1000A at these
concentrations).

When the rate of ee collisions is very high, as is usually the case in the channel
of a field-effect transistor in its on state, the electron ensemble behaves rather
like a fluid than a gas. In the absence of other collisions (with phonons and
impurities), the electronic fluid in the FET channel is described by
hydrodynamic equations similar to those for shallow water (Dyakonov and
Shur, 1993). Based on this analogy, Dyakonov and Shur discussed several new
effects related to plasma oscillations in the 2D electron fluid. In particular, a
short-channel high-moblity transistor has a resonant response to an
electromagnetic radiation at the plasma wave frequency of the 2D electrons
(Dyakonov and Shur, 1996). This effect can be used to implement detectors,
mixers and multipliers at terahertz frequencies. As pointed out by the
authors, these devices should operate at much higher frequencies than
conventional, transit-time limited devices, since the plasma waves propagate
much faster than electrons. Moreover, their responsivities and conversion
efficiencies can be expected to greatly exceed those of Schottky diodes
currently used as detectors, mixers and multipliers in the terahertz range.



Lect 3 -16 -

Mesoscopic.

When the carrier concentration is sufficiently low and ee collisions are rare, the
shape of their distribution function under external perturbation may depart
considerably from the quasi-equilibrium form (F). The Maxwellian shape (M)
(Gaussian in velocities) can be viewed — in the spirit of the well-known central
limit theorem of statistics — as resulting from large number of independent
scattering events, each contributing or withdrawing a random amount of
energy.f Besides ee collisions, the electron distribution function can be
maxwellized by other interactions as well, provided independent scattering
events exchange random energies with electrons. Scattering by acoustic
phonons has this property, while optical phonon scattering does not. If the
latter were the only inelastic interaction, the equilibrium shape of the electron
distribution function would be rather strange and thermodynamic properties
of the electron ensemble rather different. The peculiarity of interaction with
optic phonons stems from their largely monochromatic nature, which
guantizes the energy exchange in units of HO.

At sufficiently high temperatures, the electron energy relaxation rate due to
optical phonons (1/1©°P) is higher than that due to acoustic phonons (1/1(%)
by several orders of magnitude. Typically, in semiconductors 1(oP) 510‘125
and 1@ 510‘95 (Conwell, 1967). This disparity of the inelastic relaxation
times can lead to the formation of an electronic ensemble that is in equilibrium
with the optical-phonon system but has not yet appreciably interacted with
acoustic phonons. Manifestation of these properties in electronic transport can
be conveniently referred to as the ‘“‘classical mesoscopic effects” (drawing a
parallel to and a distinction from the quantum mesoscopic effects that occur
when the coherence length or time of an electronic wave function exceeds
characteristic system dimensions. Grinberg and Luryi (1990) considered the
kinetics of an electron ensemble initially characterized by a Maxwellian
distribution with T, = T;, subject to interaction with the lattice at equilibrium

temperature T. Since the initial distribution is not the equilibrium Boltzmann
function, it evolves in time because of the electron interactions with optical
phonons, acoustic phonons, and due to the e-e scattering. Under the

t The form of distribution (F) does not contradict the central limit theorem. In the presense
of the quantum correlation between electrons, maintained by the Pauli exclusion principle,
multiple collisions lead to a Fermi rather than Maxwell distribution.
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assumption that P19 « 1 and 1P, < 1, electrons rapidly establish a
qguasi equilibrium with the optical phonon field (the mesoscopic state) and
then — on a longer scale — the true equilibrium is established by other inelastic
scattering processes. Even though the e-e scattering does not change the
average electron energy, it counts as an inelastic interaction, because it changes
the shape of the non-stationary distribution.

The distribution function of the mesoscopic state can be determined from the
statistical consideration alone, without actually solving the kinetic equation.
The shape of this function is illustrated in Fig. 10 both for the narrow (T; <T )

and broad (T; > T ) initial distributions. Even though the electron system is in

perfect equilibrium with optical phonons at temperature T, thermodynamic
properties of electrons in the mesoscopic state are very different from those in
true equilibrium, e.g., the average energy <E> # (32)kT and the specific heat
deviates from the classical value 3k/”2 (Grinberg and Luryi, 1990). Also the
electron mobility in the mesoscopic state shows a strong overshoot. The time
scale of this effect is very different from the conventional velocity overshoot;
the mesoscopic state is established in less than 1 ps and persists for a long
time (up to nanoseconds!) — controlled by acoustic phonon and interelectron
scattering.
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