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Polarization Oscillations in Coupled Quantum
Wells—A Scheme for the Generation of
Submillimeter Electromagnetic Waves

Serge Luryi, Fellow, IEEE

Abstract—In a specially-designed coupled quantum-well (QW) sys-
tem it is possible to selectively prepare an initial nonstationary elec-
tronic state by interband photoexcitation in one of the wells. Excited
electrons will oscillate between the two wells giving rise to an oscillat-
ing electric dipole moment. In a stacked system of identical QW pairs
these dipoles add up producing a tangible alternating voltage which
can be used to modulate the incident radiation intensity. With a prop-
erly-designed positive feedback loop, ting the coupled QW sys-
tem and the light modulator, it is possible, therefore, to generate self-
excitation of dipolar oscillations. This would provide a new method of
generating submillimeter electromagnetic waves, accompanied by ul-
trashort optical pulses, periodic at terahertz frequencies.

1. EXCITATION OF DIPOLAR OSCILLATIONS IN A
COUPLED QUANTUM-WELL SYSTEM

ECENTLY, an experiment was proposed {1] capable of a

direct observation of the time evolution in heterostructure
barrier tunneling. The idea of that experiment is to excite a co-
herent electron oscillation between coupled quantum wells
(QW’s) and observe the luminescence signal from each well in
a distinct frequency range. In the present work this idea is fur-
ther developed. We shall emphasize the fact that the coherent
electronic motion in coupled QW’s can manifest itself in ways
other than luminescence. In particular, it is accompanied by an
oscillating transient polarization, which can be used to generate
an oscillating electrical signal.

The idealized structure, illustrated in Fig. 1, contains two
quantum wells separated by a heterostructure barrier; the wells
have identical ground-state levels (E, = E, = E,) in the con-
duction band (labels 1 and 2 correspond, respectively, to the
right and the left well). The designed degeneracy of the elec-
tronic level is not accompanied by a similar degeneracy in the
valence-band quantum wells. Therefore, the interband transi-
tion energies hv, and hv, are different in the two wells, which
permits us to selectively excite electrons in one or the other
well.

In a coupled QW system, electrons will oscillate between the
two wells, giving rise to an oscillating luminescence signal with
a period directly related to the tunneling time. Indeed, in the
presence of tunneling, the levels E, and E, are not stationary;
true eigenstates of an ideal symmetric two-well system are sym-
metric or antisymmetric with respect to a reflection in the mid-
dle plane. To a good approximation, these states can be written
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Fig. 1. Schematic band diagram of a proposed structure for direct obser-
vation of time evolution in heterostructure barrier tunneling through lu-
minescence oscillation [1]. The idea is illustrated in the instance of a GaAs~
AlGaAs heterostructure, although other materials, especially those with a
lower electron effective mass, can be used advantageously. The tunhel bar-
rier, separating two quantum wells, can be implemented either as a thin (L
< 30 A) AlAs layer or a slightly thicker Al,Ga, _As layer withx = 0.4.
One of the wells represents a pure GaAs layer, the other is made of an
AlLGa, _ ,As alloy with a small fraction of aluminum y << x. A modified
structure, which allows *‘fine-tuning’’ of the single-well levels E, and E,
by the electric field of a reverse-biased p-n junction, has been also de-
scribed [1].

as combinations of the single-well states | 1) and |2 ):

) =5 (1 = 12))
H|+)=E.,|+), E.-E,=ho>0 (1)

If the excitation energy is tuned to the lower of the two tre-
quencies, hv,, = hv,, then, immediately upon the excitation,

-electrons will be “‘prepared’’ in state |2 ), localized in the left

well. Subsequent evolution of this state in time is given by
[ty = e ® /" [|2) cos (wt/2) — i|1) sin (wt/2)] (2)

so that the electron densities in wells 1 and 2 oscillate with the
frequency w. In the absence of scattering, the luminescence sig-
nals at frequencies », and », will oscillate 180° out-of-phase,
according to (2). Their intensities will be proportional to sin’
(wt/2) and cos? (wt/2), respectively. A quasi-classical esti-
mate for the oscillation frequency gives [2]

w=-—c¢€ 3)
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where k = 27/N\, N = h/V2m(® — E,;) is the de Broglie
wavelength of the tunneling electron, and ¢ is the heterojunc-
tion barrier height.

The oscillatory electronic motion between the wells is anal-
ogous to such phenomena as the dipole-moment oscillations of
an ammonia molecule used in NH; masers [3], energy exchange
between coupled optical dielectric waveguides [4], and oscil-
lations of neutral K-mesons between states of different strange-
ness [S].

Photoexcitation of a nonstationary state is a common phe-
nomenon. It is easy to show that if the excitation duration 7,
is shorter than the period 27 /w of the oscillatory motion, de-
scribed by (2), then the electron state immediately upon the ex-
citation is a linear combination of the eigenstates of the double-
well system, corresponding to a state of the left well. Immedi-
ately after the short interaction with an electron, the photon field
will not be in a stationary state either, the number of quanta in
the interacting mode being no longer sharply determined.
Clearly, for our purposes, the excitation should not be too short:
if h /1., became larger than Av, — hv;, we would also have an
unwelcome excitation of the right-well states. Shortness of the
excitation should not be understood literally: in fact, we shall
be discussing continuous excitation, characterized by a gener-
ation rate G(t). In this discussion, it will be left understood
that 7, is the duration of phase coherence in the excitation light
signal. This amounts to the assumption that the spectral width
of that signal, Av = 1/7,, satisfies

w/21 < Av << v, — v (4)

The oscillating polarization of the double-well system is an
electrical signal. If a stacked-up set of identical double wells is
excited simultaneously, their polarization adds up, producing a
potential difference between the top and the bottom layers. In a
sense, the sample will behave like a pyroelectric with a variable
internal polarization. One purpose of this paper is to draw at-
tention to the possibility of using the electrical signal produced
by oscillating electrons to control a valve that would modulate
the incident light. That would form a positive feedback loop,
quite similar to those used in self-oscillating systems [6].

Possible implementations of the modulator will not be dis-
cussed in this work. However, any implementation of the feed-
back loop requires understanding of the system behavior under
various forms of excitation and including relaxation processes.
The bulk of this paper is devoted to formulation and solution of
an appropriate Bloch-like equation describing the evolution of
the system’s density matrix and the time-dependent polariza-
tion. General solution of the relaxation problem (Section II) is
applied first to the case of a finite excitation duration, illustrated
in the instance of transient luminescence oscillation (see Sec-
tion III), and then to the case of a periodically pulsed excitation
(Section IV), relevant to the consideration of a self-oscillatory
system.

II. GENERAL SOLUTION OF THE COUPLED-WELL
PROBLEM IN THE PRESENCE OF RELAXATION AND AN
ARBITRARY TIME-DEPENDENT EXCITATION

Dealing with relaxation, it is convenient to describe the sys-
tem by a density matrix of the form

. ol +p-6 1 [pote. p—ip
p= 2 ) ; (5)
Pe T ip, P — P
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where &,, 6,, and &, are the Pauli matrices, and [ is the unit 2
X 2 matrix. Since the total number of electrons n in the two-
well system will be variable in time, we shall normalize the
density matrix as follows: Tr 5 = po = n(t) [7].

States, characterized by density matrices proportional to (1
+ 8;)/2, are pure states, corresponding to a definite state of

polarization along one of the axes x, y, z. Projection operators
onto these states are of the form

. 1+ R .
P = T M= ——. (J=xy2). (6)

In particular, the pure states with all electrons localized in the
left well are described by the density matrices of the form nISX
and those in the right well by n M,.

We shall consider the time evolution of the electronic system
under the influence of a perturbation which generates electrons
in the left well only:

V(1) = G(1)P, (7)

with the generation rate G (¢) being an arbitrary function of time.
Without a loss of generality we can assume that the perturbation
is turned on at t = 0 (i.e., G(¢) = 0 forz < 0) and that prior
to that time there had been no electrons in the conduction band
of the two-well system (i.e., n(¢) = 0 and therefore 5(¢) = 0
fort < 0).

The relaxation processes will be described by the following
four phenomenological terms:

ﬁxﬁﬁx _ (pO + px)px

S(L)
Rf’ec) = 7D = 27D (8a)
sx) _ MbM, _ (po = p)M,
R) _ X X __
Rl('ec) - Tg? - 27_555 (Sb)
R(long) - pz(ﬁ — ﬁeq)ﬁz + Mz(ﬁ - ﬁeq)Mz - (p: - pgq)éf
el T, 27,
(8¢)
Ié(tmn) J Z;J [ ij / * Mﬁ]wj] B pOI] _ px&* + p."&)'
rel - Tz - 2T2
(8d)

where 78 and (& describe the recombination rate from the left
and the right well, respectively (these rates can be substantially
different, depending on the equilibrium hole concentrations in
the two wells [8]). The relaxation times T, and T, have a similar
meaning to the corresponding times in nuclear magnetic reso-
nance: relaxation of the diagonal elements of the density matrix
is described by the longitudinal time 7, and that of the off-di-
agonal elements by the transverse time 7,. Relaxation results
from the electron scattering by lattice imperfections, impuri-
ties, and phonons, as well as from the electron-electron inter-
action. An expression of 7, in terms of the matrix elements of
the scattering potential is discussed in Appendix A. It is as-
sumed that both T, and 7, are much shorter than the shortest of
the two recombination times:

(L) (R)
= Trec Trec
rec T(L) + 7.<R)

rec rec

> T, + T (9)

This inequality of the time scales for the relaxation and recom-
bination processes permits us to regard the relaxation as pro-
ceeding toward a quasi-equilibrium state, described by a
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diagonal density matrix °[n(¢)}] of the form

oho/2kT
0

Since the relaxation of off-diagonal elements does not require
inelastic scattering processes, it is expected that T, << T, but

whether or not the strong inequality actually holds is not essen-
tial for our purposes.

n

P =
2 cosh (hw/2kT)

Time evolution of the density matrix 5 (¢) is described by the

Bloch-type equation:
dp _ 1

L = = o, 58] + V(1) — RY - RY - R —

R,

(11)

Solution of this equation is obtained most easily by trans-
forming it to the interaction representation, where the equations
for p, and p, decouple. For simplicity, we assume that the re-
combination time constants are equal in both wells, 7{% =
&, independent of time. This assumption requires that the
concentration of holes is controlled by the background doping,
rather than by photoexcitation. Leaving details to Appendix B,
the result is given by

0 ;
o he/%T | (10) '_“

o
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Fig. 2. Decay of the luminescence induced by an ultrashort pulse at t =

0. Effects due to recombination are not evident in the figure because of the
large assumed 7.

27.., independent of time. Thus we can write

' 1 ~ P pO(l) + px(t)
Wy = — = Pll) ™ PAD)
po(t) = n(1) = SO G(t —t')ye /™ dt' (12a) LU P (F) 2rec (15a)
: 1 <oy Po(t) — (1)
(R)(4) = —— = Po\f) — B0
pu() = S G(t - t') cos (') e /T i’ (12b) L) = —Tr(bM,) . (150
(1]
. The right-well signal (15a) is proportional to D(¢), cf. (14).
o, (1) = S G(t — t')sin (o Y e /T dr’ (12¢
(1) 0 ( ) (er) ) A. Free Precession Decay
0.(1) = n(r) tanh (hw/2kT) (1 — e~/™).  (12d)

Assuming that photogenerated holes are stationary within one

well, the polarization operator D (dipole moment per unit area)
is proportional to M,:

D = eaM, (13)
Zy, — Z,, = L + (d, + d,)/2 and Z is the electron
position operator (we neglect the Stark contribution to the di-
pole moment due to polarization of the single-well states in an

external electric field). In the state  (¢) the time-dependent po-
larization D(t) is of the form

where a

D(t) = ea Tr (pM,) = (ea/2)[po(1) — oc(1)]. (14)

Before discussing the D(t) resulting from an infinite periodic
train of light pulses (Section IV), it is instructive to consider
the situation when G(¢) is of finite duration. This type of ex-
citation is more relevant to luminescence-oscillation experi-

ments and accordingly we shall discuss 1t (Section I1l) in that
context.

III. EXAMPLES: TRANSIENT LUMINESCENCE
OSCILLATIONS

Luminescence signals from the left well [L“’(z)] and the
right well [L‘®(¢)] are proportional to the time-dependent
electron concentration in the particular well and the recombi-
nation rate in that well. As above, we assume that the recom-
bination time constants are equal in both wells, 7{% = 7(&

rec

T

Consider the evolution of the system after an infinitesimally
short pulse which creates a nonequilibrium polarization by
pumping a finite number of electrons in the left well only. Tak-
ing in (12),

G(t) = nod (1)

we find po = nge ~/™, and p, = nge /™

(16)

cos (wt), whence

—t/T2
Wy = 10 L —tfrme [ g1/ 02 9E 4 1-e7" 17
L®(1) . (e cos® = 3 (17a)
_ ,—t/T2
LO(r) = 20 gt/7ec =t/ gin? o 1-e 7 (17b)
Tree 2 2

The evolution of polarization in this example is intuitively ob-
vious, and has been discussed previously [1]. In the limit of 7.
— oo it has an exact analogy in NMR: the decay of a free
precession of spins about the magnetization axis. Fig. 2 dis-

plays the luminescence signals (17) calculated for w7, = 3 and
WTe >> 1.

B. Excitation Pulse of Finite Duration

Consider now the evolution of a system which is subject to a
constant external generation of polarization along the x axis for
some period of time ¢,, upon which the excitation stops. This

corresponds to a G(t) of the form

G(t) = [

G O0<:r=s1,

(18)
0

>,
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Fig. 3. Luminescence oscillations induced by an extended excitation pulse.
Broken lines show the signals during the excitation pulse of indefinite du-
ration. Solid lines show the evolution after the excitation is turned off at ¢
= 0.57,.

which, when substituted in (12), gives

fort <1,
po(1) = Gro(1 — e71/7) el (19a)
p:(t) = GT, cos y[cos v — e /™ cos (wt + v)] (19b)
p,(1) = GT, cos y[sin y — e /Psin (0 +v)]  (19¢)
and fort = ¢,
po(t) = Grce /™ (/7 = 1) —> Gre /™
(20a)
pu(t) = e~ """/ GT, cos y[cos (wt + v — wt,)
— e /™ cos (wr + ]; (20b)
py(t) = e~ w/T GT, cos y[sin (wf + v — wr,)
— e " sin (ot + v)]; (20c)

where tan + is the quality factor of the oscillating system:
(Iv} < =/2).

Expressions (19) and (20) describe the polarization of the sys-
tem during and after a rectangular excitation pulse of arbitrary
duration. Fig. 3 shows the luminescence signals in the limit
w7, — o calculated for an exemplary relationship between ¢,,,
w, and 7,. Note that these signals during the excitation do not
tend to the same value asymptotically, even though the recom-
bination rate is assumed identical in both wells. The fact that
we are exciting electrons in the left well only, has the conse-
quence that even as ¢, = oo the populations in the two wells are
different. This implies that one does not require an ultrashort
excitation pulse in order to observe the luminescence oscilla-
tions—provided the pulse has an abrupt trailing edge. Indeed,
in this case the first term in (20b) describes oscillations that
decay as &« exp [ — (¢ — t,)], however long has been the pulse
duration ¢,.

tan y = w7, (21)
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Fig. 4. Evolution of the total electron concentration in a double-well sys-
tem excited by a train of ultrashort pulses [(22)] of unit period (T = 1).
Insert shows the established regime (1 >> 7,..) in expanded scale.

IV. PERIODICALLY-DRIVEN POLARIZATION OSCILLATIONS

Assume for simplicity a train of 6 function excitation pulses,
turned on at 7 = 0 and periodic in time with a period T:

G(1) = xZ ngd(r — \T). (22)
=0

Consider first the evolution of the total electron population n (1)

= p(t), assuming that n = O initially. Substituting (22) into

(12a), we find

po(t) = ng S 5(t—1t' = ANT)e /™ dr
0A=0 i

(23)

il

nge /™ 2 9(r — NT) N/
A=0

where 6(x) is a step function (§ = 1 forx > Oand § = 0
otherwise ). Defining a *‘residual”’ (modulo T') time 7 = ¢[mod
(T)], i.e.,

t=AT + 7, Ainteger, 0 <7< T, (24)
we can write
A
PO(I) = noeﬂ/mc Z e)\T/rmc
A=0
(T=1)/ e —t/7rec (T—7)/Tree
npe nge npe
= 0T/ c - TO/ : 07/7. - (25)
el/me — | el/me — 1 1o !/ —

Evolution of the total electron population p,(#) in a periodi-
cally-driven two-well system is illustrated in Fig. 4. As can be
expected, it behaves like the charge in a leaky capacitor (with
RC = 7,.), periodically boosted by short current pulses. When
substituted in (14), the term due to p, gives rise to a steady-
state offset in polarization, owing to slow processes varying on
the scale of 7. In a circuit, this offset can be shorted out
through an inductance—without affecting the faster dynamic
processes corresponding to the dynamic component of the den-
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Fig. 5. Evolution of the off-diagonal density-matrix element p, () under
a train of ultrashort excitation pulses [(22)] whose period is resonant with
the characteristic internal period of the system wT = 2.

sity matrix p, (¢) which describes electron oscillation between
the two wells with a characteristic internal frequency w.
Let us now evaluate p,. Substituting (22) into (12b), we find

’ oo
o.(1) = ng S R o(t —1t' — AT)e /™ cos (wt') dt’
0A=0

i

Mo g]o 8(t — AT) e M=/ cos [w(NT = 1)].

(26)

Consider first the case of a resonant excitation T = 2. In this
case, evaluation of the sum (26) is mathematically identical to
that in (23) and the result is given by

e(’l‘—r)/Tz _ eAr/Tz

= !
p:(t) = ng cos (wt) T/ _ |

T = t[mod (T)] (27)

Fig. 5 shows the time evolution of p,, calculated from (27). The
steady state, established upon ¢ >> T, corresponds to a regime
of forced periodic oscillations:

o:(t) = npcos (wr) F(t), > 1 (28)
where
e(T-1/T2
F(t) = m, T = t[mod (T)] (29)

is a periodic function of time with an angular frequency w, an
amplitude 1, and a mean value of (1/2) coth (T/2T;). The
anharmonic distortion brought about by F becomes unimportant
in the limit T, >> 1, when F = T,/T >> 1. In this limit,
the oscillatory part 8D of the total dipolar polarization reduces
to

8D(1) = — 2% % cos (wt). (30)

2
Equations (27)-(30) retain their form for a driving force whose
period T equals an integral number N of the proper periods of
the oscillatory electronic motion w7 = 27N.

We can evaluate p,(¢) away from the resonance as well. For
an arbitrary w7, we rewrite (26) in the form

A
0.(t) = nge™ ™" l:cos (wt) )\ZO e M/ cos (AwT)

— sin (wt) )\Z]o e "7/ sin ()\o)T)j|, (31)

where, as before, 7 = ¢ [mod (T)]. In the established steady-
state regime, ¢t >> T,, we can extend the summation to infinity
A — o and obtain the result in a closed form:

nee "7/ [eT/™ cos (wt) — cos (T — wt)]
2 [cosh (T/T;) — cos (wT)]
7= t[mod (T)].

For wT = 2xN, this expression reduces to (28).

p(1) =

V. FEEDBACK LOOP: REQUIREMENTS FOR SELF-
SUSTAINING OSCILLATIONS

Examples described in the preceding sections show that the
dynamical response of the double-well system corresponds to a
damped harmonic oscillator of characteristic frequency w and
logarithmic decrement 27 /wT,. It is well known [6] that with
a positive feedback such systems are capable of self-resonance,
i.e., resonance under the action of a periodic force generated
by the motion of the system itself.

It is clear that the oscillating polarization of the double-well
system is an electrical signal. Consider, for example, a set of
stacked double-well structures of identical composition, clad on
both sides by conducting layers, as illustrated in Fig. 6(a). Sup-
pose these conducting layers are shorted by a wire. An oscil-
lating polarization, excited by the simultaneous excitation of n
electrons, will give rise to an ac current with an amplitude of
order ~ enw. This signal can be used to control a modulator of
light incident on the multiple double-well structure.

The feedback loop is schematically illustrated in Fig. 6(b).
The optical length between the modulator and the oscillator must
be adjusted to time the arrival of the transmitted signai. It is
premature to discuss at this point any concrete implementation
of the modulator. However, the requirements it must satisfy,
are clear. First, it has to operate at frequencies of interest.
Therefore, the modulator response time 7,,,q must satisfy w7noq
< 1. Second, the modulator’s transparency must be a suffi-
ciently steep function of the electrical input signal. If that re-
quirement is satisfied, the modulator becomes analogous to a
valve with step-like characteristics and the feedback scheme be-
comes quite similar to those described in [6].

VI. DiscuUsSION AND CONCLUSION

We have described a rather exotic scheme for generating
electromagnetic oscillations. The generator is powered by a
constant optical source and produces submillimeter electromag-
netic waves, accompanied by ultrashort optical pulses at tera-
hertz frequencies. The key advantage of the proposed scheme
lies in the frequency range of the generation which is hardly
accessible to transistor electronics.

It may appear that the frequency limits of the present gener-
ation scheme are similar to those of double-barrier resonant-
tunneling diodes. Such diodes have been reported recently [9]
to produce oscillations at frequencies above 400 GHz. It should
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Fig. 6. (a) Multiple stack of identical double-well structures clad by two
conducting layers shorted to each other. The internal oscillating polariza-
tion is screened by the current flowing in the external circuit. The sawtooth
illustrates an electrostatic potential distribution inside the structure at some
fixed time. (b) Illustration of a feedback loop. Electrical signal from a mul-
tiple stack of identical double-well structures is used to control the trans-
parency of a modulator of incident light. It is assumed that the modulator
has a capacitive input. Fine-tuning of the double-well resonators can then
be done by applying a constant field through an inductance, as shown. This
inductance may be needed also to complete the circuit for slowly-varying
( with a characteristic time of 7, ) signals.

be pointed out, however, that the limit frequency f;,.x of double-
barrier oscillators scales differently with the tunneling-barrier
thickness. In those oscillators, the f;,,, is limited by the inverse
lifetime of the resonant state in the quantum well [10] and there-
fore scales as exp (—2«L). In the present case, the oscillation
frequency (3) scales as v = 27w o exp ( —«L) and, therefore,
the same frequency is achievable with barriers which do not
have to be as narrow [11].

APPENDIX A
PHYSICAL MEANING OF THE RELAXATION TIME T,

The relaxation time 7, governs relaxation of the phase dif-
ference between the states in the left and the right well and,
therefore, it can be referred to as the phase relaxation time. Any
process, that randomizes the phase of electronic oscillations be-
tween the two wells, shortens T,. The most important such pro-
cesses in our problem are due to the elastic scattering of
electrons within the QW plane. However, it should be noted
that in order to produce the phase relaxation, a scattering po-
tential must affect the transverse motion of states in each well
differently. Indeed, a potential, that is a function of the in-plane
coordinates x, y only, can be factored out of the solution of the
Schrédinger equation.

Evaluation of 7, for a general scattering mechanism is a dif-
ficult problem. This problem simplifies considerably in the first
Born approximation, where we can adapt the treatment of Ka-
zarinov and Suris [12], who considered the problem of electron
hopping between sites of a superlattice in a strong electric field.
Their approach parallels the classical derivation by Kohn and
Luttinger [13] of the kinetic equation from a quantum-mechan-
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ical model. The transverse relaxation time is obtained in a way
similar to the momentum relaxation time that enters the in-plane
electrical conductivity. This approach can be adapted virtually
without change to the present problem; the result is expressed
in terms of the matrix elements V5% of the scattering potential
between plane-wave states p and p’ of the electronic motion in
a given well:

1 T 2

Fz = z? |V(ni;') - V;ﬁ')| 8(E, — E,). (A1)
where E, = p?/2m is the kinetic energy ot the in-plane motion.

Equation (A1) shows that 7, may be considerably longer not
only than the lifetime of a state with a well-defined in-plane
momentum but also longer than the transport time of quantum-
well electrons. As discussed by Kazarinov and Suris [12], the
relaxation is related to the interference of two second-order pro-
cesses: a virtual transition Lp — Lp' due to scattering, followed
by tunneling Lp’ — Rp' and a virtual tunneling Lp — Rp fol-
lowed by scattering Rp — Rp'. If V&) = V®_as would be the
case for the scattering by distant impurities, then these two am-
plitudes cancel and there would be no contribution to the phase
relaxation from such a potential.

On the other hand, it should be noted that the electron-elec-
tron scattering, which gives no contribution to the mobility, does
contribute to the phase relaxation like any other short-range
scattering.

APPENDIX B
SOLUTION OF THE QUANTUM RELAXATION EQUATION

Written in terms of the components of the density matrix (5),
the quantum relaxation equation (11) assumes the usual (slightly
modified) form of the Bloch eauation of nuclear magnetism:

4 o o

dp xp, + yp, z(p~ - p;‘q) 0
—=pX0- - - = + G(1)x
dt P 1, T, (1)

o 0

xo,  xpo[iR — 78]

- ®) (L) ’ (B1)

TYSC Tl’EC TI‘CC
d, X T(R) _ (L.)
ﬂ = G(t) — Po — p-\[ rf;) (L’])'r“]’ (B2)
dr Trec Tree Tree

where ;, ;’, and 2 are unit vectors and @ = wZ. The terms pro-
portional to [7® — 7{&)] are not negligible, in general. They
describe a slow evolution of the polarization owing to a dispar-
ity in the recombination rates in the two wells. Even if a sample
were initially prepared with electrons evenly distributed be-
tween the wells, 5 (0) = 5%, it would acquire a slowly varying
transient dipole moments due to these terms—because they mix
0o and p,.. Such effects are important in the design of a practical
oscillator, since they determine the mean polarization value in
a steady-state operation, but they need not concern us in this
work—especially because their realistic treatment must involve
a model for the dynamics of holes in the double well system.

Accordingly, we shall assume 7% = 7® and drop terms pro-
C rec
portional to [7% — 7{4]. The remaining relaxation term in

(B1) has the effect of slightly renormalizing the value of T,
(making it anisotropic in the x, y plane). With our assumption
[(9)], this term is negligible.

By substituting in (11) the interaction representation of the
density matrix:

ﬁ — e*iﬁm/hpAmlell:lnl/h’ (B3)
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we transform the Bloch equation (B1) into a frame rotating with
the angular velocity . The interaction representation of oper-
ators

§ = foi/hg g =iot/h = cos (wr)d, — sin (wt)§, (Bda)

5 = ¢oi/hG o~/ = cos (wr)§, + sin (wr),  (B4b)

6jzm - eiﬁgr/haze—iflor/h =8, (B4C)
corresponds to rotating the orts:

x = cos (wt),é — sin (wt)_;» (B5a)

y = cos (wt);c + sin (wr) x. (Bsb)

Consequently, the matrix elements of 5™ satisfy the following
set of equations:

dpo Po

—_— = —= 4

dt Trec G@)
d, lm p)irm
— . — +

7 I G (1) cos (wt)
dp'ivnt pjvnl )
i G(t) sin (wt)

4 - p
7’;5 = —BZT—”‘, where p%(1) = po(t) tanh (hw/2kT).
1

(B6d)

With the initial condition n(z) = 0 for ¢ < 0 and, therefore,
p(0) = p™(0) = 0, these equations have the following solu-
tion:

1
po(2) = n(1) = SO G(t — te /™ dr' (B7a)
pM(t) = e /P SO G(t') cos (wt' )e'/™ dt'
]
= SO G(t — ') cos [w(t — t')]e /™ dr'  (BTb)

oty = e/ S G(¢') sin (wt' )e'/™ dt’

0

i

S; G(r — t')sin [w(t — t')]e™ /™ dr  (BTc)

tanh (hw/2kT)
T,

n(t) tanh (hw/2kT) (1 — ¢ /™).

I

e:(1)

!
S n(e —t e /™ gt
0

U

(B7d)

Transforming (B7b) and (B7c) back into the stationary frame
finally gives

13

pc{t) = SO G(t — t') cos (wt' Je /™ di'  (BSa)

!
o,(2) = SO G(z — t') sin (wt')e "/ dr’.  (BSb)
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