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Basic Semiconductor Physics, continued
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Figure. Important extremal points in the band structure of cubic semiconductors. The
schematic picture (drawn not to scale) is appropriate for a direct-gap I11-V semiconductor. For
GaAs at room temperature the indicated energies are:

Er =142eV, E =171eV,Ex =1.90eV ,E,, =0.34eV .

In silicon the lowest conduction band point is in the A direction, 85% of the way to X point.
The indicated energies for silicon at 300 K are:
Er=4.08eV,E =187eV,E, =1.13eV , E;, =0.04eV .

In Ge the lowest conduction band point is at L but the [ point is not far away:
Er=0.89eV,E =0.76eV,E, =0.96eV ,E;, =0.29eV .

Bands: degenerate/nondegererate
isotropic/anisotropic
parabolic/nonparabolic

In the vicinity of a nondegenerate extremal point it is convenient to describe
the dispersion relation E,, (k) using the effective mass tensor M, L:
a2 0,10
En (Ko + K) = Ep (Ko) = (H72) k-M; tk = > J_z_1 oMn g kiky
where the components of M, ! can be written down in terms of the free
electron mass and parameters of the lattice potential (the periodic V (X ,y ,z)
characteristic of the point k.
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Concept of holes

Rules of the game

hole is an alternate description
of a band with one missing electron

1. k (hole) = - k (missing electron)

2. Eh(kh) = -Ee (ke )
energy counted downwards

AE

3, Vh =V
velocity of hole equals that
of missing electron

(take gradient of the band with
respect to the relevant k vector)

5. Equation of motion for a hole in electric and magnetic fields
is that for a positive particle of charge + e

» Electric field
Ve je
—O—
Y
D=

In

Figure. Concept of holes, illustration
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In the vicinity of a nondegenerate band extremum, the surfaces of equal
energy are ellipsoids, as evident from Eq. (1). The symmetric tensor M, ! has,
most generally, six independent components. The coordinate axes can always
be chosen so as to diagonalize this tensor, i.e. along the ellipsoid’s principal
directions:

Otm, o o U
ool 0
M;t=00 ¥m, 0 O
0 u

In general, the energy ellipsoid is determined by six independent parameters:
three diagonal values of Mn‘1 and three directions of the principal axes.
However, the number of parameters can be often reduced by symmetry
considerations. The ellipsoid symmetry is determined uniquely by the
symmetry of the extremal point k;. For an extremum located on a crystal
symmetry axis, one of the principal directions of the energy ellipsoid coincides
with the symmetry axis. If the latter is an axis of 3-fold, 4-fold, or 6-fold
symmetry, then the ellipsoid is an ellipsoid of revolution (m;=m,=m;,
my =m;). If more than one such axis intersects at k, then the ellipsoid
anisotropy  disappears and  energy  surfaces become  spherical
(m;=m,=m3=m). Such is the situation in the conduction band at the I
point of cubic semiconductors:

he k2

E k) = >

In silicon the conduction band minima are on the 4-fold rotation axes and the
low-energy isoenergetic surfaces are ellipsoids of revolution, their long axes
being along <100> directions. There are six symmetry related minima. Similar
local minima exist in the conduction band of germanium, but the true
conduction band minima in Ge are located at L points.

There are only four symmetry-related ellipsoids of constant energy in the
vicinity of the conduction band edge of Ge. It is convenient to picture these
ellipsoids as eight half-ellipsoids joined together on opposite faces by
translations through suitable reciprocal lattice vectors. In each ellipsoid, the
band curvature is least in the direction along the rotation axis and highest in
the transverse directions. This means that the longitudinal mass is heavier
than the transverse mass. The anisotropy is particularly high in Ge,
my/m, = 20, but it is also considerable in Si, where my/m, 85.
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Figure . Surface of constant energy in the vicinity of the conduction band
edge in silicon represents six ellipsoids of revolution, extended along <100>
directions. The band curvature is least in the longitudinal direction (heavy
mass) and highest in the transverse direction (light mass) The effective mass
ratio mym, B5.

If the band edge in Si were at the zone boundary rather than at a general
point in the A direction (E85% toward X), then there would be only three
ellipsoids. Location away from the zone boundary of the conduction band
edge in Si and the local A minimum in Ge is related to the inversion symmetry
of the diamond structure.



Lect 2 -5-

Figure: Surface of constant energy in the vicinity of the conduction band edge
in germanium represents four ellipsoids of revolution, extended along <111>
directions. The effective mass ratio is very large, mym; =20, so that each
ellipsoid really looks like a sausage.

In order to exhibit a full ellipsoid we would have to chose a primitive cell for
which some L point would be internal. In the Brillouin zone picture, each
ellipsoid is cut in two by the boundary and the equivalent half is shifted to the
opposite face by a reciprocal lattice vector.
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Band Electrons in External Electric Field.

For an electron initially belonging to a nondegenerate isotropic band n and
subject to a static or slowly varying electric field (due to an impurity or an

2

ih —Hy . H=P sv@-eu(t) .

ot 2m,
reduces to a simple "effective-mass" equation
N [ B -~ _op?
|hW—H<D, H_W eU(r,t) ,

for a slowly varying (both in space and time) function @, called the envelope
function. Equation (5) describes a quasi-particle of mass m moving in the
external field only. The only remnant of the periodic potential is the effective
mass m. The complete wave function in effective mass approximation is of
the form

LIJ(r’t) = q)(r!t) l'I"nko(r’t) = q)(r1t)e

where E, =E (kg). This function represents the band-edge Bloch function
modulated by a large-scale envelope function ®.

ikg'r |E0t/h

unko(r) e_ !

In the absence of an external field (U - 0) the full wave function (6) must
assume the Bloch form and the envelope function, therefore, becomes a plane
wave, ® - expli(k-r—¢gth)], where g(k)=E (k) -E,. If the external
fields are sufficiently smooth and slow varying,

Smooth means they vary little over distances of order the lattice constant a and
slow means the frequency of their variation with time is much lower than
AE/M, where AE is the vertical (i.e. for the same k;) separation between
nearest bands.

then the plane-wave expansion of a true wave function will get its main
contribution from small wavevectors k, in the vicinity of kj It is this
difference in the length scale of characteristic variations which permits to
factor g into a product of the Bloch and the envelope functions, where the
former is determined only by the periodic potential and the latter describes the
entire effect of the external potential.
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(@)

(b)

Figure: Schematic illustration of the Bloch and envelope wave functions.
(@) Bloch function u (r) at ky = 0 varies rapidly within the crystal unit cell.
(b) Envelope function F (r) varies little on the unit cell scale.

(c) Complete wave function @ (r) of a localized electron in the effective mass
approximation.
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In the presence of a uniform electric field the effective mass method needs a
clarification. The exact time-dependent Schrédinger equation,

., 0
|h%:HL|J , H=Hgy+eFr,
where HO:pZ/mO+V(r) is the crystal hamiltonian, can be written in the

crystal momentum representation. To do this, we expand (Y (r,t) in a
complete set of Bloch states:

W(r,t) = 3 By (K, t) Wpi(r)
n k

where

Wi () = elkr Unk (1)

are eigenfunctions of the unperturbed hamiltonian H,. Coefficients B, (k,t)
form a crystal-momentum representation of the time-dependent wave function.

In the presence of a uniform electric field we face two conceptual difficulties,
associated with the phenomena illustrated in the Figure. First "difficulty” is
associated with interband transitions. States near the band edge acquire a
finite lifetime due the possibility of tunneling across the bandgap. The idea
that electrons can tunnel through the forbidden gap of an insulator in a strong
electric field was first suggested by Zener (1934) and the phenomenon is called
the Zener tunneling. Theoretical description of Zener tunneling requires a
model that includes states of both the conduction and valence bands. It results
in a slight broadening of the sharp band edges; however, moderate electric
fields, F g 10®V/cm, do not change the band structure too much.

In the absence of interband transitions one finds
B, (k,t) = B, (k —eFt/h,0)
d hk
dt
k varies linearly in time and hence the electron motion is periodic with a
frequency

= eF

f = eF/Mb
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forbidden

allowed

Figure. Schematic illustration of band electrons in a uniform electric field.

(@) If interband transitions are suppressed, the allowed energy bands break
into a ("Stark") ladder of equally spaced ("Wannier") levels. To observe this
phenomenon it necessary that the energy separation between adjacent levels be
larger than their broadening k1 due to scattering or, equivalently, that the
scattering time T be longer than the time necessary for an electron to traverse
the allowed band. This requirement can be met in superlattices (Chap. I1l) but
hardly in real solids.

(b) Electrons can tunnel across the bandgap, leaving behind a hole in the
valence band. This phenomenon is called the Zener tunneling. The envelope of
a wave function exponentially decays in the forbidden band while rapidly
oscillating in the allowed bands. In experimentally attainable fields of order
10°V/cm only the edges of the allowed and forbidden bands are slightly
broadened by the field, by an amount of order m =3 (eF h)%°.
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Figure. Band electrons in an electric field F move so that the wavevector k; is
varying along a straight line parallel to the field F. On crossing the Brillouin
zone boundary, the wave-vector k;(t) re-emerges at the equivalent point on
the opposite side of the zone and continues its variation in the same direction.
If F is parallel to a reciprocal lattice vector, electrons perform an oscillatory
motion along the segment ak; (dashed line), subject to an occasional Zener
tunneling into another band. In the absence of tunneling, the electron velocity
component in the direction of F changes sign at every crossing. If F is not
aligned with a reciprocal lattice vector, the motion is aperiodic.
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The distance electron travels during one cycle is of the order of I&F (where |
is the width of the allowed band in which the electron is moving). This
indicates that the wave function, is built of functions with k vectors running
through the entire band. If interband tunneling is forbidden, the energy levels
will be quantized, as can be expected when the classical motion is periodic.

The band breaks into discrete energy levels, called the Wannier levels, equally
spaced by the energy intervals eaF. Each of the levels corresponds to a wave
function, centered on a particular site and extending in the direction of FF
over approximately l/aF lattice sites. These assertions are consequences of the
fact that a translation by one lattice period changes the hamiltonian by the
constant amount eaF .

Nevertheless, the effective mass method can be applied to such problems as
electric conductivity in semiconductors without a contradiction. The periodic
motion due to the Bragg reflection of electrons has never been observed in the
bulk crystal, despite many attempts at detecting such an effect. The reason for
this failure and the saving grace of the effective mass method is the limited
and short time that electrons can travel without collisions. As an accelerated
electron moves higher and higher in the band, very rapid collision processes,
like optical phonon emission (t H10 ¥sec) and impact ionization
(t H107sec), set in and return the energetic electron back to the bottom of
the band. Even at the highest fields, the probability that an electron traverses
the entire Brillouin zone and suffers a Bragg reflection is very low and can be
neglected in transport studies. The situation is different in superlattices where
the lattice period is large and the dimensions of the Brillouin zone are short.

In most cases, it is a reasonable approach to describe the electronic motion in
a uniform electric field by the effective mass equation.
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Density of states and the Fermi level

The phase space of a single particle in d-dimensions. It has 2d axes, corresponding to
d coordinates and d momenta of the particle, Fig. 20. It is the ba5|c tenet of quantum
statistics that a hyper-volume v @ (say a hypercube v@ = dpd ) in the phase space
contains N distinct states, where for a spln—7 particle

_2v@
 (2mh)®

The factor of 2 in the numerator comes from states of different spin. For a hyper-
sphere of radius R, the hyper-volume equals R 121 (1+d/2).

MOMENTA

COORDINATES

Figure: Hypervolume L9PY in the phase space contains N cells of volume (2T[h)OI
and twice as many electronic states. In semiconductors the situation is similar, but
instead of electron momentum one deals with its crystal momentum and the above
number of states is per each band.

E4(k)

==

E1(k)

Energy

Pseudo-momentum



Density of States
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For a free electron gas, the energy-dispersion relation is isotropic, E =p%2m,
which allows a simple counting of states in spherical energy shells
dE = (2E/m)¥dp :

U oy U
1D an =29 g M 5 e
2mh OmhV2E
2 U] ]
oD dN = 2k ZT'pzdp -0 m2 OL2dE
(21h) Omh*
3 2 O] ey U
3D dN = 2T Adp _ f@M)TVE 5 s

(2mh)® 0 2k [

In these equations, the quantity in the brackets is the density of states
g (E) =dNAE (per unit length, area or volume of the electron gas).
Convenient units for g (E) are [cm™ eV™']. Figure illustrates the g (E)
function for 1, 2, and 3 dimensional free-electron gases.
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Figure: The density of states in these three plots is measured in different units:
g[eV iem™9].

The term Fermi level in semiconductor physics is synonymous with ‘“‘chemical
potential’’; it is defined by

n :}OdE g(E)f (E-Ep),
Eo

where f (E) = [exp (EAT) + 1]7! is the Fermi function.
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Inversion layer in a silicon MOS structure

The schematic cross-section of a silicon MOS structure is illustrated on the next
page along with the band-bending near the Si/SiO, interface under a
sufficiently large positive gate bias. Let us look in more detail at the band
structure of the 2DEG in an inversion layer on the {100} surface.

In a (roughly triangular) quantum well formed near the Si/SiO, interface
under a positive gate bias, ellipsoids oriented differently with respect to the
surface give rise to a quite different subband structure. Let us specify the
actual {100} Si surface as a (100) crystal plane. Electrons in the two ellipsoids
elongated in [100] direction possess the heavy mass m; in z direction and an
isotropic light mass m; in any direction lying in the (100) plane. These
electrons give rise to the subbands whose bottom-edge energies are denoted
by E,. The other four ellipsoids, whose longitudinal axes lie in the (100)
plane, correspond to the light mass m; in the [100] direction, and their
subbands are denoted by E,, .

Because the quantum-well energy levels scale with 1/m, one has Ej < EO' , and
so the inversion-layer electrons in their ground subband have an isotropic light
mass. The order of the higher-lying subbands can be established only on the
basis of self-consistent numerical calculations. The subband energies depend
not only on the field and the background doping but also on the temperature,
which affects the relative population of higher-lying subbands and, hence, the
self-consistent field.

t Notation: equivalent crystallographic planes, e.g., (100), (010), etc., are collectively
denoted by {100}. Similarly, equivalent (symmetry-related) directions in the reciprocal
lattice, e.g., [100], [010], etc., are collectively referred to as the <100> direction.
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Figure: The order of the seven lowest subbands, calculated for an inversion
layer at a Si-{100} surface with ng=10%2cm™ in a lightly-doped
(Np =10 cm™) p-type material at room temperature. The levels E, and E;
are close in energy and, in fact, change their order at lower T and/or ng.



