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Basic Semiconductor Physics
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beryllium boron carbon nitrogen oxygen
12 2430 |13 2698 |14 2800 |15 3097 |16 3206
Mg | Al Si P S
magnesium | aluminum silicon phosphorus sulfur
30 6538 |31 697232 7250 |33 7492 |34 7896
Zn Ga Ge As Se
zinc gallium germanium| arsenic selenium
48 6538 |49 6972 |50 7250 |51 7492 |52 7896
Cd In Sn Sb Te
cadmium indium tin antimony tellurium
80 2006 |8l 2044 |82 2072 | 83 2000 | 84 2100
Hg Tl Pb Bi Po
mercury thallium lead bismuth polonium

Figure 1.1. Portion of the Periodic Table showing elements that combine into
Each entry consists of the name of the element, its chemical
symbol, atomic number, and mass. Columns of the Table are indicated by

semiconductors.

roman numerals.
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Figure 1.2. Charge distribution in covalent crystals. Elemental semiconductors
(Si, Ge) are perfectly covalent; by symmetry electrons shared between two atoms
are to be found with equal probability on each atom. Compound
semiconductors always have some degree of ionicity. In I11-V compounds, e.g.,
GaAs, the five-valent As atom retains slightly more charge than is necessary to
compensate for the positive charge of the As®* ion core, while the charge on
the Ga®* ion is not entirely compensated. Sharing of electrons occurs still less
fairly between the ions Cd?* and Se®* in the 11-VI compound CdSe.

The covalent bond picture is reasonably good for all semiconductors. For
illustrative purpose it is often convenient to represent the bonding network by
circles (ions) and lines (shared electrons). It should be noted of course that the
network is 3-dimensional. For most semiconductors each atom indeed has 4
nearest neighbors, as illustrated, but these are located not in the same plane
but at the vertices of a tetrahedron, see Fig. 1.3 below.



Lect 1 -3-

Figure 1.3. Tetrahedral arrangement of atoms in a diamond or zincblende
structure. The bonds are along the cube diagonals and the bond angle 0 is
given by cos6=-1/3. Four atoms in the corners define a regular
tetrahedron. In a zincblende structure these four are different from the central
atom, in the diamond structure they are all the same.
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Figure 1.4. Electronic energy levels involved in the covalent bonding scheme.

Separation between the 3p and 3s atomic orbitals is about 6eV. Mixing of
these orbitals into 4 equivalent sp® hybrids requires promotion of one s

electron. Separation between the bonding and the antibonding levels ("bare"
bandgap) is about 5eV, which is also the "average" separation between the

valence and conduction band states. The minimum separation between these

bands (the bandgap Eg) in Si is about 1.2eV at zero temperature.
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Figure 1.5. The diamond structure, characteristic of Column-IV
semiconductors: C (diamond), Si, Ge, a-Sn (grey tin). It is not a Bravais lattice
and has two atoms per unit cell. In Cartesian coordinates with axes along the
side of a cube of side a the second atom is displaced by a vector
(al4, al4, al4) relative to the first. The two-atom unit itself (the basis) is
repeated periodically, forming a face-centered cubic (fcc) lattice. The structure
can be viewed as two interpenetrating fcc sublattices. There is a center of
inversion symmetry, located halfway on the line between the two basis atoms.
The two fcc sublattices are fully interchanged by the inversion operation, so all
atoms in the diamond structure are symmetry equivalent. This, however, does
not make diamond a Bravais lattice, because there is no way to choose a set of
three translation vectors that would generate the entire structure from a single
atom.
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Figure 1.6. The zincblende structure, e.g., GaAs. The figure is similar to
Fig. 1.5 except that atoms in alternate planes are colored differently. Gallium
atoms form a face centered cubic lattice. An identical sublattice — but shifted
along the body diagonal of the cube 1/4th of its length — is formed by atoms
of As. Unlike diamond, the zincblende structure does not have an inversion
symmetry. Volume a® of cube shown is four times the primitive unit cell
volume v.. The number of atoms per unit volume of the crystal is thus 8/a°.
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Figure 1.7. The wurtzite structure, e.g., CdSe. Cadmium atoms form a
hexagonal lattice with two atoms per unit cell. The second plane of Cd atoms
(B) is located exactly in the middle between the two planes of A atoms. The B
plane has the same 2-dimensional hexagonal arrangement of atoms as the A
plane but is shifted laterally. Position of the B atom relative to A is
81/3 + 3.2/3 + 33/2.

Distance between in-plane A neighbors is denoted by a and the vertical A-A
distance by c. Selenium atoms are displaced from cadmium atoms by a
distance b in the direction of the hexagonal axis. Thus a general wurtzite
structure is described by 3 parameters: the Ilattice constant a and two
dimensionless parameters y=c/a and g =b/a.

Most wurtzite semiconductors are characterized by the "ideal" values
y = (8/3)Y2 (hexagonal close packed lattice) and p = (3/8)Y2 (all bonds are
equal). This structure obtains when built with undistorted tetrahedral blocks
(Fig. 1.3). Like in the zincblende structure, only atoms of opposite kind are
bonded.
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Figure 1.8. The wurtzite structure viewed along the hexagonal axis. Atoms of
type B project in the middle of three (out of six) equilateral triangles formed
by atoms A. Note that both A and B correspond to the same atomic species
(e.g. Cd) and together form a hexagonal close packed lattice. (Atoms of Se
form another hcp lattice displaced into the page approximately by 3/8 of the
distance ¢ between two A planes.)

Imagine expanding the spheres A so that they touch in the plane ("close
packing"). It is clear that stacking similar spheres on the next level, we cannot
fill both B and C positions (distance BC is too short). However, when we go to
the next level again, we are free to fill either the three A positions (as is
appropriate for hcp lattice) or the three C positions (the latter arrangement
corresponds to fcc lattice). Adding a similar sublattice of the second atomic
species we obtain either the wurtzite or the diamond structure. Note that
while hcp and fcc correspond to a dense packing of spheres, wurtzite and
diamond are very loose.
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Figure 1.9. The rocksalt (sodium chloride) structure. Some of the IV-VI
semiconductors (mainly the lead-salt family: PbS, PbSe, PbTe) crystallize as
rocksalt. This structure is octahedrally coordinated (z = 6). Atoms (or ions) of
Pb and S occupy alternate sites of a simple cubic lattice in such a way that
each atom has six nearest neighbors of the other kind. Like the zincblende,
the rocksalt structure is face-centered cubic with a two-atom basis and has
8/a® atoms per unit volume. Note that the shaded "atoms" are positioned in
the same way as in Fig. 1.6 — exhibiting the face-centered arrangement. The
white and the shaded "atoms" form two interpenetrating fcc sublattices.
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Figure 1.10. Primitive unit cells of a honeycomb lattice. Any parallelogram
formed by four lattice points as vertices will serve, provided no other lattice
point falls on its boundary or inside. Boundaries of the cell do not have to be
made of straight lines: the opposite sides may be replaced by a pair of
congruent curves. All primitive cells have the same area.

The shaded hexagon represents the Wigner-Seitz primitive cell. Note its
symmetry (point symmetry of the honeycomb lattice) and observe the
scaffolding used for its construction. Lines were drawn from the central point
to its neighbors (in this case only nearest neighbors were sufficient, but in
general several shells of neighbors may be required) and each line was
bisected with a perpendicular line.
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Figure 1.11. Wigner-Seitz cell for the face-centered cubic lattice, a rhombic
dodecahedron of volume v, = a%/4. It has 14 vertices, 24 edges and 12 faces.
Faces of the cell are twelve equal rhombi. The vertices are not all equivalent:
the six that touch the face centers of the big cube are common to four rhombi,
while the other eight vertices are common to three rhombi. Observe and
contemplate the cell symmetry. In diamond, zincblende, and rocksalt
structures the primitive cell accommodates two atoms.

Exercise: Construct the fcc Wigner-Seitz cell geometrically. Start from the fcc lattice of white
"atoms" in Fig. 1.9 (conveniently, it has one site at the center of the cube). Draw a small cube
(edge a/2) around the central atom, as shown by the dashed line in Fig. 1.11. Make replicas of
the small cube (like a three-dimensional chessboard). Use the body diagonals of the replica
cubes to identify 6 pyramids — each covering one face of the central cube. These pyramids
together with the central cube form the rhombic dodecahedron. Six vertices of the
dodecahedron (those that coincide with the apices of pyramids) belong to four edges each, the
other eight vertices (coinciding with the small cube corners) are intersections of three edges.
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Figure 1.12. The first Brillouin zone of the face centered cubic lattice, a
"truncated octahedron" of volume 4 (21/a)3. It has 14 faces: six squares along
the <100> directions and eight regular hexagons along the <111> directions.
Symmetry points are labeled conventionally (without the primes). Note that
points K and U’ are identical (different by a reciprocal lattice vector) and so are
points W and W' — but not X and X'. The number of electronic states
(including spin) in the Brillouin zone is 8/a® per unit volume.
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Figure 1.13. The first Brillouin zone of a hexagonal lattice, showing the
symmetry points and symmetry axes. It is a hexagonal prism of volume 0.ds 0
v (2m3/v., where v, = a%c/2 is the volume of a similar prism
corresponding to the Wigner-Seitz cell. These two prisms are rotated by 30°
with respect to one another. The number of electronic states (including spin)
0.ds 0V in the Brillouin zone is 4/(a’c) per unit volume.
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Figure 1.14. Illustration of how different bands may be arranged with respect
to one another. Overlap of two bands (like E, and E3) does not imply their
intersection or touching. Coincidences of energies between pairs of points in
these bands is an example of accidental degeneracy. Bands E; and E, touch
at a point, whose symmetry is the likely cause of this degeneracy. Energy gap

separates bands E; and E4.
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Figure 1.15. Schematic cross-section of a Brillouin zone in the plane normal to
a crystal symmetry plane (shown by the dashed line). Faces F; and F, are
parallel to the symmetry plane and perpendicular to a direction q. Opposite
faces of the Brillouin zone are identical (symbolically, F; = F, =F). Therefore,
symmetry related points k; and k, represent the same crystal momentum. For
every energy band E, (k), its normal derivative vanishes on the entire area of
the polygon F.
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Figure 1.16. Important extremal points in the band structure of cubic
semiconductors. The schematic picture (drawn not to scale) is appropriate for
a direct-gap 1l1-V semiconductor. For GaAs at room temperature the indicated
energies are:

Er =1.42eV,E =1.71eV,Ex =1.90eV, E5, =0.34¢eV.

In silicon the lowest conduction band point is in the A direction, 85% of the
way to X point. The indicated energies for silicon at 300 K are:

Er =4.08eV, E_ =1.87¢eV, Ep = 1136V, Eg, = 0.04¢V .

In Ge the lowest conduction band point is at L but the I point is not far away:
Er =0.89eV, E| =0.76eV, Ep =0.96eV, E5, =0.29eV .

Additional band structure data can be found in Tables at the end of the book.
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Figure 1.17. Surface of constant energy in the vicinity of the conduction band
edge in silicon represents six ellipsoids of revolution, extended along <100>
directions. The band curvature is least in the longitudinal direction (heavy
mass) and highest in the transverse direction (light mass) The effective mass
ratio m;/m; B5.
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Figure 1.18. Surface of constant energy in the vicinity of the conduction band
edge in germanium represents four ellipsoids of revolution, extended along
<111> directions. The effective mass ratio is very large, m;/m; =20, so that
each ellipsoid really looks like a sausage.

In order to exhibit a full ellipsoid we would have to chose a primitive cell for
which some L point would be internal. In the Brillouin zone picture, each
ellipsoid is cut in two by the boundary and the equivalent half is shifted to the
opposite face by a reciprocal lattice vector.
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Figure 1.19. Projection on the (001) plane of a constant-energy surface in the
vicinity of the three-fold degenerate valence band edge in diamond-structure
semiconductors. Three-dimensional surfaces of constant energy are warped
spheres. The warping in the figure is much exaggerated.
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Figure 1.20. Genesis of states at the center of the Brillouin zone in cubic
semiconductors. Neglecting electron spin (a), the valence band top is formed
by three linear combinations of the four bonding sp® hybrids (cf. Fig. 1.4).
These are predominantly p orbitals. The 4th linearly independent combination
(predominantly s-type) is at the bottom of the valence band and is not shown
in the figure. The bottom of the conduction band (in direct band
semiconductors) is predominantly s-type, while the other antibonding hybrids
(p-type) are in the upper range of the conduction band. Numbers in
parentheses indicate the degeneracies at k = 0. If we "include" the spin (but
not the spin-orbit interaction), the degeneracies double.

Inclusion of the spin-orbit interaction (b) splits-off the two p-states

corresponding to the total angular momentum [Ojm> = D% i%>. The

remaining four states D%m > give rise to two doubly degenerate bands, light
holes (D% i%>) and heavy holes (D% i%>). The top of the valence band is

%Eso above (and top of the split-off band %ESO below) the unperturbed

valence band edge in the absence of spin-orbit coupling.
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Figure 1.21. Schematic band diagram in gapless semiconductors (grey tin). In
the Kane model, the gapless band structure is formally obtained by changing
the sign of Eg, cf. Eq. (1.78). The sy band then becomes lower in energy
than the p3;, band and the curvature of light-hole branch in the p3;,, band is
reversed (light holes are transformed into electrons). The bandgap is
identically zero in virtue of the same symmetry that makes degenerate the
light-hole and the heavy-hole branches in germanium and silicon. This
symmetry can be broken by the application of a magnetic field, which leads to
the emergence of a forbidden gap; similar effect can be accomplished by a
uniaxial strain.
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Figure 1.22. The energy-quasimomentum relation in the conduction and
light-hole bands. Fat lines indicate (schematically) the exact relation, thin lines
the relation given by the two band model. Slope of the dashed line gives the
maximum velocity vqa Of band electrons, which corresponds to ¢ in the
relativistic analogy. It is evident that the two-band model is approximately
valid up to the inflection point on the real curve.
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Figure 1.23. Schematic illustration of the Bloch and envelope wave functions.
() Bloch function u (r) at ky = 0 varies rapidly within the crystal unit cell.
(b) Envelope function F (r) varies little on the unit cell scale.

(c) Complete wave function @ (r) of a localized electron in the effective mass
approximation.



