JOURNAL OF APPLIED PHYSICS VOLUME 83, NUMBER 9 1 MAY 1998

Effects of interface phonon scattering in three-interface heterostructures
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A detailed study of the electron—optical—-phonon interaction in an asymmetric one-well/one-barrier
heterostructure is given. Dispersion relations and phonon potential distributions for interface phonon
modes are derived in the framework of the macroscopic dielectric continuum model. It is found that
for intrawell relaxation processes the sum of the scattering rates by all interface polar-optical
phonon modes ispproximatelyindependent of the width of the barrier layer. Consequently, a
simplified Hamiltonian for electron—phonon interaction in a single quantum well can be used for
scattering rate calculation in multiple heterointerface structures. The combined scattering rates by
interface and confined phonon modes are compared with the results obtained in an idealized model
using the bulklike phonon spectrum. The practical invalidity of the latter approximation is shown for
electron kinetic energies comparable with the typical energy of optical phonons in the
heterostructure. ©1998 American Institute of Physids$0021-897@8)04308-4

I. INTRODUCTION emitting transition(see Fig. L For this three-interface con-
figuration, the interface phonon potential distributions should
Polar interaction with long-wavelength longitudinally differ substantially from the well known solutions for sym-
polarized opticalLO) phonons is a topic of continuing in- metric heterostructures with an even number of
terest, since electron inter- and intrasubband relaxation ifhterfaces*>°In the latter case, the phonon potential distri-
quantum well heterostructures are governed primarily by thigutions usually are characterized by definite parity providing
scattering mechanism. During the last decade, the impokyell-known parity selection rules for electron inter- and in-
tance of optical phonon confinement and localization effectgrasubband transitiorfs* In a three-interface heterostructure
has been discussed widely in literature. Bothwith a sufficiently narrow barrier layer, the parity based se-
macroscopit ' and microscopit™*® approaches of |ection rules do not hold for intrawell electron transitions.
electron—optical—phonon interactions have been used tPhis circumstance, combined with the growing complexity
show that in polar semiconductor heterostructures, the iﬂtel’of the spectrum of interface 0ptica| phonon modes in mul-
action of confined electrons with polar-optical phonons istiple heterointerface structuré$gives rise to substantial dif-
modified strongly compared to the three-dimensional cassiculties in theoretical analysis of electron relaxation pro-
The LO phonon scattering was shown to be important incesses. In this article, we show that the total scattering rate
narrow quantum well heterostructures designed folhy interface phonons in three-interface heterostructures is
injectior™® or optically pumped® laser applications. Photo- practically independent of the barrier width:; this permit us to
excited carrier relaxation processes in coupled quantumyse the phonon spectrum of a single quantum well for the
wells” and phonon-assisted tunneling in double-barrierdescription of more complex cascade heterostrucfusis.
heterostructurdsvere described successfully taking into ac- multaneously, we show that any attempt to exploit the sim-
count the existence of interface optical-phonon modes.  pler bulklike phonon spectrum fails if the electron kinetic
All of the above treatments applied to highly symmetric energy is of the order of the typical phonon energy in the
structures such as quantum weft§double-well] or double-  heterostructure. The macroscopic dielectric continuum
barrier heterostructurés- Recently, another kind of hetero- modef is used in this article for a description of the polar—
structure has appeared in which an accurate description @fptical—-phonon modes; this has been shown to agree well
the electron—optical—phonon interaction is of prime impor-with microscopic calculations:*3
tance. The active region of the unipolar quantum cascade
laset**incorporates a combination of a quantum well with
an adjacent narrow barrier layer providing the electron tunll- MODEL

neling escape from the active quantum well after a light-  \ye consider the simplest three-interface combination of

a quantum well with an adjacent narrow barrier layer as in
dElectronic mail: garik@sbee.sunysb.edu Fig. 1. Indexi =0+ 3 numerates here the layers of the het-
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AlAs  GaAs AlAs  GaAs Following the transfer matrix method described in Ref. 16,
we can obtain the dispersion equation for a three-interface

heterostructure in the forrtsee the Appendix
ep(w) .
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FIG. 1. Schematic plot of conduction band profile of the three-interface
heterostructure discussed in this study. 2
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erostructure. In cascade laser heterostructures, layers 0 and g, q is the in-plane phonon wave vector. Relatio@
represent the samella%er which can be designed as a gradugly (3) give us two dispersionless solutions with constant
alloy** or a superlatticé> Under an applied electric field, this frequencies equal to the frequencies of the two single-
layer provides a flatband condition for electron ransporfa ace phonon modes of the GaAs/AlAs heterointerface.
from one cascade to the next. The length of this region is\g e show below, these modes tend to localize in the vi-
usually longer then the active quantum well widdh,and its cinity of the outer heterointerfaced) or (3) and may be

exact structure does not influence the intrawell electron r'eonsidered to be outer interface modes. Relati@hand (4)

laxation processes considered in this article. Therefore, WE, the limit b>a lead to the dispersion equation of a simple

represent the layers 0 and 3 as half-spaces of wide-gap ar&%uble heterostructur@uantum well.23 Consequently, we

narrow-gap semiconductors, respectively. obtain two different types of inner modes which can be clas-

In the dielectric continuum model, the' optical phonon sified as symmetri¢S) or antisymmetric(A) according to
spectrum of a heterostructure includes interface phono[heir behavior in this limit. In expressiof), the sign(+)

modes and confined LO phonon modes which are approXizgaes to the symmetric and the sign) relates to the anti-
mated as being completely confined to the correspondingy mmetric inner interface mode. By analogy with the outer
Iay_er(well or bas”'e” and not affected by or coupled to th? mode, each inner mode is split in frequency according to the
adjgcent Iayg?. The .frequency of each interface modg 'S two optical phonon frequency ranges in constitutive materi-
split according to different frequency ranges of Optlcalals. For binary materials, these dispersion relations can be

phonons in the constituent mate.rials. This_ splitting is inﬂu'easily obtained analytically by substituting dielectric func-
enced also by the type of materials used in the heterostrucfl-Ons (1) into the dispersion equatiof®):

ture which usually are binary materials or ternary allbys.
For the sake of simplicity, we consider here a binary material

112
heterostructure assuming GaAs as the well material and 2 —02«| 02— Ol O+ Xm@hw @it
AlAs as the barrier, wide-gap semiconductor. The relevant ~~ ™®W ~"m— | =m 1+ ¥m ’
physical parameters used in numerical calculations are
shown in Table I. b +

In the case of binary materials, the dielectric functions in (w) —>( _ ) ; (5)
the barrier b) and the well (v) heterostructure layers are

2_ 2 2 2 2 2
8b,w(w):‘eb,woo wz w|2b,W. (1) Q%:wlb_"“’tw"')(m(wlw"'wtb) v Xm=— Sﬁfm>0
0"~ 0y 2(1+xm) Epe

Here, the sign(+) corresponds to indek—that is to the
TABLE I. Electron and phonon spectrum parameters of the three interfac®hOnon frequency range of barrier material—and the sign
heterostructure. (=) should be chosen for phonon frequency range of well
material (index w). For ternary alloys, this classification

Phonon spectrum Electron spectrum scheme remains the same except for additional mode split-
hn, 36.2 meV m, (GaAs 0.067m, ting. The calculated dispersion curves for interface phonon
iy 33.3 meV E, (GaAs l4ev modes in a binary GaAs/AlAs heterostructure are presented
hoy, 50.1 meV Eg (AlAs) 3.0eVv in Fig. 2(a).
how 44.8 mev Aot Ay 64 For a three-interface heterostructure, the interface pho-
Ewe 10.9 =9 225 meV !

£ 8.16 non potential distributions can be found to have simple ana-
lytical form (see Appendix
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for inner phonon modes. As in the case of one- and two- 3
interface heterostructures, these distributions do not depend 10' . . . :
on the type of constitutive material5For ternary alloys, we 0 0.1 02 0.3 0.4 0.5
simply have to use the two-pole approximation for the cor- phonon wave vector (1/nm)

r_espondlng dielectric funCtlom)'_ As a result, the_ introduc- FIG. 2. Interface phonon mod@) dispersions andb) coupling constants
tion of a ternary alloy as a barrier or well material does Nnoftsor interface phonon modes in three-interface heterostructure with layer di-
alter the functional form of the interface modes but modifiesmensionsa=6 nm andb=6 nm. The interface modes are grouped into the
the coefficient for the mode strength according to the ChanggaAs-Iike(dashed linesand AlAs-like (solid lineg modes in the ascending
. . . . . order in frequencies. There are three phonon modes in each group labeled
In, th_e d_lelectnc function. The gxemplary phonon pOtentIa‘Iby: 1(O)—inner (oute) interface modes; @)—symmetric(antisymmetri¢
distributions are presented in Fig. 3. modes in the limib>a.

Figure 3a) shows the characteristic behavior of the inner
and outer optical-phonon modes in a three-interface hetero-

structure. In the limitb>a, the outer mode tends to localize _ gldr A
on the right outer interfac€3), whereas the inner modes Hel_ph=2 Bm(q)cpqu(z)—(am,q+a;’_q). (9
relate to the well-known symmetric and antisymmetric inter- ma VS

face modes in a double heterostructtitbthe barrier width,  Here,S is the cross-sectional area of the heterostructure. For
b, becomes comparable with well width, the inner modes non-normalized potentials), we would use the elementary
are substantially perturbed but their basic symmetry featuresiectron chargeg, instead of coupling constantg,,,. Theq
still remain; see Fig. ®). The outer mode now represents dependence oB,, in the three-interface system is similar to
the symmetrized linear combination of the single interfacethat obtained in Ref. 9 for the case of a symmetric double-
modes of the left and right outer interfacé® and (3). If  barrier heterostructure. The coupling constants of the outer
a=b, this combination is exactly symmetric. Further de-interface modegOb, Ow) diverge as Ij for small phonon
crease of the barrier width gives rise to a potential redis- wave vectorsg. The coupling constants for the LO-like in-
tribution of the outer interface modes from interfa@to-  ner phonon modedAw, I1Sb) diverge as 1{q, whereas for
ward interface(1). At the same time, the inner phonon two TO-like inner modeglAb, ISw) they tend to go to zero
modes switch to the barrier layer, simultaneously changingt small values ofy. At largerq, all the coupling coefficients
their symmetry; see Fig.(8). converge to the values of the corresponding coupling con-
To characterize the individual phonon mode strengthsstant for the single interface mode in the phonon energy
we can introduce the coupling coefficientg,,, for the  ranges of the barrietb) or the well (w) semiconductor ma-
electron—phonon interactions, normalizing the phonon enverials; see Fig. (). However, the coupling constants by
lopes,¢m(2), in (6) according to the conditiofig?(zZ)dz=1. themselves cannot give us the most or the least important
The interaction Hamiltonian is represented in the form phonon modes in the scattering process. The overlap inte-
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FIG. 3. Interface phonon potential distributiorss,,(z), calculated for the
three-interface heterostructures with different barrier wid¢ag=12 nm;
(b) b=6 nm; (c) b=3 nm. Quantum well width im=6 nm; the value of

phonon wave vectoq is fixed at 0.4 nm?. Solid (dashed lines refer to
phonon modes in barridwell) phonon energy range.
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FIG. 4. Scattering rates by the interface phonon modes as functions of the
barrier widthb at room temperaturga) intrasubband 2-2 transitionép)
intersubband 2-1 transitions. Initial electron kinetic energy in 2nd subband
is E,=60 meV. The combined scattering rates by both GaAs-like and AlAs-
like modes are represented here.

well width, a=6 nm. We use this electron energy spectrum
for all scattering rate calculations represented here neglecting
the perturbing action of heterointerfat® onto the electron
wave functions in the quantum well. For barrier widik 2

nm, this approximation is quite reasonable due to the high
energy band offseta . , at the AlAs/GaAs heterointerface
and, consequently, due to the small penetration of the elec-
tron wave function into the barrier region even for high-
energetic states in the second subband.

lll. SCATTERING RATES

For a heterostructure with large barrier widik-a, the
rates for intrawell scattering processes should be close to the
rates in a single quantum well. Parity-selection rules for in-
ner interface mode scattering hold strictly in this limit. Thus,
symmetric inner interface and even-parity confined modes
dominate in the intrasubband scattering, whereas antisym-
metric inner interface and odd-parity confined modes con-
tribute primarily to the intersubband transitions. For labge
the outer interface mode locates at the remote heterointerface
(3) and cannot participate in intrawell electron transitions
because of the small overlap with the electron states. How-
ever, if the well and barrier layer dimensions are comparable,
the outer mode scattering becomes dominant in accordance
with growing overlap integral and as a result of the higher
coupling constant. Correspondingly, the scattering rates by
the inner interface modes diminish since these modes switch
to the barrier layer. Figure 4 illustrates this behavior for in-

grals between the phonon potential and electron wave fundrasubband 2—-2 and intersubband 2-1 electron transitions.
tions significantly influence the scattering rates and shouldHere, scattering rates by interface optical phonons are repre-
be calculated with great care. Since the inclusion of the subsented as functions of the barrier width. The scattering rate is
band nonparabolicity is essential for the correct descriptiotomputed using the Fermi golden rule. The electron kinetic
of electron states, we calculate the electron energy spectruemergy has been chosen so tligt=60 meV in order to

on the basis of the four-band Kane model taking into accouninclude the interaction with all possible interface modes. Fig-
the complex boundary conditions for multicomponent waveure 5 shows the energy dependence of the total intrasubband
functions!® The calculations have been restricted to the casd—1 scattering rates for heterostructures with3, 6, and 12

of a quantum well with a square well potential profile and anm (curve 1. It is readily seen that the previously mentioned
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10 " y y y y modes; in particular, it equals the sum of matrix elements of
all interface modes (a) | the interaction with effective LO bulk phonons. However,
for confined electron states, neither the second sum nor the
right-hand side of Equatiofi0) depends on the barrier width

b because of the strong damping of electron states in the
barrier region. Consequently, we can expect the first §am
interface modesto be independent d§ as well. It is worth
emphasizing that for the interwell or the phonon assisted
escape processes the situation can be quite different espe-
cially in the case of resonance transitions. Here, the
proper design of the phonon potential distribution for a given
barrier width may appear necessarily to achieve high sub-
band depopulation rate.

03 3 4 5 6 7 For injected and/or hot electrons in the active quantum
well of the laser heterostructure, the electron kinetic energy
is usually comparable with the LO phonon energy. The con-
dition Eyj,~%w,, separates active and passive regions in
accordance with the optical phonon emission process and

scattering rates 2-2 (i/psec)

barrier width (nm)

1.0 b determines the electron distribution function in the low-
() - concentration limit° It is important to realize that just in this
08f all interface modes 1 electron energy range we cannot substitute the complex pho-

non spectrum of the heterostructure with bulk phonons of
any constituent material. In Fig. 5 we compare the intrasub-
band 1-1 scattering rates calculated for three different pho-
non spectrum models. Here, curve 1 represents the total scat-
tering rate due to the combined action of all interface,
confined, and barrier phonon modes in the heterostructures
with different values of barrier widthh. Two other curves
have been obtained by approximating the complex phonon
spectrum of the heterostructure with bulk phonons of well

scattering rates 2-1 (1/psec)

0 - . . (curve 2 or barrier(curve 3 material. In the electron energy
2 3 4 5 6 7 ‘ range where the phonon energy is crucial for the scattering
barrier width (nm) rate value, the results of the three models differ significantly.

FIG. 5. Total scattering rates for intrasubband 1-1 transitions as function opnly if the e.Iectron kinetic energy exceeds the .hlgheSt phOT

electron kinetic energy in different phonon spectrum models. For the cas€ON €NErgy In the SyStem can we use the qua_5'|bU|k approxi-

when all the interface and confined modes of the heterostructure are takdMation suggesting some intermediate composition for the ef-

into account, the curves are labeled by values of the barrier viieiB, 6 fective bulk semiconductor materisl. The basis of this

and 12 nm. approximation is that the total of the matrix elements always
falls between the corresponding values for bulk well and

mutual redistribution of the outer and inner phonon modedUulk barrier materiald? this situation is illustrated in Fig. 6.
makes the total interface phonon scattering rate practicallii_'s seen, however, that this total is substantially different for
independent of barrier width over the entire range of electroflifferent values of the phonon wave vectqr Therefore,
kinetic energy. since the emission scattering rates for different phonon
A qualitative explanation of this result may be related tomodes depend on the phonon energy stepwise, we cannot
the sum rule established for the electron—phonon interactiofh00se the unique effective quasibulk approximation in the
in heterostructure3121?Inasmuch as the wave functions of Whole range of different scattering processes and have to use
initial and final electron states are confined in the same laye® More complex phonon spectrum. In this article, we have
of the heterostructuréguantum well layer in this caseve shown that for the three-interface heterostructures, an ad-
can divide the total of the squared matrix elements for thetquate model of the phonon spectrum is given by the phonon
scattering processes into two parts, corresponding to the irfPectrum of a single quantum well.
teraction with the interface and confined phonons:
IV. CONCLUSIONS
Mnf?=_ 2, [Mi(a,b)[? | o
allmodes interface Polar electron—optical—-phonon interaction in an asym-
metric three-interface heterostructure—quantum well plus
+ > [M(@)?=> [Mp(a)]> (10  adjusted barrier layer of finite widtih—has been studied.
confined bulk The interface phonon spectrum of this system is found to
Neglecting the phonon energy dispersion, this total should beonsist of three basic types of modes. Two of the interface
the same for any complete and orthogonal set of phonomodes in the limit of the large barrier width can be related to
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i APPENDIX
— 157 (2) bulk GaAs all modes . . ] '
8 | - In the dielectric continuum model, the electrostatic po-
;“-’D b=3 tential of an interface polar optical mode satisfies the Laplace
£ 101 ) 162 ] equation in each laydr, therefore, thez dependence of the
é; potential envelopes can be represented by the fundijzh
3 st from (6). The continuity conditions for the electrostatic po-
tential and the normal component of electrical displacement,
0 . . . . . _ J J
30 35 40 45 50 55 60 fiz)=fi-1(z); i fi(z)=ei-1 Tia(z)  (AD)

electron energy in first subband (meV)

may be then written in a simple matrix forif,
FIG. 6. Scattering matrix elements as functions of phonon wave vadtar

intrasubband 1-1 transitions. The sum of all matrix eleméhdalls be- 1 e 4 Ci,l

tween the corresponding values for bulk wél) and bulk barrier(3) —e g 9|\ C 2

phonons. All matrix elements are normalized to the value of bulk GaAs ! ! b

matrix element at smadj. Initial electron kinetic energy in the 1st subband e adi-1 1 C.

is E;=60 meV. Abbreviations: I@\)—inner symmetrigantisymmetri¢ in- — ( i-11 (A2)
terface mode; O—outer interface mode; C—the total of barrier and well —gifle’qdi—l gi_1 Ci_12)’

confined modes. o .
whered; =z, ;—z . The transfer matrix is defined as

. . . . . Ci=Qi(z)Ci-1. (A3)
symmetric and antisymmetric solutions for an isolated quan-
tum well and have similar dispersion. The third interfaceAfter imposing the boundary condition€,;=C3,=0, we
mode represents a symmetrized linear combination of singlebtain the dispersion equation for interface modes,
interface modes of the outer heterointerfaces. We have [Q,(z,)Q,(2,)Qs(23)]2,=0. (A4)
shown that the individual phonon potential distributions in ) _
the three-interface heterostructure are substantially modifie§0r @ three-interface heterostructure with=e,=ep(w)
when changing layer dimensions. The decrease of the barri@"d e1=&3=¢u(w), after some straightforward algebra we
width, b, gives rise to the redistribution of the outer interface &'TiVe at relationg2)—(4). _
mode potential from the right outer interfadeetween bar- .Potentlfal d|str|put|on§6) for mterfgge modes are then
rier layer and half-space narrow gap semicondydmwvard ~ €asily obtained using boundary conditi@ ,=1 and rela-
the left outer interfacébetween barrier half-space and well tion (A3). The proper normalization of the phonon potentials
layen. At the same time, both inner phonon modes switch tdS a}chleyed through the ordinary quantization procedure for
the barrier layer simultaneously changing their symmetry!attice displacements,

We have found that this mutual redistribution of interface

1/2
a Q) e'ar - A
modes keeps the total electron—optical-phonon scattering Um'qzz —') _Vm,i(z)(am,q+a;1,—q);
rate practically unchanged for initial and final electron states T\ 2mon(@)] VS

. : . . (A5)
localized in the quantum well region. This enables us to use

Zi+1
the simpler phonon spectrum of a single quantum well for E J ' dz|vm,i(z)|2=1
the analysis of intrawell electron relaxation in the three- bUa

interface heterostructures used in cascade laser design. Itagid the relation between the displacement and the potential
interesting to note that this approximation holds true over thdields in the Born—Huang theory

entire electron kinetic energy range, including the region
where the difference in energy between GaAs-like and AlAs- vl I O S S

like optical phonon modes is crucial for scattering rate val- Em,i V( \/§(’Dm"(z)) e* (@i~ @mi) Ui (AB)
ues. This fact can be explained from the traditional view- N _

point of the sum rule for electron—phonon interaction in Here(); ,u;, andel are, respectively, the volume, reduced

heterostructures. The applicability of the sum rule for scat{ONn Mass and effective charge of the elementary unit cell.
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