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Modal Control in Semiconductor Optical Waveguides
With Uniaxially Patterned Layers

Arsen V. Subashiev and Serge Luryi, Fellow, IEEE

Abstract—Uniaxially patterned (UAP) dielectric layers have an
optical anisotropy that can be externally controlled. This paper
examines the effects of patterning the cladding or the core layer
of a three-layer optical waveguide on the polarization properties
of propagating radiation. Particular attention is paid to the case
when the core material is a semiconductor with optical gain. A
number of devices are discussed based on incorporating a UAP
layer in the structure design, such as a polarization-insensitive
amplifier, a polarizer, an optically controlled polarization switch,
and an optically controlled modal coupler.

Index Terms—Dielectric waveguides, directional couplers, opti-
cal polarizers, photonic crystals, semiconductor lasers.

I. INTRODUCTION

S TRUCTURES with cylindrical air pores forming a two-
dimensional (2-D) periodic lattice in a semiconductor ma-

terial are actively studied for photonic bandgap applications
[1]–[3], such as spontaneous emission control and light con-
finement in microcavities. These studies stimulated numerous
computations of the photonic crystal (PC) band spectra based
on the plane wave expansion of the electromagnetic field [4],
[5]. Such calculations showed that in the long wavelength limit
the spectrum of electromagnetic waves can be well described
in the effective media approximation with an effective dielectric
constant corresponding to the results of Maxwell Garnett theory
(see, e.g., [6] and [7]). Optical properties of the composite
structures patterned with cylindrical holes, for the wavelength λ
exceeding the interhole spacing a, i.e., for λ � a, are described
in terms of the filling factor f alone (i.e., the fraction of the
total volume occupied by the pores) and do not depend on the
long-range order of the holes or their diameter. The effect of
disorder is only a weak Rayleigh-like scattering. The effective
media approach remains valid for very large contrast ratios
between the semiconductor and the pore permittivities [8]–[10]
and for arbitrary propagation directions of the electromagnetic
waves. Direct comparison of the calculation results based on
three-dimensional (3-D) and 2-D modeling shows that the same
approach can be used to describe the waveguiding properties of

Manuscript received May 3, 2005; revised September 29, 2005. This work
was supported by the New York State Center for Advanced Sensor Technology
(Sensor CAT) at Stony Brook.

A. V. Subashiev is with the Department of Electrical and Computer Engi-
neering, State University of New York, Stony Brook, NY 11794-2350 USA,
on leave from the State Polytechnic University, St. Petersburg 195251, Russia
(e-mail: subashiev@ece.sunysb.edu).

S. Luryi is with the Department of Electrical and Computer Engineering,
State University of New York, Stony Brook, NY 11794-2350 USA (e-mail:
Serge.Luryi@stonybrook.edu).

Digital Object Identifier 10.1109/JLT.2005.863280

multilayered structures that include patterned layers. Moreover,
studies of PC-like structures with a small disorder showed
that the Maxwell Garnett approach remains valid even when
the requirement λ � a is relaxed to λ > a, so long as the
optical frequency is below the lowest photonic bandgap and
light scattering remains negligible (a similar situation prevails
in electronic spectra engineering with quantum well and super-
lattice heterostructures).

In this paper, we explore the variable anisotropic optical
properties of uniaxially patterned (UAP) layers and find that
they can be useful in the design of numerous optical devices that
are sensitive to the shape and polarization of the optical mode,
such as polarizers, lasers, amplifiers, and modulators. The UAP
layer anisotropy is not accompanied by any additional optical
loss and therefore can be used effectively for the modal control
of optical emitters and amplifiers.

Polarization sensitivity is an important factor in semicon-
ductor lasers and amplifiers. It depends on the modal gain
that in turn depends on both the material gain anisotropy and
the mode confinement factor [11]. The traditional three-layer
waveguide design of semiconductor amplifiers with isotropic
constituents leads to a better confinement of the TE mode and
a larger gain for this mode compared to the TM mode [12],
[13]. To obtain a polarization-insensitive amplifier, one had
to use highly anisotropic active layers with the material gain
that favors TM polarization. Adoption of UAP media for the
waveguide layers gives an additional possibility to compensate
for the difference in TE–TM confinement, which is inherent to
the isotropic situation.

Possible applications of the waveguide structures with a UAP
layer extend to the territory already tested experimentally for
PC layers, such as structures with a periodically patterned
cladding layer, e.g., [2], and a periodically patterned active
layer, e.g., [14] and [15]. The relative value of modal prop-
agation constants can be altered by varying the thickness of
the core region or the fill factor of the patterned layer. The
propagation constants can be further fine tuned by changing
the optical contrast between the waveguide constituents with an
applied field or optical pumping. Tuning effects are enhanced
in structures that are particularly sensitive to the anisotropy
of each layer, such as asymmetric waveguides with a thin
core layer.

II. DIELECTRIC FUNCTION OF UAP LAYERS AND

WAVEGUIDE MODES

Anticipating a broad scope of possible applications, we con-
sider a three-layer waveguide in which all three layers [the top
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Fig. 1. Average permittivities ε‖ and ε⊥ of a silicon (εout = 12) layer UAP
with cylindrical air pores (εin = 1) for E ‖ C and E ⊥ C, respectively. The
dotted line shows the average refractive index (squared). The inset shows the
ε‖ and ε⊥ for a structure of dielectric cylinders (εin � εout).

cladding (c), the guiding core (g), and the substrate or bottom
cladding (s)] may be UAP. We assume a thin core layer (of
thickness d) that can support only the lowest propagation
modes. We examine the case when the optical axis C of the
patterned layers is perpendicular to the waveguide plane. We
denote by ε‖,c,g,s and ε⊥,c,g,s the permittivities of the c, g, or
s layers for two directions of the electric field: parallel (‖) and
perpendicular (⊥) to the optical axis, respectively. The permit-
tivity of the inhomogeneous medium in a long-wavelength limit
is obtained in the Maxwell Garnett approximation.

For s-polarization (E ‖ C), the permittivity of a 2-D array of
infinitely long cylinders is obtained by direct averaging, viz.,

ε‖ = εout + (εin − εout)f (1)

where the permittivities εin and εout are inside and outside the
cylinder, respectively.

For p-polarization (E ⊥ C), permittivity is given by

ε⊥ = εout
(εin + εout) + (εin − εout)f
(εin + εout) − (εin − εout)f

. (2)

Modern derivation of (2) in the long-wave limit of the
lowest branch spectrum of the 2-D PC formed by a periodic
set of dielectric cylinders can be found in [6]. As shown in
[7], the validity of (2) relies on the dipole approximation for
the local field between the cylinders. The approximation is
also correct for nonperiodic distributions of cylinders, provided
(εin − εout)f , (εin − εout)(1 − f) � 1, and is found to be a
very good approximation so long as the cylinder distribution
is sufficiently homogeneous (f ≤ 0.5), and the index contrast
ratio is less than about 40.

The dependence of ε‖ and ε⊥ on the filling factor is
shown in Fig. 1 for the case of cylinder pores in a dielectric
medium, with εin = 1 and εout = 12. The anisotropy of refrac-
tive index is evidently not small, e.g., for f = 0.3, one has
(n‖ − n⊥)/〈n〉 = 0.1. Also shown is the value of permittivity
that would correspond to an average refractive index, i.e.,

Fig. 2. Profile of the dielectric function in the three-layer waveguide with PL
layers: (a) Patterned cladding layer; (b) patterned core layer; and (c) patterned
core and cladding layers.

〈n〉 = ninf + nout(1 − f), which is sometimes used; see, e.g.,
[16], without justification.1

The inset in Fig. 1 shows the permittivities ε‖ and ε⊥ for a
“mirror” array of cylindrical rods in air. This geometry offers
a substantially higher optical anisotropy. Mathematically, it is
described by (1) and (2) with the replacement εout � εin.

Note that (2) fails for thin UAP layers when the height of the
cylinders becomes comparable to their diameter. For this case,
the effective media approach remains valid, but (2) must be
modified to allow for depolarization factors of the finite-height
cylinders.

Below, we discuss the properties of a three-layer waveguide.
We shall employ the usual approach [11] developed for
isotropic waveguide constituents. The guided modes supported
by the structure will be calculated using the values n‖ and
n⊥ as polarization-dependent refractive indices of the patterned
layers. Exemplary profiles of the dielectric function are shown
in Fig. 2 for a waveguide with patterned cladding layer (a), an
asymmetric waveguide with a UAP core (b), and a hypothetical
structure with both cladding and core layers patterned (c).

A. TE Mode

In this mode, the electric field is perpendicular to the pore
axes, so that propagating waves are ordinary in all three layers.
Hence, to find the modal index, we can use the eigenvalue
equation for the propagation wave vector in an isotropic layered
structure [11]

ko,gd = tan−1

(
αc

ko,g

)
+ tan−1

(
αs

ko,g

)
(3)

where the substitution εc,g,s → ε⊥,c,g,s is made, viz., ko,g =√
ε⊥,gk2

0 −Q2, αc =
√
Q2 − ε⊥,ck2

0 , αs =
√
Q2 − ε⊥,sk2

0 ,
k0 = ω/c, and Q is the propagation wave vector, which defines
the mode effective index neff = Q/k0.

The cutoff thickness dc,TE of the active layer for the case
ε⊥,s > ε⊥,c is found from (3) as

dc,TE =
[
k0

√
(ε⊥,g − ε⊥,s)

]−1

tan−1(
√
aTE) (4)

1We note that in the case considered (εin � εout), the “average” index 〈n〉
is rather close to n⊥. However, in the opposite case of εin � εout (dielectric
cylinders in air), the value of 〈n〉 is intermediate between the true refractive
indices for the two polarizations and differs strongly from both.
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where aTE is an asymmetry parameter of the form

aTE =
ε⊥,s − ε⊥,c

ε⊥,g − ε⊥,s
. (5)

The case ε⊥,s < ε⊥,c is described by replacing ε⊥,s � ε⊥,c.
In the limit of a thin active layer ko,gd � 1, (3) yields

neff,TE =
√
ε⊥,s +

δ2TE

2√ε⊥,s
(6)

where

δTE =
k2
0d

2(ε⊥,g − ε⊥,s)2 − (ε⊥,s − ε⊥,c)
2k0d(ε⊥,g − ε⊥,s)

� 1. (7)

For an amplifying structure with active core, the gain factor for
the TE mode GTE can be calculated as [12]

GTE = − k0

neff,TE

∫ d

0 dx ε′′g|Ey|2∫ ∞
−∞ dx |Ey|2

(8)

where ε′′g is an imaginary part of the active layer permittivity, x
is taken alongC, and y is perpendicular to the wave propagation
direction. For a UAP core, the integration in (8) includes taking
the average over the layer plane. The modal gain (8) can be writ-
ten as a product of the material gain Gg = k0ε

′′
g/
√
εg,out and

the optical confinement factor ΓTE, which can be calculated
explicitly in the dipole approximation for the field distribution
in the patterned layer. For a structure with a thin patterned core
layer, ΓTE equals

ΓTE = F

√
εg,out

εs

2
√
εs − εc + δ2TE√

εs − εc + δ2TE + δTE

δTEk0d (9)

where F is the local field factor s = (1 − f +B2f)/
(1 +Bf)2, and B = (εg,out − εg,in)/(εg,out + εg,in). For a
symmetric waveguide, (9) reduces to the well-known result
[17]. For an asymmetric waveguide, δTE rapidly decreases with
the difference between the indices of the cladding and substrate
layers, as follows from (7). This leads to a high sensitivity of
the optical confinement to both the asymmetry of the waveguide
and the layer anisotropy.

B. TM Mode

For the TM mode, the electric field has two components:
one perpendicular and the other parallel to the C axis. The
propagating waves are extraordinary in the UAP layers. The
eigenvalue equation is of the form

ke,gd = tan−1

(
ε⊥,gβ

c

ε⊥,cke,g

)
+ tan−1

(
ε⊥,gβ

s

ε⊥,ske,g

)
(10)

where ke,g =
√
ε⊥,gk2

0 − (ε⊥,g/ε‖,g)Q2

βc =

√(
ε⊥,g

ε‖,g

)
Q2 − ε⊥,ck2

0

and βs =
√

(ε⊥,g/ε‖,g)Q2 − ε⊥,sk2
0 . The cutoff thickness

dc,TM for a structure with ε‖,s > ε‖,c is given by

dc,TM =

[
k0

√(
ε⊥,g

ε‖,g

)
(ε‖,g − ε‖,s)

]−1

tan−1(
√
aTM) (11)

where the asymmetry parameter aTM has the form

aTM =
ε⊥,gε‖,g(ε‖,s − ε‖,c)
ε⊥,cε‖,c(ε‖,g − ε‖,s)

. (12)

The case ε‖,s < ε‖,c is described by replacing ε‖,s � ε‖,c and
ε⊥,s � ε⊥,c. For a thin active layer ke,gd � 1, (10) yields

neff,TM = √
ε‖,s +

δ2TM

2√ε‖,s (13)

where

δTM =
k2
0d

2r21(ε‖,g − ε‖,s)2 − r22(ε‖,s − ε‖,c)
2k0dr1(ε‖,g − ε‖,s)

, δTM � 1

(14)

with r1 = √
ε‖,sε⊥,s/ε‖,g and r2 =

√
ε‖,sε⊥,s/ε‖,cε⊥,c.

In calculations of the modal gain GTM and the optical con-
finement ΓTM for the TM mode, one must correctly evaluate
the energy flux in and outside the active layer [12]. We write
down the optical confinement factor for a structure with a thin
patterned core layer

ΓTM = (1 − f)
εs
√
εsεg,out

ε2‖,g

2
√
εs − εc + δ2TM√

εs − εc + δ2TM + δTM

δTMk0d.

(15)

Due to a small multiplier r21 in the numerator of (14), both
δTM and, hence, ΓTM are even more sensitive to asymmetry
and anisotropy than the analogous parameters for the TE mode.
When the active layer is thin, ke,gd � 1, and the confinement
for the TM mode is smaller by a factor of ≈ (εs/εg)3 than
that for the TE mode. For thicker layers, ke,gd ∼ 1, this ratio
reduces to (εs/εg)2; see, e.g., [12] and [13].

The mode competition in laser structures is also affected by
the difference in the reflection coefficients for the competing
modes.2 For a cleaved stripe structure, the modal reflection
coefficients Rm are given by [18]

Rm =
(neff,m − 1)2

(neff,m + 1)2
, m = TE,TM. (16)

Thus, in the effective index approach, this ratio is a function of
neff,TE and neff,TM and, therefore, is also affected by the fill
factor of the UAP layers of the waveguide.

2In addition, the difference in the reflection coefficients for the two modes
also favors TE mode generation. It is, however, less important for a long enough
cavity and can be easily taken into account.
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Fig. 3. (a) Cutoff thicknesses for TE and TM modes as functions of the fill factor in the UAP cladding layer for Al0.17Ga0.83As/GaAs/Al0.17Ga0.83As structure.
Four distinct mode confinement regions are identified: 1) Both modes are confined, 2) only the TE mode is confined, 3) only the TM mode is confined, and
4) both modes are not confined. The dash-dotted line corresponds to the locus of points on the graph, where the confinement of both modes is the same. It
delineates a region (1′) within 1), where ΓTM > ΓTE. (b) Variation of the optical confinement factors and the modal indices of the two modes with active layer
thickness d in a UAP structure as in (a) for a fixed filling factor f = 0.08. Equal modal gain at λ = 860 nm is achieved for d = 182 nm.

III. POSSIBLE APPLICATIONS OF UAP STRUCTURES

We have shown that the cutoff thicknesses and modal prop-
agation constants in waveguides with a thin core layer are
sensitive to the permittivities of the layers and their patterning.
Small variations of the propagation constants result in sub-
stantial changes of the confinement factor modal ratio. This
modal control can be employed in optical devices, such as
polarizers and mode-insensitive amplifiers. It is important to
realize that the control can be effected rapidly and in real
time. For example, optical pumping of the UAP layer within
the absorption band of one of its constituent materials will
change the optical contrast of the uniaxial pattern and thus
modify both the refractive index of the UAP layer and the
modal indices of the waveguide. Thus, we can have an ultrafast
switch of the modal response in an anisotropy-based cutoff
device. Other possible applications are mode-dependent leaky
waveguides and directional couplers. With an additional high-
index layer, adjacent to one of the cladding layers, the coupling
of waveguide modes to this layer will have a strong dependence
on the matching of modal propagation constants.

A. Mode Tuning and Polarization-Insensitive Amplifier

To clarify the effects of a UAP layer on waveguide modal
properties, we consider the cutoff thickness of a symmetric
three-layer waveguide, in which one of the cladding layers
is patterned, cf. the index profile in Fig. 1(a). Exemplary
material compositions are taken for a GaAlAs heterostructure,
specifically, GaAs core and AlxGa1−x with x = 0.17 for both
cladding and substrate layers. We assume the UAP structure in
the cladding layer. The alloy refractive index is taken in the
form n(x) = 3.4 − 0.53x+ 0.09x2 [19].

Variation of the cutoff thicknesses dc,TE and dc,TM with
the fill factor is shown in Fig. 3(a) in units of 1/k0. Both
modes are confined in region 1, and neither mode is supported
in region 4. Region 2 supports only the lowest TE mode and
region 3 only the lowest TM mode. For a fill factor f ≤ 0.141,

we see that dc,TE < dc,TM, and we can have a waveguide
that supports only the lowest TM wave. For λ = 0.86 µm
and f = 0.08, the interval where this is the case is 167 nm ≤
d ≤ 177 nm. Similarly, for f ≥ 0.141, there is an interval of
layer thicknesses in which only the TE mode is confined. The
reversal of modal confinement is due to a rapid decrease with
f of the cladding layer indices for both polarizations. This
leads to a better confinement of the TE mode at large f , since
in a strongly asymmetric waveguide, anisotropy is of minor
importance.

The fact that dc,TE < dc,TM in a certain range of fill factors
indicates that there is a region of core thicknesses in the same
range where both modes are supported, but the TM mode
has a tighter optical confinement. This region, designated as
1′, is delineated in Fig. 3(a) by the dash-dotted line. In the
vicinity of the dash-dotted line, there is another line where
gain is mode insensitive (precise position of this line depends
on other factors, such as anisotropy of the material gain and
modal dependence of the feedback). This enables us to design
a mode-insensitive amplifier without relying on those other
factors.

It should be noted that in a waveguide with active (amplifying
or absorbing) layers, the waveguiding itself is influenced by
gain/damping effects. For structures with a thin core layer,
k0d � 1; these effects, however, are smaller than the index-
guiding effects by a factor of (k0d)2 (see Appendix I) and can
be safely neglected.

Fig. 3(b) shows the variation of optical confinement factors
and effective modal indices as functions of the active layer
thickness for an exemplary fill factor f = 0.08. Equal con-
finement is obtained at d = 1.62 × k−1

0 = 221.6 nm (for λ0 =
860 nm). Since at this thickness neff,TE < neff,TM, the design
of a mode-insensitive amplifier should also take into account
the different modal reflection coefficients, cf., e.g., (16).

Pore spacings ≤ 100 nm and pore diameters ≤ 30 nm [14],
[15] are demanding but achievable with focused ion beam
patterning. Parameters of the structure discussed above are
adequately addressed with an approximately triangular lattice
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Fig. 4. Cutoff thicknesses for TE and TM modes in an asymmetric structure
(AlxGa1−xAs/GaAs/AlyGa1−yAs with x = 0.2, y = 0.7) as functions of the
filling factor of the patterned AlxGa1−xAs cladding. Vertical lines indicate
when the waveguide becomes symmetric for one of the modes. Regions are
designated as in Fig. 3.

of pores of diameter 40 nm and pitch a = 134 nm. For such
a lattice, the pitch remains comfortably shorter (≈ 2 times)
than the wavelength in the media. Requirements to the structure
parameters are less demanding in the infrared region.

Equal modal confinement can also be obtained in the con-
ceptually simpler (though probably less practical) case when
the UAP layer is the core of a symmetric waveguide. This case
can be easily analyzed in a similar fashion. We find that with a
thin active layer, the TM mode can be made competitive if one
uses a waveguide with a relatively small initial index contrast,
which makes it more sensitive to core layer anisotropy. The
desired low contrast is obtained by an appropriate choice of the
fill factor of the patterned layers.

B. Cutoff Polarizer

In waveguides based on III–V heterostructures, the index
contrast between core and cladding layers is weak. Because
of this, the modal competition takes place at small f and
for a thin core. The region of competition can be made
substantially larger in asymmetric waveguides with properly
chosen compositions in the substrate and cladding layers.
For the AlxGa1−xAs/GaAs/AlyGa1−yAs waveguide structure,
one should take a smaller Al concentration x in the UAP
(cladding) layer than the Al concentration y in the substrate.
One can then find the fill factor values fTE, fTM, for which,
respectively, εc,⊥ = εs and εc,‖ = εs, i.e., the waveguide be-
comes symmetrical for one of the waves. Fig. 4 shows the
variation of cutoff thicknesses for a waveguide structure with
x = 0.2 and y = 0.7. In the vicinity of f = 0.085, only the
TE mode is confined in the interval of 0 ≥ d ≥ dc,TM, and
for f = 0.145, only the TM mode is confined in the interval
of 0 ≥ d ≥ dc,TE. Thus, the waveguide with a judiciously
chosen fill factor, and active layer thickness can be used as a
cutoff-based polarizer. Moreover, region (1′) can be extended
to higher values of f (which would make the structure easier
to make) by using a structure with both core and cladding
layers patterned.

C. Dominant Lasing Mode in Highly Asymmetric Structures

As an example of a highly asymmetric waveguide, we
consider a structure with air for the cladding layer and a
UAP semiconductor core layer (Si, εout = 12) on a dielectric
substrate (SiN, εs = 3.7). The waveguide profile is illustrated
in Fig. 2(b).

First, we calculate the cutoff thicknesses for the TE and
TM modes. Their dependences on the fill factor of the UAP
layer are shown in Fig. 5(a). In the range f ≥ fc = 0.53,
the TM mode has a smaller cutoff thickness, and there is a
wide range of thicknesses (region 3) where the waveguide will
support only the lowest TM mode. We see that in strongly
asymmetric waveguide structures, at large f , the TM mode
has better confinement and larger modal index. This results
from the faster growth with f of the asymmetry factor aTE

compared to aTM; see (5) and (12). For values of the fill factor
near fc, both modes have a similar confinement factor in a
broad range of d, as illustrated in Fig. 5(b). Note that the
values of the confinement factors are generally reduced due
to the porosity of the core layer. The examined asymmetric
waveguide is similar to that used by Cloutier and Xu [14], who
observed a predominantly TM-polarized laser-like emission
from a UAP Si-on-insulator layer. The main difference from
Fig. 5 is that a lower-index SiO2 was used as the bottom
cladding. It would be tempting to seek an explanation for
the observed TM polarization in terms of the UAP properties
of the waveguide used. However, the structure parameters in
[14] correspond to f = 0.18 < fc and for the stated core layer
thickness within region 2 in Fig. 5(a). Not only is the TE mode
“better” confined, but the TM mode is not confined at all at the
operating point. Therefore, the observed TM polarization of the
generated light in the experiment [14] poses a serious problem
(see Appendix II).

D. Polarization Switch

Under high illumination, the photo-induced concentration
of free electrons in the core and/or cladding layer(s) can be
large enough for a substantial change of the permittivity and
thus effect a change of the modal confinement in a UAP
waveguide. Using materials with a short carrier lifetime, both
the rise time and the recovery time can be very short, thus
providing an ultrafast all-optical modal control. Switching of
polarization can be most easily achieved with type-1 structures,
as in Fig. 2(a), when the optical excitation energy is above the
absorption edge of the cladding layer but below the absorption
edge of the substrate layer. In this case, optical pumping will
result in a substantial change of the asymmetry factors for the
two modes.

As an example, we consider an asymmetric InGaAsP
waveguide [13] operating at λ = 1.55 µm with core layer
index n = 3.55, substrate layer index ns = 3.24, and UAP
cladding layer index nc = 3.45. Let the energy of the pump
excitation be above the cladding bandgap of λ = 1.35 µm.
The resulting variation of waveguiding can be described
by taking the dielectric function of the absorbing core and
cladding layers with the Drude contribution of free carriers, viz.
εg = εg,∞ − (ω2

p,g/ω
2) and εoutc

= εc,∞ − (ω2
p,c/ω

2), where
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Fig. 5. (a) Cutoff thicknesses and confinement regions for TE and TM modes as a function of fill factor of the UAP core layer for asymmetric Si/SiN waveguide
with air as a cladding layer. The regions being noted as in Fig. 3(a). (b) Modal indexes and confinement factors for TE and TM modes as a function of core layer
thickness for a structure with f = 0.45.

Fig. 6. Cutoff thicknesses for TE and TM modes in an InGaAsP 1.55-µm
waveguide structure as functions of the concentration of optically pumped
electron–hole pairs. Case (1): UAP cladding layer only. Case (2): Both cladding
and core layers patterned.

ω2
p,i = Nie

2/ε0m
∗
i with ωp,i, Ni, and m∗

i being, respectively,
the plasma frequency, the electron–hole pair density, and
the reduced effective mass in the core (i = g) and cladding
(i = c) layers. The bulk optical dielectric constants of the
core and cladding materials are denoted, respectively, by εg,∞
and εc,∞.

A linear decrease of the dielectric function of the core and
cladding layers with the free carrier concentration alters the
waveguiding properties for the two modes. The variation of
the cutoff thicknesses is shown in Fig. 6 (case 1). The TM
and TE lines intersect at k0d = 0.33. This means that if we
choose the core thickness d to be precisely d = 0.33/k0, we
shall have only one mode confined for any pumping level. At
the pumping corresponding to N ≥ Nc,1 ≈ 8.5 × 1018 cm−3,
the device mode will switch from TM to TE. This effect can be
used for both polarization switching and modulation.

The switching concentration Nc,1 is sensitive to layer indices
and can be adjusted to lower values. For the purpose of low-

power switching, a more favorable structure is type-3, with
both cladding and core layers patterned as in Fig. 2(c). The
cutoff thicknesses for this case are displayed in Fig. 6 (case 2).
Making UAP both the core and the cladding adds anisotropy
to the structure, and the free carrier effect on wave propagation
becomes sharper. This lowers the switching concentration Nc,2.

It should be noted that the excitation levels needed to achieve
high electronic concentration may lead to heating that changes
the refractive indices of the layers. Such thermal effects my
become important and should be controlled; these effects can
be distinguished by a slower time response [20].

The other effect of high electronic concentration is a build up
of the imaginary part of dielectric constant of the layers. This
effect is only a small correction (see Appendix I) when index
guiding is operative.

Finally, we note that if only the core layer were patterned
[as in Fig. 2(b)], the photoinduced free carrier concentration
would be insufficient to effect a cutoff-controlled switch be-
tween the TE and TM modes as the variation of asymmetry
factors would not be strong enough.

IV. MODAL CONTROL IN LEAKY WAVEGUIDES AND

DIRECTIONAL COUPLERS

New useful polarization-dependent effects can be obtained
when an additional high refractive index layer is added onto the
cladding layer or when the three-layer waveguide is placed on a
base-substrate layer of high refractive index. These effects have
been exploited in the so-called resonant-layer devices [21], ver-
tical directional couplers and filters [22], and leaky waveguides
[23]. Uniaxial patterning of one or more waveguide layers can
provide a useful addition to the modal control possibilities of
these devices. Here, we briefly outline these possibilities.

For waveguides on a high-index base substrate, the main
effect of the base substrate results from the exponential de-
cay of the guided modes due to their leakage through the
bottom cladding layer into the substrate. This leakage has an
exponentially strong dependence on the difference between the
modal effective index and the index of the bottom cladding
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layer, which determines the barrier height for photon tunneling
decay into the base substrate. In a standard leaky waveguide,
the TE mode has a higher index and therefore exponentially
lower damping. As follows from our discussion in the previous
sections, incorporating a UAP layer in the structure allows us to
alter the bottom cladding layer modal transparency. This gives
a variable selectivity of the leakage-based modal control.

Adding a high-index resonant layer on the top cladding layer
with its thickness chosen to support a mode with the same
propagation constant as the basic waveguide leads to an os-
cillatory energy exchange between the two waveguides. The
resonant coupling underlying this exchange is exponentially
sensitive to matching of the propagation constants. Incorpora-
tion of a UAP layer as a core or a cladding layer, combined
with the optical pumping, enables a variable-mode vertical
directional coupler that effects fast mode selection at the time
of operation.

V. LATERAL VARIATION OF UAP LAYER PARAMETERS

Consider the effect of gradual variation in the density of
pores in a UAP cladding layer (vary f laterally). In our limit of
λ � a (even relaxed to λ > a), the effect is evidently similar
to that of lateral index variation in the cladding. It can be
used for shaping the mode field in the laser stripe, to achieve
desirable properties, similar to those obtained by the parabolic
etching of the stripe or the parabolic variation of the material
index. An example of such properties is the one-mode high-
power generation in a shaped unstable resonator laser design
[24], [25]. It is known that one way of obtaining a large gain
difference between the fundamental mode and higher order
modes is to use structure profiles with a strong real-index
antiguiding and weak imaginary-index guiding. Structures with
UAP layers can provide a very effective index antiguiding. In
waveguides with a UAP core, one must design the pore density
so that it is highest at the center line. On the other hand, in
waveguides with a UAP cladding layer, the antiguiding effect
is achieved when the density of pores (and hence the index
contrast) grows with the distance from the center.

We remark that while UAP layers with lateral variation f
are effective for achieving high-power single-mode operation,
this approach is suitable only for longer wavelength, e.g., far-
infrared devices. One needs room for a smooth but sizable pore
density variation while still staying in the limit λ > a.

VI. CONCLUSION

We have derived an efficient approach to calculate cutoff
thicknesses and optical confinement factors for three-layer
semiconductor optical amplifier waveguides with anisotropi-
cally patterned layers, in which uniaxial anisotropy is deliber-
ately introduced in one or more of the waveguide layers.

We demonstrate that the patterned layer anisotropy can be ef-
fective in providing modal control of useful waveguide devices.
Although no attempt was made to optimize the proposed de-
vices, their implementation is shown to be within a reasonable
range of lithographic and material parameters.

Finally, we note that the theoretical approach used in this
work, based on the effective media approximation in the spirit
of the Maxwell Garnett theory, has a wider range of validity
than that we have exploited so far. Thus, our approach in
Section V can be used to treat 2-D PCs with laterally varying
parameters. The scale of lateral variation does not have to be
smooth, so long as the spatial scale of the obtained field vari-
ation in the structure exceeds the structure pitch. For example,
the same approach can be applied to a 2-D PC with an omitted
row of pores that could be useful in the implementation of
optical routers and splitters.

APPENDIX I
GUIDING EFFECTS IN A THIN WAVEGUIDE WITH ACTIVE

(AMPLIFYING OR ABSORBING) LAYERS

Wave propagation in a three-layer waveguide with active
layers has special features: The waves are inhomogeneous in
all layers and hence the wave propagation direction is not the
same as the local energy propagation direction. Waveguiding
is described by a system of equations, the guiding, and the
gain/damping effects being interconnected.

We discuss these effects for the case of the TE mode, where
we can use the eigenvalue (3) for the propagation wave vector in
an isotropic layered structure. The TM mode can be considered
similarly.

Consider the case of active layers, when εg = ε′g + iε′′g .
Equation (3) and the equations for ko,g , αc, and αs now have
both real and imaginary parts and split into pairs, e.g.,

k′o,g = Re
√

(ε′⊥,g + iε′′⊥,g)k
2
0 − (Q′ + iQ′′)2

k′′o,g = Im
√(

ε′⊥,g + iε′′⊥,g

)
k2
0 − (Q′ + iQ′′)2. (A.1)

The sign of the imaginary parts of the waves should be taken
in the usual manner so that the waves go only out of the layers
with a larger gain (or into the layers with larger absorption).

Thus, there are two independent variables Q′, Q′′ (the com-
plex propagation constant of the wave) and a system of two
equations generated by (3) to find them. The important point is
that all waves become inhomogeneous if at least one layer is
active: ε′′i �= 0, i = s, c, g (excluding the case ε′′s = ε′′g = ε′′c).

All qualitative features of the waveguiding can be understood
in an exemplary case of a thin core layer, ko,gd � 1, when (3)
becomes algebraic, viz.,

k2
o,gd = αc + αs. (A.2)

Let Q2 = k2
0z, z = x+ iy. Then, (A.2) reads

k0d
(
ε′g + iε′′g − x− iy

)
=

√
x+ iy − εc +

√
x+ iy − εs.

(A.3)

Let us first discuss the simplest case of a symmetric
waveguide with εc = εs. For this case, (A.3) can be solved



1520 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 24, NO. 3, MARCH 2006

by introducing a dimensionless variable t = αc/k0 =
√
z − εc,

for which we have

k0d[δε′ + iδε′′ − t′2 − 2it′t′′ + t′′2] = 2(t′ + it′′) (A.4)

where δε = εg − εc. Then, we have

t′ +
t′2k0d

2
=
k0d(δε′ + t′′2)

2
, t′′ =

k0dδε
′′

2(1 + t′k0d)
. (A.5)

Several important conclusions follow from (A.5).
First, t′′ ∝ δε′′. The imaginary part of t is, essentially, the

oscillatory contribution to the exponential decay of the wave
outside of the core. So, as is physically obvious, it is propor-
tional to δε′′, that is, to the difference between the net gain (or
loss) in the core and the cladding.

Second, the guiding properties of a thin-core waveguide are
determined by two parameters k0dδε

′ and k0dδε
′′, of which the

former defines the usual “effective one-dimensional potential
well,” and the latter describes the gain (or loss) guiding effects.

Third, we note that the guiding effects of gain or loss are
proportional to the square of the gain differences in the core
and the cladding, so that layers with step-like absorption are
equally good for guiding. However, for a thin core with gain but
no index step, the guiding [described by Re(t)] is weak, being
proportional to the third power of the small parameter k0d.

Fourth, we note that even for pure gain variation (i.e.,
δε′ = 0), the guiding effect is genuine. Indeed, the core looses
energy only to support the growth of the wave in adjacent
cladding layers. Inasmuch as the wave amplitude and its energy
both decrease exponentially away from the core, the guiding
can be viewed as true confinement (hence, we can evaluate the
total energy outside the waveguide). Interestingly, the same is
true for a lossy core when the profile of the wave is maintained
by extracting the energy from adjacent layers.

Finally, for our case of a thin core, the equations can be
readily solved perturbatively, that is, by keeping in first approx-
imation only the lowest terms in k0d. For αc, this yields

α′
c =

k2
0dδε

′

2
, α′′

c =
k2
0dδε

′′

2
. (A.6)

Therefore, in this approximation, there is no gain guiding, but
it appears when higher terms in k0d are taken into account. To
bring the discussion in closer correspondence to the results in
Section II-A, we note that t is identical to δTE [see (7)]. We can
use (7) to write down the modal index directly as

neff,TE =
√
εc + t2 ≈

√
ε′c +

δ2TE + i
[
ε′′c + (k0d)2δε′δε′′

2

]
2
√
ε′c

.

(A.7)

In connection with (A.7), we make two observations: 1)
The second term in the numerator of (A.7) gives the well-
known Dumke result [17] for the confinement factor (the en-
ergy confinement has an additional factor of 2), and 2) in a
waveguide with thin core and weak confinement, the damping
in the cladding is more effective than the gain in the core.

Fig. 7. Cutoff thicknesses for TE and TM modes for a patterned 65-nm-thick
Si layer on SiO2 substrate layer as a function of filling factor. Regions of mode
confinement are denoted as in Fig. 3.

For a symmetric waveguide of arbitrary core thickness, the
gain guiding effects were recently considered by Siegman [26].
Our analytical treatment in the thin-core limit allows to consider
the asymmetric waveguide in a similar fashion.

For the asymmetric case, we retain the definition of the cutoff
as the thickness that borders the region where the real part
Re(αs) of (A.2) vanishes. For a thin core, this cutoff thickness
can be found directly from (7), bearing in mind that at the
cutoff, Re(δTE) = 0. Damping or gain effects shift the cutoff
thickness. This results from the quadratic in δε′′ antiguiding
contribution to δTE.

An important additional issue in an asymmetric waveguide
results from the different signs of the propagative contribution
to the Im(δ) from the asymmetry factor. Indeed, from (A.4),
we have

t = k0d(εg − εs − t2) −
√
εs − εc − t2. (A.8)

For k0d � 1, we have |t2| � |εg − εs|, so that the lowest order
in k0d instead of (7) in the above equation (A.8) gives

αc = k0t, t = k0d(εg − εs) −
√
εs − εc. (A.9)

Two remarks are in order here. First, we observe that (A.9)
coincides with the reduced (7). Indeed, for t to be � 1, the
numerator in (7) should be much smaller than the denominator,
so that one can regard the numerator as the difference of two
squared and nearly equal terms. Second, we note that we obtain
the cutoff thickness for a thin layer with low confinement by
setting Re(t) = 0 in (A.9).

Separating the imaginary part of (A.9), we obtain

Im (δTE) = k0d Im (εg − εs) − Im (
√
εs − εc). (A.10)

For a confined mode, the second term in (A.10) is smaller
than the first term, but it depends on the difference (εs − εc)
and shows the redistribution of loss between the substrate and
the cladding. For a weak confinement, the penetration depth
into the substrate is larger than that into the cladding, so that
substrate contribution prevails. As we decrease d, the first term
becomes eventually smaller than the second and confinement
is lost.



SUBASHIEV AND LURYI: MODAL CONTROL IN SEMICONDUCTOR OPTICAL WAVEGUIDES WITH UAP LAYERS 1521

APPENDIX II
EXPERIMENT OF CLOUTIER AND XU [14]

These authors employed a thin 65-nm UAP Si core layer with
a fill factor of f = 0.18, a thick SiO2 bottom cladding on an Si
substrate, and air for the top cladding. Under optical pumping,
they observed light emission at λ = 1278 nm with many char-
acteristics of laser radiation, unpolarized below threshold, and
predominantly TM-polarized above the threshold.

The cutoff thicknesses for the two modes at this wavelength
are displayed in Fig. 7. We see that except at very high fill-
ing factors the TE mode is better confined. Moreover, at the
reported parameters of the structure, the TM mode is not
confined at all. The reason for this lack of confinement is the
strong asymmetry of the air-clad waveguide.

The situation would be rather different if the waveguide
was made more symmetric by adding a top cladding layer of
refractive index similar to that of the SiO2 bottom cladding
layer. In this case, the value of fc would become much
smaller and the cutoff thickness for the TM mode would be
strongly reduced. This could be enough to shift the structure
parameters to regions 1′ or even 3, where the TM mode is
dominant.

The fact that the TE mode looses the competition with
TM above threshold may be associated with a mode-selective
feedback mechanism, e.g., a higher mirror reflectivity for the
TM mode. Another mechanism, which seems more likely to
us, may be associated with higher radiative losses for the
TE mode due to inhomogeneities of the structure. These in-
homogeneities cause (weak) Rayleigh scattering, which does
not prevent waveguiding but may damp the resonance mode
due to rare but highly efficient long-range fluctuations of the
effective index. This mesoscopic mechanism of the damping (to
be discussed in a separate publication) is far more effective for
TE than for TM modes and depends on the sample size, which
can be checked experimentally.
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