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We present a model of one-dimensional irreversible adsorption in which particles once adsorbed immedi-
ately shrink to a smaller size or expand to a larger size. Exact solutions for the fill factor and the particle
number variance as a function of the size change are obtained. Results are compared with approximate
analytical solutions.

DOI: 10.1103/PhysRevE.75.011123 PACS number�s�: 02.50.Ey, 05.20.�y, 68.43.�h, 07.85.Nc

I. INTRODUCTION

Random sequential adsorption �RSA� is an attractive
model for a number of physical phenomena, including such
different applications as information processing �1� and par-
ticle branching in impact ionization �2�. The simplest ex-
ample of RSA is the car parking problem �CPP�. Of interest
is the average number of particles �“cars”� adsorbed on a
long line, as well as the variance of this number �see Refs.
�3,4� for a review�. In what follows, we shall use the term
“standard RSA” for the classical one-dimensional model cor-
responding to particles of fixed size that arrive randomly on
a line and are deposited if empty space is available and re-
jected otherwise. Extensions of this model include RSA with
particles instantly �5� or gradually expanding in the adsorp-
tion process �6�, two-size particle adsorption �7,8�, and also
RSA with an arbitrary particle-size distribution function �9�.

Few of these models, especially physically relevant ones,
have an exact solution. As a rule, only the fill factor is de-
termined. However, for a number of applications fluctuations
are of major importance. An example of such an application
is the very important practical problem of particle energy
branching �PEB� where high-energy particle propagates in an
absorbing medium and multiplies producing secondary
electron-hole �e-h� pairs. The energy distribution of second-
ary particles is random to a good approximation. Multiplica-
tion proceeds so long as the particle energy is above the
impact ionization threshold �10�. This connection was no-
ticed as early as in 1965 by van Roosbroek �11�. The exten-
sion of RSA model proposed in �11�, known as the “crazy
carpentry model” was further exploited in Refs. �2,12�.

The PEB process can be considered in terms of a CPP if
one identifies the initial particle kinetic energy with an avail-
able parking length and the pair creation energy as the car
size. Full equivalence to CPP requires further that only one
of the secondary particles takes on significant energy, other-
wise one has to consider simultaneous random parking of
two cars in one event �13�.

The number of created electron-hole pairs N in PEB
serves to evaluate the initial energy. Variance of this number
limits the accuracy of energy measurements. Both the yield

N̄ and the e-h pair variance var�N�= �N− N̄�2 are proportional
to initial energy. The ratio of the e-h pair variance to the
yield is called the Fano factor �14�. The Fano factor � �for a
Poisson-distributed N one has �=1� is a parameter that

quantifies the energy resolution of high-energy particle de-
tectors. For semiconductor crystals, the PEB problem has
many additional complications due to phonon losses, as well
as features in energy dependencies of the particle density of
states and the impact ionization matrix element.

Earlier attempts to evaluate the Fano factor for the PEB
problem in semiconductors employed widely different ap-
proaches �compare Refs. �10,11� and �15��. To obtain agree-
ment with the experimentally observed ��0.1 �for semicon-
ductors�, different fairly rude and unjustified assumptions
were made, so that the numerical coincidence is of little
value. Also available are numerical calculations �12,16�.
However, the relative importance of various factors �e.g.,
phonon contribution to �� remains questionable within the
numerical models, while the precision of results is difficult to
assess. Evaluation of the Fano factor is important for predict-
ing the energy resolution of detectors, especially those based
on new materials and new principles �17�.

An important aspect of the impact ionization process is
the fact that the threshold impact ionization energy is usually
larger than the minimum energy Eg needed for e-h pair cre-
ation. This difference arises from kinematic restrictions im-
posed by momentum conservation, so that, e.g., for equal
effective masses of electrons and holes the minimal energy
of pair production is 3 /2Eg. In crystals with nonequal elec-
tron and hole masses the threshold can vary from Eg to 2Eg.
In terms of the RSA problem this is equivalent to the particle
shrinking immediately after the adsorption �parking�, making
larger available length for the next adsorption event.

For the PEB problem only particle shrinking is pertinent.
However, for a general RSA problem both the shrinking and
the expansion of particles are relevant, due to such factors as,
e.g., repulsion between particles and surface attraction.

In this paper, we use a recursive approach to consider the
general RSA problem for particles that either shrink or ex-
pand immediately upon adsorption. We present an analytical
solution for both the average filling factor and its variance.
The results are compared with approximate solutions ob-
tained by the methods employed in earlier approaches to the
energy branching problem �2,11,12,15� and, for expanding
particles, also with the results of a kinetic approach used in
Ref. �5�. Exact solutions presented here allow us to assess the
errors introduced by the adopted approximations in the
evaluation of both the yield and the variance.
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II. STATISTICS OF ADSORPTION

In this section we develop an analytical model of adsorp-
tion for shrinking or expanding particles. We shall be using
the recursive technique �9�. In addition to being the most
direct approach, this technique has the further advantage of
being applicable for the evaluation of both the average filling
factor and the variance. The recursive approach has been
confirmed by direct Monte Carlo computer simulations
�9,11,16� for similar problems.

Consider adsorption of a particle on an initially empty
line of progressively growing length x. The final �after
shrinking or expansion� size of the adsorbed particle is taken
equal to unity. Denote by wx the random variable corre-
sponding to the total wasted length for some configuration of
adsorbed particles in the so-called ‘‘jamming limit,’’ when all
gaps are smaller than the minimal length needed for a par-
ticle to be adsorbed. In the process of sequential adsorption
deposition of additional particle generates new gaps with the
same distribution of the gap size. Equations for the expected
values of the moments of waste distribution can be obtained
using moment generation function ��� ,wx�=E exp��wx�
�18�. Moments of wx are obtained by differentiating � with
respect to �. When a particle is adsorbed into gap x, two new
gaps appear, the size of the gaps being y and x−1−y. There-
fore for � we have

���,wx� = ����,wy����,wx−1−y�� . �1�

In this equation, the angular brackets denote averaging over
the distribution of y, characterized by a one-particle gap dis-
tribution function �OPDF� ��y �x� that equals the probability
density of creating an interval y in a one-particle deposition
into the line x, viz.,

����,wy�� = 	
ymin

ymax

���,wy���y�x�dy . �2�

The randomness in y is induced by a two-step random pro-
cess, �i� the random choice of the adsorption coordinate and
�ii� the subsequent size change, which depends on the
adopted model of shrinkage/expansion.

Using Eq. �1� in calculating the first derivative of
��� ,wx� at �=0, we find the first moment �the mean value�
of waste Ewx
w�x�, in the form

w�x� = �w�y�� + �w�x − 1 − y�� = 2�w�y�� , �3�

the latter equation being due to symmetry. The second mo-
ment u�x�
Ewx

2 needed for evaluation of variance, is ob-
tained by taking the second derivative

u�x� = 2�u�y�� + 2�w�y�w�x − 1 − y�� . �4�

Equivalent equations can be derived for the mean filled
length f�x�, which for a unit particle size equals the number
of particles adsorbed on the line of length x. The random
variables wx and fx are complementary in the sense that wx
=x− fx and, therefore, equations for f�x� can be obtained
from Eqs. �3� and �4� by the substitution w�x�=x− f�x�.

For the standard RSA problem the OPDF is a homoge-
neous distribution of y in the interval �0,x−1��. The corre-

sponding equations were obtained in Refs. �1,11� in the con-
text of RSA and in Refs. �2,11� for the energy branching
problem.

An alternative approach to RSA is to consider a kinetic
�or rate� equation that describes the sequential deposition of
particles. In the kinetic approach the gap size distribution
function G�x , t� representing the average density of voids of
the length between x and x+dx at a time t obeys the equation
�19�

�G�x,t�
�t

= − G�x,t�	
0

x

dsp�s�	
0

x−s

dyF�y,x − y − s�s�

+ 2	
x

�

dyG�y,t�	
0

y−x

dsp�s�F�x,y − x − s�s� .

�5�

Here p�s� is the adsorbed particle distribution function, and
F�y ,x−y−s �s� is the deposition probability, that determines
the average rate

R�y�x� = 	
0

x

dsp�s�F�y,x − y − s�s� , �6�

at which the initial length x is destroyed by the deposition of
a particle producing a gap y. One can see that for a fixed x
=x0 the rate R and our OPDF are proportional to each other,
��y �x0��R�y �x0�, the only difference being due to the fact
that ��y �x0� is normalized to unity.

For the case when the randomly adsorbed particles change
their size, the OPDF depends on the particular model of size
transformation in the adsorbed state. Several such models are
discussed below.

Shrinking particles. First, we consider a model in which
particles of initial length l�1 shrink to the length of unity by
randomly retracting one of their endpoints �either on the left
or on the right with equal probability�.

In this model, no particles are adsorbed for x	 l, i.e.,
small intervals are wasted entirely, w�x�=x. When the inter-
val length x reaches l, then a gap of size �l−1� is created. For
an arbitrary x� l, adsorption of a particle creates two new
gaps y and x−1−y. Note that the probability of creating gaps
near the edges of the initial interval �i.e., for 0	y	 l−1 and
x− l	y	x−1� is twice smaller, since they get contributions
only from particles that retract the right endpoint �at the right
side of the interval x� and the left endpoint �at the left side of
x�, respectively, see Fig. 1. This model can be used for the
PEB problem, to account for the effect of lower density of
states at low particle energies.

For sufficiently large intervals, x�2l−1, the mean waste
is described by the following equation:

w�x� =
1

x − l	0

l−1

w�y�dy + 2	
l−1

x−l

w�y�dy + 	
x−l

x−1

w�y�dy� .

�7�

Note that Eq. �7� does not work in the region l	x	2l−1,
where the gap distribution ��y �x� is simply uniform within
y	x− l and l−1	y	x−1. However, since the adsorption of
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the second particle starts at x� l+1, knowledge of the varia-
tion of w�x� at small x	 l+1 is sufficient to obtain an exact
solution of Eq. �7�—so long as 2l−1	 l+1 �or l	2�. We
confine ourselves to the case l	2. According to Eq. �4� the
equation for the second moment u�x� is obtained from Eq.
�7� by the substitution w�y�→u�y�+w�y�w�x−1−y�.

Another possible shrinking model results when the ad-
sorbed particle is assumed to shrink symmetrically about its
center. In this case the OPDF remains constant within the
interval �l−1� /2
y
x− �l+1� /2. This model accounts for
the particle repulsion in a model of hard disks, when the
distance between the particle centers can not be smaller than
a certain length that serves as their effective size. That length
can often be larger than the actual particle size used in the
description of the resulting coverage. A similar model rea-
sonably describes the PEB process in semiconductors, when
both secondary particles produced by impact ionization are
of the same mass and acquire equal kinetic energies.

With this OPDF, Eq. �3� takes the form

w�x� =
2

x − l
	

�l−1�/2

x−�l+1�/2

w�y�dy . �8�

Similarly, equation for the second moment u�x� reads

u�x� =
2

x − l
	

�l−1�/2

x−�l+1�/2

u�y�dy

+
2

x − l
	

�l−1�/2

x−�l+1�/2

w�y�w�x − 1 − y�dy . �9�

These equations are different from those obtained for the
standard RSA problem. The modification arises due to the
edge effect and is important at the jamming limit, when gaps
are minimal. For particles shrinking to the center, the edge
effect results in stronger restrictions on the gap size.

Expanding particles. Here we consider a model in which
particles of initial length a	1 given sufficient space expand

symmetrically to unit length. If the particle is placed in a gap
of size a	x	1, it fills it completely. If it is placed in a gap
x�1 near its edge, it expands asymmetrically to unit length.
This model represents size transformation due to an attrac-
tive force from the surface for the case when interaction
between the particles is negligible.

To define the ODPF for this model, we note that given the
initial length x, coordinates of the centers of adsorbed par-
ticles are homogeneously distributed within a /2, x−a /2. For
particles adsorbed not too close to the gap edges, the gap
distribution function remains uniform in the interval 0	y
	x−1. However, all adsorbed particles whose centers fall
within an interval �a /2 ,1 /2� from an edge will produce a
gap of the same size x−1, see Fig. 2, as well as a “gap” of
zero width. This results in a singularity at y=x−1 �and an-
other one at y=0� in the gap distribution function �existence
of this singularity for expanding particles was already noted
in Ref. �5��. With this ODPF, Eq. �3� acquires the form

w�x� =
2

x − a
	

0

x−1

w�y�dy +
1 − a

x − a
w�x − 1� . �10�

Similarly, the second moment equation becomes

u�x� =
2

x − a
	

0

x−1

u�y�dy +
1 − a

x − a
u�x − 1�

+
2

x − a
	

0

x−1

w�y�w�x − 1 − y�dy . �11�

Note that the particle expansion and edge effect do not influ-
ence the second term of Eq. �11�, since the product
w�y�w�x−1−y� vanishes near the edges. Nevertheless, we
note that both Eqs. �10� and �11� are modified by the edge
effect.

In all models of size transformation considered above the
ODPF remains constant within certain intervals. It is this
feature that enables exact solution of the recursion equations.

It is worthwhile to stress that due to the self-averaging
nature of the filled length �and the waste length� in the limit
x→� solution of the averaged �hence approximate� recur-

FIG. 1. Illustration �a� of particle adsorption near the edge of a
gap of size x in the model where the particle is assumed to shrink
upon adsorption �from size l to unit size� by randomly retracting
one of its ends �the retracted part is marked by the dark shading, the
final state is shown as a white brick of unit length�; ymin,r and ymax,r

are minimal and maximal gaps created by particles adsorbed at left
end of the length x and retracting to right endpoint. �b� The one
particle gap probability distribution function �OPDF� ��y �x�.

FIG. 2. Adsorption of expanding particles with the transforma-
tion rules corresponding to a symmetric expansion a⇒1 when size
permits and near an edge an asymmetric expansion to fill the avail-
able space. �a� Illustration of particle adsorption near the edge of a
gap of size x; �b� one-particle gap distribution function ��y �x�
shows �-function singularities at y=x−1 and y=0.
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sion equations gives exact results. The same is true for the
kinetic approach in the limit t→�. Both approaches are,
therefore, equivalent for the calculation of the fill factor.

III. FILLING FACTOR

We evaluate the filling factor in the jamming limit corre-
sponding to the situation when every gap capable of adsorb-
ing a particle has done so. The average density of particles
saturates in the jamming limit.

Shrinking particles. We shall first focus on the model of
particles shrinking by randomly retracting one of the end-
points. The case of particles shrinking to the center will be
discussed subsequently. We have to solve Eq. �7� with appro-
priate boundary conditions that originate from the region of
small available adsorption interval x. Consider an initially
empty line of progressively growing length x. For x	 l the
entire interval is wasted, w�x�=x. For l	x	 l+1 only one
particle will be adsorbed producing waste equal to w�x�=x
−1. Clearly, for x	 l+1 the waste is fixed and does not fluc-
tuate. For x� l+1 the probability that two particles will be
sequentially adsorbed grows steadily and so does the average
waste, which also begins to fluctuate. At large x both the
wasted length and the average covered length grow linearly
with x, so that the average waste per particle or per unit
adsorption interval remains constant.

For particles whose final size is fixed it is natural to study
the mean number of particles f�x� adsorbed in a line of
length x. A convenient equation for f�x� valid for x�1 is
obtained by substituting w=x− f�x� in Eq. �7� and making the
replacement x→x+ l:

f�x + l� = 1 +
2

x
	

l

max�x,l�

f�y� +
1

x
	

max�x,l�

x+l−1

f�y�dy . �12�

In deriving Eq. �12� use has been made of the initial condi-
tion

f�x� = �0, 0 
 x 
 l ,

1, l 
 x 
 l + 1.
� �13�

Evaluation of f�x� at small x�1+ l is readily done by a re-
peated iteration procedure, going from the small to progres-
sively larger length sizes. Results of the numerical recursion
are shown in Fig. 3. Note that already at x�7 the variations
of f�x� and w�x� are very close to linear.

An exact solution of Eq. �12�, which will be used to cal-
culate variances, can be obtained using Laplace transforma-
tion. Multiplying Eq. �12� by x, taking the Laplace transform
and using the initial conditions specified by Eq. �13�, we
obtain an equation of the form

−
d

dp
�eplF�p�� =

1

p2 +
1

p
F�p� +

1

p
ep�l−1�F�p� �14�

for the Laplace transform of f�x�,

F�p� = 	
0

�

e−pxf�x�dx . �15�

Rearranging terms and multiplying by e−pl, Eq. �14� can be
rewritten in the form

F��p� + �l +
1

p
�e−pl + e−p��F�p� = −

exp�− pl�
p2 . �16�

The solution of Eq. �16� satisfying the boundary condition at
p→�,

F��p��p→� =
1

p
e−pl, �17�

which follows from the known variation of f�x� at small x,
can be obtained in a straightforward manner:

F�p� =
exp�− pl�
p2�r�p� 	p

�

�r�u�du , �18�

where

�r�p� = exp�− 	
0

p 2 − exp�− v� − exp�− vl�
v

�dv� .

�19�

In the analysis of the solution we follow the approach of
Ref. �1�, based on the use of Karamata’s Tauberian theorem,
see, e.g., Ref. �20�, p. 37, for the asymptotic growth rate of
steadily growing functions. According to that theorem, in
order to obtain the asymptotic behavior of the filled length
f�x� �or the gap w�x� or of the variances of these functions� it
is sufficient to have a Laurent power-series expansion at
small p of the Laplace transforms of these functions �possi-
bly cut at small x by a Heaviside step-function factor�. Fur-
ther mathematical details of this type of analysis can be
found in Ref. �1�.

Function F�p� is analytic at all p�0 and has a second
order pole at p=0 with the following expansion as p→0:

F�p� =
 f ,0

p2 +
 f ,0 − 1

p
+ O�p� , �20�

where

FIG. 3. �Color online� Average filled length f and the wasted
length w for shrinking particles as functions of the length x of the
adsorption interval assumed initially empty. The assumed shrinking
model is particles randomly retracting their endpoints. The results
are obtained by iterating Eq. �9� with the assumed shrinking ratio of
l=1.6.
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 f ,0 = 	
0

�

�r�p�dp . �21�

To calculate f�x� at large x, we take the inverse Laplace
transformation of the asymptotic expansion �20�. This gives

f�x� =  f ,0x +  f ,0 − 1, �22�

with an exponentially small error term. Whence we have

w�x� = w,0�x + 1�, w,0 = 1 −  f ,0. �23�

In the limit l=1, Eq. �21� gives the so-called jamming
filling factor R for the standard RSA,  f ,0�l=1�
R
=0.74759¯ �also called the Renyi constant �21��. The filling
factor �saturation coverage�, calculated with Eq. �21� as a
function of the shrinkage ratio l, is shown in Fig. 4 �curve 2�.
As expected, the shrinking causes a decrease of the filling
factor with l. Owing to the fact that the correction terms are
exponentially small, our asymptotic solutions �22� and �23�
are extremely close �within less than 2�10−4 for x�7� to
the exact solution obtained by direct recursion �Fig. 3�. This
accounts for the linearity of f�x� and w�x� at high x evident
in Fig. 3.

For particles shrinking to their centers, we use Eq. �8� and
obtain

f�x� = 1 +
2

x − l
	

0

x−l

fy +
l − 1

2
�dy . �24�

Equation �24� can also be written in the form

fx + l +
l + 1

2
� = 1 +

2

x + �l + 1�/2	l

x+l

f�y�dy . �25�

Equation �25� exhibits a recursion period �l+1� /2 which is to
be compared to a recursion period of unity for the standard
RSA. The initial condition for Eq. �25� is given by Eq. �13�
and the resultant solution is similar in form to Eq. �18� with
the following replacement �r�p�→�c�p�, where

�c�p� = exp�− 2	
0

p�l+1�/2 1 − exp�− v�
v

�dv� . �26�

From Eqs. �26� and �21� it follows that

 f ,0 =
2

1 + l
R . �27�

Equation �27� represents the exact solution for this model in
a simple analytical form. The fill factor calculated with Eq.
�27� is shown in Fig. 4 as curve 1. As can be expected, the
shrinking effect is smaller for particles shrinking by ran-
domly retracting their endpoints than for particles shrinking
to their centers. This is due to the reduced contribution of
edge regions.

As noted above, the model of particle shrinking to the
center accounts for a strong repulsion between the particles
acting as hard disks. The minimal distance between the par-
ticle centers �an effective particle size� equals to �l+1� /2.
Therefore the number of a unit size particles adsorbed in a
line with fixed length and the resulting jamming limit fill
factor are reduced by 2/ �l+1�.

An alternative approximate way to obtain an asymptotic
solution of Eqs. �12� and �25� is to seek the solution in the
linear form f�x�=ax+b in the region x�nl+1, for some n,
while using a function obtained by direct iterations for x
	nl+1. This recipe also gives a very good result starting
from n=1. Thus, say, for particles shrinking to centers we
obtain  f ,0

�1�=2/ �1+ l�R�1�, with R�1�=0.75, quite close to the
exact Renyi constant. A less accurate approach is to merely
match the linear asymptotic to the recursion result for x
	nl+1. In this case, one would need n=2 to obtain a similar
precision.

In calculations of the quantum yield and the Fano factor
for the PEB problem, the complexity of equations often in-
spires even more radical approximations, based on estimates
of the average losses, see, e.g., Ref. �10�. In terms of the
RSA problem, this is equivalent to assuming the filling factor
 f ,0 in the form  f ,0=R�R+w,0�−1 with the wasted length
growing linearly with l, i.e., taking w,0= �1−R�l. Comparing
the exact and the approximate solutions of Eq. �24� �see Fig.
4�, we see that this approach severely underestimates the
effect of shrinking.

Expanding particles. We consider now the case when the
initial particle size is a	1. If the interval at the adsorbing
line is a	x	1, the particle fills it entirely �obviously, with-
out fluctuations�. If x�1 the particle expands to the length of
unity. Evidently, for x	a the whole length is wasted, w�x�
=x. For a	x	1 no waste occurs, while for 1	x	1+a the
waste equals w=x−1 and does not fluctuate. For x�a+1 the
probability of two particles being adsorbed in this space
steadily grows with x and so does the average waste. Thus,
the initial conditions to Eq. �10� are of the form

w�x� = � x , 0 
 x 
 a ,

0, a 
 x 
 1,

x − 1, 1 
 x 
 1 + a .
� �28�

FIG. 4. �Color online� Filling factor  f ,0�l� as a function of the
shrinking ratio l for different shrinking models. Curve �1� describes
particles shrinking to their centers. For the model of particles ran-
domly retracting their endpoints curve �2� shows the exact solution
and curve �3� the linear approximation. The upper curve corre-
sponds to the average-gap approximation.
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Figure 5 shows the functions w�x� and f�x�, obtained by
direct iterations of Eq. �10�. Note a steplike feature in f�x�
and w�x� at x=1+a �which is replicated at x=n+a with ever
smaller amplitude� and a decrease of the w�x� in the region
x�1+a. These are “recursive replicas” of the singularity in
OPDF discussed above and the gap in w�x� at a	x	1.

To calculate the variance we shall need an exact solution
for w�x�. It can be obtained by taking Laplace transformation
of Eq. �10�. First, it is convenient to multiply Eq. �11� by x
−a and make the substitution x→x+1. Taking Laplace trans-
formation, we find that the function

Fw�p� = 	
1

�

e−pxw�x�dx , �29�

�which is the Laplace transform of w�x� cut at small x	1 by
multiplying with a step function� satisfies the equation

�−
d

dp
+ 1 − a��eplFw�p��

=
2

p
Fw�p� + �1 − a�Fw�p� + 2

p
+ 1 − a�J�p� , �30�

where

J�p� = 	
0

1

w�x�e−px. �31�

Using Eq. �28� to calculate J�p�, we can rewrite Eq. �30� in
the form

Fw� �p� + a +
2e−p

p
b�ap��Fw�p� = −

exp�− p�
p2 Gw�p� ,

�32�

where

Gw�p� =
2

p
b�ap�J1�ap� �33�

and

b�ap� = 1 +
1

2
�1 − a�p, J1�ap� = 	

0

ap

te−tdt . �34�

The solution of Eq. �32� is of the form

Fw�p� =
exp�− p�

p2�̃�p�
	

p

�

�̃�u�Gw�u�du , �35�

where

�̃�p� = exp�− 2	
0

p 1 − e−v

v
�b�av�dv� . �36�

Function Fw�p� is analytic at all p�0 and has a second-order
pole at p=0. As p→0, the following asymptotic expansion
holds:

Fw�p� =
w,0

p2 +
w,0

p
+ O�p� , �37�

where now

w,0 = 	
0

�

�̃�p�Gw�p�dp . �38�

Applying the inverse Laplace transformation to Eq. �37� we
bring w�x� at large x into the form w�x�=w,0�x+1� with an
exponentially small error term. The filling factor  f ,0=1
−w,0 in the jamming limit is then given by

 f ,0 = 2	
0

�

�̃�p�b�ap� e−ap − e−p

p
+ ae−ap�dp . �39�

For a=1, Equation �39� again reduces to the Renyi constant
R.

The filling factor  f ,0 calculated with Eq. �39� is plotted in
Fig. 6 as function of the expansion ratio l=1/a. We see that
expansion causes an increase of the filling factor with l. Also
shown are the results of Boyer et al. �5� for the RSA problem
with restricted particle expansion �their model allows expan-
sion only when the required gap is fully available �22��. As
can be expected, the restricted expansion gives a smaller
increase of the fill factor.

Figure 6 also shows �curve 3� the approximate results
obtained by neglecting edge effects; in this approximation
the expansion effect is reduced. Much better results are ob-
tained in the approximation �shown by curve 2� obtained by
using as a solution of Eq. �10� a linear dependence at x�n
+a recursively combined with the exact solution for x	n
+a. Good agreement with the exact result is obtained already
for n=1.

IV. VARIANCE AND FANO FACTOR

Shrinking particles. We shall consider in detail the model
of particles shrinking by randomly retracting their endpoints,

FIG. 5. �Color online� Average filled length f and the wasted
length w for expanding particles as functions of the length x of the
adsorption interval assumed initially empty. Results are evaluated
by recursion with Eq. �8� for an assumed expansion ratio of l
=1/0.6.
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and then briefly discuss the case of shrinking to the center.
Equation �4� can be readily transformed into an equation for
the expected value of the occupied length squared v=Ef2.
Master equation for v�x� is of the form

v�x� = 1 +
2

x − l
	

l

x−l

�v�y� + 2f�x��dy +
2

x − l
	

x−l

x−1

�v�y�

+ 2f�x��dy +
2

x − l
	

l

x−l

f�y�f�y − x − 1�dy . �40�

In deriving Eq. �40� we used the initial conditions �13�. The

Laplace transform M�p�= L̂�v�x�� satisfies

M��p� + �l +
1

p
�e−pl + e−p��M�p� = −

exp�− pl�
p2 Rf�p� ,

�41�

where

Rf�p� = 1 + 2pF�p��ep�l−1� + 1� + 2p2F2�p�ep�l−1� �42�

with F�p� defined by Eq. �18�. The solution of Eq. �41� can
be written in a form similar to Eq. �18�, namely,

M�p� =
exp�− p�
p2�r�p� 	p

�

�r�u�Rf�u�du . �43�

The main feature of this solution is the divergence of the
integral in the right-hand side as p→0, owing to the square-
law dependence of the variance on x at large x. This singu-
larity should be treated with care.

To do this we note that F�p�� f ,0p−2 at small p and hence
the difference 2p2F2�p�−2 f ,0

2 p−2 is regular at p→0. There-
fore, it is convenient to define an entire function ��p�
=��p�Rf�p�−2 f ,0

2 p−2. In terms of this function the solution
M�p� can be expressed as follows:

M�p� =
exp�− p�
p2��p� �2 f ,0

2

p
+ kf ,0 − 	

0

p

��u�du� . �44�

The asymptotic expansion of M�p� near its pole of the third
order is of the form

M�p� =
2 f ,0

2

p3 +
kf ,0 + 2 f ,0

2

p2 +
 f ,0

2

p
. �45�

Applying the inverse Laplace transformation, we find the
asymptotic form of v�x�:

v�x� =  f ,0
2 x2 + �kf ,0 + 2 f ,0

2 �x + kf ,0 +  f ,0
2 + 1, �46�

with an exponentially small error term. Subtracting f2�x�, we
find v�x�− f2�x�=�r�x+1�, where �r=kf ,0+2 f ,0 is the spe-
cific variance of the fill factor �at x→��,

�r = 3 f ,0 + 2	
0

�

�r�u�pF�u��ep�l−1� + 1�du

+ 2	
0

� ��r�u�u2F2�u�ep�l−1� −
 f ,0

2

u2 �du . �47�

Integrating by parts the second term and rearranging the re-
sult, we rewrite �r in the form

�r = 2	
0

�  f�u�
u

�e−u + e−ul − 2e−u�l+1��du

− 2	
0

�  f
2�u�

�r�u�u2e−u�l+1���l + 1�u + e−u + e−ul − 2�du −  f ,0,

�48�

where

 f�u� =  f ,0 − 	
0

u

�r�y�dy . �49�

In the limit l=1, Eq. �48� reduces to the standard RSA
result first obtained for a lattice RSA model by Mackenzie
�23�. The numerical value of the Mackenzie constant �0
=0.0381564¯ corresponds to the Fano factor �
=0.0510387¯ �see Ref. �1� for detailed estimates of the
variance�. Expression �48� for shrinking particles has the
same structure as the corresponding formula for the standard
RSA model �fixed-size CPP�.

Specific variance �r of the filling factor obtained from Eq.
�48� is plotted in Fig. 7 against the excess parking length
factor l. We also plot the ratio of the filling factor variance to
its mean value �r / f ,0, known in the high-energy detector
physics �11,14� as the Fano factor �. We see that while the
fill factor variance decreases with l �as does the mean fill
factor itself, see Fig. 3�, their ratio � increases with l due to
the steeper decrease of the mean fill factor.

Similar analysis of the model in which particles shrink to
the center shows that for this case the variance asymptotic is
given by a constant �c=2/ �l+1��0, so that it decreases as
fast as fill factor. As a result, the Fano factor is not modified
in this model. This is in line with the fact that both the
number of adsorbed particles and their distribution is identi-

FIG. 6. �Color online� Filling factor  f ,0 as a function of the
expansion ratio l=1/a; curve �1� shows the exact result evaluated
with Eq. �34�, curve �2� the approximate solution of Eq. �8�, ob-
tained by linear-to-iterative matching, curve �3� describes the ap-
proximate solution neglecting edge effects. Curve �4� corresponds
to the restricted expansion model of Ref. �5�.
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cal to that for a standard RSA with the modified particle size.
Figure 7 also shows the variance and the Fano factor ob-

tained by an approximate solution of Eq. �9� based on linear
approximations for both the mean waste length w�x�=ax+b
and the variance u�x�−w�x�2=cx+d for x�1+ l recursively
combined with exact expressions in the region x	1+ l. We
see that the difference between the approximate and exact
solutions is quite substantial. Moreover, the approximate so-
lution exaggerates the growth of the Fano factor with l.

Expanding particles. In this case it is convenient to solve
Eq. �11� for the gap �waste� variance, using Eq. �28� for the
boundary conditions. We define a function

N�p� = 	
1

�

e−pxu�x�dx �50�

that satisfies an equation of the same type as Eq. �32�, in
which one should replace Gw�p�→Rw�p�, where

Rw�p� =
2J2�ap�

p2 b�ap� + 2p2Fw�p� +
1

p2J1�ap��2

,

�51�

with

J2�ap� = 	
0

ap

t2e−tdt . �52�

Similarly to the standard RSA case, N�p� has a third-order
pole, i.e., at p→0

N�p� =
w,0

2

p3 +
�kw,e + w,0�2

p2 +
kw,e + w,0

p
. �53�

Separating out the regular part of N�p� and rearranging the
terms, one obtains the constant kw,e in the form kw,e=K1
+K2+K3, where

K1 = 2	
0

� �̃�u�
u2 �b�au�J1

2�au� + J2�au��du , �54�

K2 = 4	
0

� w�u�
u2 e−2u�1 − 2e−ub�au��J1�au�du �55�

and

K3 = − 4	
0

� w�u�2

�̃�u�u2
e−u��e−u − 1�b�au� + u�du . �56�

Here

w�u� = w,0 − 2	
0

u �̃�p�
p

b�ap�J1�ap�dp . �57�

Variance of the gap distribution is obtained by the inverse
Laplace transformation of N�p�. At large x one has v�x�
−w2�x�=kw,e�x+1�. The constant kw,e describes, with expo-
nentially small errors, the linear dependencies of both the
filled length and the gap variance.

With the substitution w�u�= �u+1��̃�u�− f�u� and inte-
gration by parts, formulas �54�–�56� can be rearranged after
some lengthy algebra into a form similar in structure to Eq.
�48�. However, additional terms at a�1 make it rather un-
wieldy. Both forms are equivalent for numerical integration.

Variance of the gap distribution calculated with Eqs.
�54�–�56� equals the filled length variance. Figure 8 displays

FIG. 7. �Color online� Specific variance and the Fano factor
�shown by curves with primes� as functions of the shrinking ratio l.
Shown are results of exact calculations. �1,1��: scaled results for
particles shrinking to center, �2,2��: results for particles randomly
shrinking to the ends �based on Eq. �48��, and �3,3��: results of
solution neglecting edge effects; also show results of approximation
for f�x� and u�x�− f�x�2 at x� l+1 allowing edge effect �4,4�� and
without it �5,5��.

FIG. 8. �Color online� Specific variance �dashed curves� and the
Fano factor �solid curves with primed labels� as functions of the
expansion ratio l=1/a. Exact calculations with Eqs. �48�–�50� are
shown by curves �1,1��, curves �2,2�� correspond to edge effect
neglected, and curves �3,3�� represent the linear approximation of
w�x� and u�x�−w�x�2 at x� l+1.
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specific variance along with the Fano factor as functions of
l=1/a. Note the increase of both the variance and the Fano
factor at small l. This increase is apparently due to the sin-
gular contribution to OPDF from edge effect. For compari-
son, we show the v�x� and � calculated neglecting the edge
effect �this is accomplished by taking b�ap�=1�: no increase
is seen in this approximation. Both the variance and the Fano
factor vanish with increasing l owing to the fact that variably
growing particles provide tighter filling.

Figure 8 also shows the variance and the Fano factor ob-
tained by an approximate solution of Eq. �11� based on the
linear approximations for both the mean waste length w�x�
=ax+b and the variance u�x�−w2�x�=cx+d for x�1+ l
combined with exact expressions for x	1+ l. In contrast to
the case of shrinking particles, the difference between the
approximate and the exact solutions becomes smaller at
larger expansion ratios, since both solutions predict a rapid
decrease of the Fano factor with l. Note that in this case the
overall variation is well described by the approximate solu-
tion.

V. CONCLUSIONS

We have considered a generalized 1-dimensional random
sequential adsorption problem, where particles shrink or ex-
pand upon adsorption. Using a recursive approach, we ob-
tained exact analytical expressions for the filling factor and
its variance.

In the model where particles shrink to their centers, we
find that both the filling factor and its variance scale as the
recursion period, so that the Fano factor remains unchanged.
However, in another model of shrinking, where particles
shrink by randomly retracting their endpoints, the Fano fac-
tor increases with larger shrinkage ratio, due to the weaker
decrease of the variance compared to that of the filling factor.
In the case of adsorption of expanding particles �within the
allowed intervals�, we find that the variance first increases

with the expansion ratio l and then decreases, showing a
maximum at relatively small values of l. These nontrivial
results are due to edge effects, resulting in a modified one-
particle gap distribution function ��y� near the edges of the
adsorbing interval.

The developed approach can be applied to other models,
so long as they correspond to a piecewise constant ��y�. The
results are shown to have exponentially small corrections for
finite adsorption length x; for x�7l they become practically
exact.

The analytic results have been compared to approximate
solutions based on a method frequently used in semiconduc-
tor physics. The approximate solution is reasonably accurate
in estimating the fill factor for either shrinking or expanding
particles. However, the same method is less accurate in esti-
mates of the fill factor variance. In the model where particles
shrink by retracting their endpoints the approximate method
overestimates the effects of shrinkage on both the variance
and the Fano factor. We also assessed another common ap-
proximate method, based on the mean final energy distribu-
tion approach, and found that it gives only qualitative trends.

Our quantitative results have important applications to the
problem of energy branching in high-energy particle propa-
gation through a semiconductor crystal, where the model of
shrinking particles �where particles shrink symmetrically
about their centers� naturally accounts for the fact that the
impact ionization threshold is larger than the energy gap for
electron-hole pair generation. The alternative model of
shrinking particles, where shrinking occurs by retracting one
of the particle endpoints, further accounts for the decreasing
density of states at low particle energies.
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