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Effects of interface phonon scattering in three-interface heterostructures
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A detailed study of the electron–optical–phonon interaction in an asymmetric one-well/one-barrier
heterostructure is given. Dispersion relations and phonon potential distributions for interface phonon
modes are derived in the framework of the macroscopic dielectric continuum model. It is found that
for intrawell relaxation processes the sum of the scattering rates by all interface polar-optical
phonon modes isapproximatelyindependent of the width of the barrier layer. Consequently, a
simplified Hamiltonian for electron–phonon interaction in a single quantum well can be used for
scattering rate calculation in multiple heterointerface structures. The combined scattering rates by
interface and confined phonon modes are compared with the results obtained in an idealized model
using the bulklike phonon spectrum. The practical invalidity of the latter approximation is shown for
electron kinetic energies comparable with the typical energy of optical phonons in the
heterostructure. ©1998 American Institute of Physics.@S0021-8979~98!04308-4#
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I. INTRODUCTION

Polar interaction with long-wavelength longitudinal
polarized optical~LO! phonons is a topic of continuing in
terest, since electron inter- and intrasubband relaxation
quantum well heterostructures are governed primarily by
scattering mechanism. During the last decade, the im
tance of optical phonon confinement and localization effe
has been discussed widely in literature. Bo
macroscopic1–10 and microscopic11–13 approaches of
electron–optical–phonon interactions have been used
show that in polar semiconductor heterostructures, the in
action of confined electrons with polar-optical phonons
modified strongly compared to the three-dimensional ca
The LO phonon scattering was shown to be important
narrow quantum well heterostructures designed
injection5,6 or optically pumped7,8 laser applications. Photo
excited carrier relaxation processes in coupled quan
wells7 and phonon-assisted tunneling in double-barr
heterostructures9 were described successfully taking into a
count the existence of interface optical-phonon modes.

All of the above treatments applied to highly symmet
structures such as quantum wells,1–6 double-well,7 or double-
barrier heterostructures.9,10 Recently, another kind of hetero
structure has appeared in which an accurate descriptio
the electron–optical–phonon interaction is of prime imp
tance. The active region of the unipolar quantum casc
laser14,15 incorporates a combination of a quantum well w
an adjacent narrow barrier layer providing the electron t
neling escape from the active quantum well after a lig

a!Electronic mail: garik@sbee.sunysb.edu
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emitting transition~see Fig. 1!. For this three-interface con
figuration, the interface phonon potential distributions sho
differ substantially from the well known solutions for sym
metric heterostructures with an even number
interfaces.2,5,10 In the latter case, the phonon potential dist
butions usually are characterized by definite parity provid
well-known parity selection rules for electron inter- and i
trasubband transitions.2,4 In a three-interface heterostructu
with a sufficiently narrow barrier layer, the parity based s
lection rules do not hold for intrawell electron transition
This circumstance, combined with the growing complex
of the spectrum of interface optical phonon modes in m
tiple heterointerface structures,16 gives rise to substantial dif
ficulties in theoretical analysis of electron relaxation pr
cesses. In this article, we show that the total scattering
by interface phonons in three-interface heterostructure
practically independent of the barrier width; this permit us
use the phonon spectrum of a single quantum well for
description of more complex cascade heterostructures.6 Si-
multaneously, we show that any attempt to exploit the s
pler bulklike phonon spectrum fails if the electron kinet
energy is of the order of the typical phonon energy in t
heterostructure. The macroscopic dielectric continu
model2 is used in this article for a description of the polar
optical–phonon modes; this has been shown to agree
with microscopic calculations.11–13

II. MODEL

We consider the simplest three-interface combination
a quantum well with an adjacent narrow barrier layer as
Fig. 1. Indexi 5043 numerates here the layers of the h
6 © 1998 American Institute of Physics



n
ad
s
or

re
w
a

on
no
ox
in
e
is
a
u
ru
.
ria
an
an
a

in

6,
ace

nt
le-
ce.
vi-

le

as-

ter
the
ri-
be

c-

ign
ell

n
plit-
on
ted

ho-
na-

ac

fac

4817J. Appl. Phys., Vol. 83, No. 9, 1 May 1998 Kisin et al.
erostructure. In cascade laser heterostructures, layers 0 a
represent the same layer which can be designed as a gr
alloy14 or a superlattice.15 Under an applied electric field, thi
layer provides a flatband condition for electron transp
from one cascade to the next. The length of this region
usually longer then the active quantum well width,a, and its
exact structure does not influence the intrawell electron
laxation processes considered in this article. Therefore,
represent the layers 0 and 3 as half-spaces of wide-gap
narrow-gap semiconductors, respectively.

In the dielectric continuum model, the optical phon
spectrum of a heterostructure includes interface pho
modes and confined LO phonon modes which are appr
mated as being completely confined to the correspond
layer ~well or barrier! and not affected by or coupled to th
adjacent layer.1–3 The frequency of each interface mode
split according to different frequency ranges of optic
phonons in the constituent materials. This splitting is infl
enced also by the type of materials used in the heterost
ture which usually are binary materials or ternary alloys17

For the sake of simplicity, we consider here a binary mate
heterostructure assuming GaAs as the well material
AlAs as the barrier, wide-gap semiconductor. The relev
physical parameters used in numerical calculations
shown in Table I.

In the case of binary materials, the dielectric functions
the barrier (b) and the well (w) heterostructure layers are

«b,w~v!5«b,w`

v22v lb,w
2

v22v tb,w
2

. ~1!

FIG. 1. Schematic plot of conduction band profile of the three-interf
heterostructure discussed in this study.

TABLE I. Electron and phonon spectrum parameters of the three inter
heterostructure.

Phonon spectrum Electron spectrum

\v lw 36.2 meV mc ~GaAs! 0.067m0

\v tw 33.3 meV Eg ~GaAs! 1.4 eV
\v lb 50.1 meV Eg ~AlAs! 3.0 eV
\v tb 44.8 meV Dc : Dv 6:4
«w` 10.9 E21 225 meV
«b` 8.16
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Following the transfer matrix method described in Ref. 1
we can obtain the dispersion equation for a three-interf
heterostructure in the form~see the Appendix!:

«b~v!

«w~v!
5jm , m5outer,inner, ~2!

where

jouter521; ~3!

j inner~S,A!52j06Aj0
221

,0; j05
2

~12e2qa!~12e22qb!
21. ~4!

Here, q is the in-plane phonon wave vector. Relations~2!
and ~3! give us two dispersionless solutions with consta
frequencies equal to the frequencies of the two sing
interface phonon modes of the GaAs/AlAs heterointerfa
As we show below, these modes tend to localize in the
cinity of the outer heterointerfaces~1! or ~3! and may be
considered to be outer interface modes. Relations~2! and~4!
in the limit b@a lead to the dispersion equation of a simp
double heterostructure~quantum well!.2,3 Consequently, we
obtain two different types of inner modes which can be cl
sified as symmetric~S! or antisymmetric~A! according to
their behavior in this limit. In expression~4!, the sign~1!
relates to the symmetric and the sign~2! relates to the anti-
symmetric inner interface mode. By analogy with the ou
mode, each inner mode is split in frequency according to
two optical phonon frequency ranges in constitutive mate
als. For binary materials, these dispersion relations can
easily obtained analytically by substituting dielectric fun
tions ~1! into the dispersion equation~2!:

vm~b,w!
2 5Vm

2 6S Vm
2 2

v lb
2 v tw

2 1xmv lw
2 v tb

2

11xm
D 1/2

;

S b
wD→S 1

2 D ; ~5!

Vm
2 5

v lb
2 1v tw

2 1xm~v lw
2 1v tb

2 !

2~11xm!
; xm52

«w`

«b`

jm.0.

Here, the sign~1! corresponds to indexb—that is to the
phonon frequency range of barrier material—and the s
~2! should be chosen for phonon frequency range of w
material ~index w). For ternary alloys, this classificatio
scheme remains the same except for additional mode s
ting. The calculated dispersion curves for interface phon
modes in a binary GaAs/AlAs heterostructure are presen
in Fig. 2~a!.

For a three-interface heterostructure, the interface p
non potential distributions can be found to have simple a
lytical form ~see Appendix!:

e

e
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wm,q~z!5AmS \

«0q
D 1/2S ]«b~v!

]v
2jm

]«w~v!

]v
D 2 1/2

f m~z!,

~6!

f ~z!5(
i 50

3

@Ci1eq~zi2z!1Ci2eq~z2zi 11!#zi,z,zi 11
.

The coefficients in~6! are given by

Aouter5S e2qa

e2qa1e2qb21
D 1/2

; Ci5S Ci1

Ci2
D ; ~7!

C05S 0
1D ; C15S 1

0D ; C25S 0
eq~b2a!D ; C35S eq~b2a!

0 D
for the outer interface mode and

Ainner5S 1

2

e2qb21

e2qa1e2qb21
D 1/2

;

C05S 0
1D ; C15

1

2S 12j
~11j!eqaD ; ~8!

C25S ~j1j0!sinh qa

2eqa

2sinhqb
D ; C35S ~j21!e2qbsinh qa

0 D
for inner phonon modes. As in the case of one- and tw
interface heterostructures, these distributions do not dep
on the type of constitutive materials.17 For ternary alloys, we
simply have to use the two-pole approximation for the c
responding dielectric function~1!. As a result, the introduc
tion of a ternary alloy as a barrier or well material does n
alter the functional form of the interface modes but modifi
the coefficient for the mode strength according to the cha
in the dielectric function. The exemplary phonon potent
distributions are presented in Fig. 3.

Figure 3~a! shows the characteristic behavior of the inn
and outer optical-phonon modes in a three-interface het
structure. In the limitb@a, the outer mode tends to localiz
on the right outer interface~3!, whereas the inner mode
relate to the well-known symmetric and antisymmetric int
face modes in a double heterostructure.2 If the barrier width,
b, becomes comparable with well width,a, the inner modes
are substantially perturbed but their basic symmetry featu
still remain; see Fig. 3~b!. The outer mode now represen
the symmetrized linear combination of the single interfa
modes of the left and right outer interfaces~1! and ~3!. If
a5b, this combination is exactly symmetric. Further d
crease of the barrier widthb gives rise to a potential redis
tribution of the outer interface modes from interface~3 to-
ward interface~1!. At the same time, the inner phono
modes switch to the barrier layer, simultaneously chang
their symmetry; see Fig. 3~c!.

To characterize the individual phonon mode strengt
we can introduce the coupling coefficients,bm , for the
electron–phonon interactions, normalizing the phonon en
lopes,wm(z), in ~6! according to the condition*w̃2(z)dz51.
The interaction Hamiltonian is represented in the form
-
nd

-

t
s
e
l
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-

es

e

g

s,

e-

Hel2ph5(
m,q

bm~q!w̃m,q~z!
eiqr

AS
~ âm,q1âm,2q

1 !. ~9!

Here,S is the cross-sectional area of the heterostructure.
non-normalized potentials~6!, we would use the elementar
electron charge,e, instead of coupling constants,bm . Theq
dependence ofbm in the three-interface system is similar
that obtained in Ref. 9 for the case of a symmetric doub
barrier heterostructure. The coupling constants of the o
interface modes~Ob, Ow! diverge as 1/q for small phonon
wave vectors,q. The coupling constants for the LO-like in
ner phonon modes~IAw, ISb! diverge as 1/Aq, whereas for
two TO-like inner modes~IAb, ISw! they tend to go to zero
at small values ofq. At largerq, all the coupling coefficients
converge to the values of the corresponding coupling c
stant for the single interface mode in the phonon ene
ranges of the barrier~b! or the well ~w! semiconductor ma-
terials; see Fig. 2~b!. However, the coupling constants b
themselves cannot give us the most or the least impor
phonon modes in the scattering process. The overlap i

FIG. 2. Interface phonon mode~a! dispersions and~b! coupling constants
for interface phonon modes in three-interface heterostructure with laye
mensionsa56 nm andb56 nm. The interface modes are grouped into t
GaAs-like~dashed lines! and AlAs-like ~solid lines! modes in the ascending
order in frequencies. There are three phonon modes in each group la
by: I~O!—inner ~outer! interface modes; S~A!—symmetric~antisymmetric!
modes in the limitb@a.
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grals between the phonon potential and electron wave fu
tions significantly influence the scattering rates and shou
be calculated with great care. Since the inclusion of the su
band nonparabolicity is essential for the correct descripti
of electron states, we calculate the electron energy spectr
on the basis of the four-band Kane model taking into accou
the complex boundary conditions for multicomponent wav
functions.18 The calculations have been restricted to the ca
of a quantum well with a square well potential profile and

FIG. 3. Interface phonon potential distributions,ewm(z), calculated for the
three-interface heterostructures with different barrier widths:„a…b512 nm;
„b… b56 nm; „c… b53 nm. Quantum well width isa56 nm; the value of
phonon wave vectorq is fixed at 0.4 nm21. Solid ~dashed! lines refer to
phonon modes in barrier~well! phonon energy range.
c-
ld
b-
n
m

nt
e
e

well width, a56 nm. We use this electron energy spectru
for all scattering rate calculations represented here neglec
the perturbing action of heterointerface~3! onto the electron
wave functions in the quantum well. For barrier widthb.2
nm, this approximation is quite reasonable due to the h
energy band offsetsDc,v at the AlAs/GaAs heterointerfac
and, consequently, due to the small penetration of the e
tron wave function into the barrier region even for hig
energetic states in the second subband.

III. SCATTERING RATES

For a heterostructure with large barrier widthb@a, the
rates for intrawell scattering processes should be close to
rates in a single quantum well. Parity-selection rules for
ner interface mode scattering hold strictly in this limit. Thu
symmetric inner interface and even-parity confined mo
dominate in the intrasubband scattering, whereas antis
metric inner interface and odd-parity confined modes c
tribute primarily to the intersubband transitions. For largeb,
the outer interface mode locates at the remote heterointer
~3! and cannot participate in intrawell electron transitio
because of the small overlap with the electron states. H
ever, if the well and barrier layer dimensions are compara
the outer mode scattering becomes dominant in accorda
with growing overlap integral and as a result of the high
coupling constant. Correspondingly, the scattering rates
the inner interface modes diminish since these modes sw
to the barrier layer. Figure 4 illustrates this behavior for
trasubband 2–2 and intersubband 2–1 electron transiti
Here, scattering rates by interface optical phonons are re
sented as functions of the barrier width. The scattering rat
computed using the Fermi golden rule. The electron kine
energy has been chosen so thatE2560 meV in order to
include the interaction with all possible interface modes. F
ure 5 shows the energy dependence of the total intrasubb
1–1 scattering rates for heterostructures withb53, 6, and 12
nm ~curve 1!. It is readily seen that the previously mentione

FIG. 4. Scattering rates by the interface phonon modes as functions o
barrier widthb at room temperature:„a… intrasubband 2–2 transitions;„b…

intersubband 2–1 transitions. Initial electron kinetic energy in 2nd subb
is E2560 meV. The combined scattering rates by both GaAs-like and Al
like modes are represented here.
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mutual redistribution of the outer and inner phonon mod
makes the total interface phonon scattering rate practic
independent of barrier width over the entire range of elect
kinetic energy.

A qualitative explanation of this result may be related
the sum rule established for the electron–phonon interac
in heterostructures.3,12,19 Inasmuch as the wave functions
initial and final electron states are confined in the same la
of the heterostructure~quantum well layer in this case! we
can divide the total of the squared matrix elements for
scattering processes into two parts, corresponding to the
teraction with the interface and confined phonons:

(
all modes

uMmu25 (
interface

uMi~a,b!u2

1 (
confined

uMc~a!u25(
bulk

uMb~a!u2 ~10!

Neglecting the phonon energy dispersion, this total should
the same for any complete and orthogonal set of pho

FIG. 5. Total scattering rates for intrasubband 1–1 transitions as functio
electron kinetic energy in different phonon spectrum models. For the
when all the interface and confined modes of the heterostructure are
into account, the curves are labeled by values of the barrier widthb53, 6
and 12 nm.
s
ly
n

n

er

e
in-

e
n

modes; in particular, it equals the sum of matrix elements
the interaction with effective LO bulk phonons. Howeve
for confined electron states, neither the second sum nor
right-hand side of Equation~10! depends on the barrier widt
b because of the strong damping of electron states in
barrier region. Consequently, we can expect the first sum~for
interface modes! to be independent ofb as well. It is worth
emphasizing that for the interwell or the phonon assis
escape processes the situation can be quite different e
cially in the case of resonance transitions.5,15 Here, the
proper design of the phonon potential distribution for a giv
barrier width may appear necessarily to achieve high s
band depopulation rate.

For injected and/or hot electrons in the active quant
well of the laser heterostructure, the electron kinetic ene
is usually comparable with the LO phonon energy. The c
dition Ekin'\vph separates active and passive regions
accordance with the optical phonon emission process
determines the electron distribution function in the lo
concentration limit.20 It is important to realize that just in this
electron energy range we cannot substitute the complex p
non spectrum of the heterostructure with bulk phonons
any constituent material. In Fig. 5 we compare the intras
band 1–1 scattering rates calculated for three different p
non spectrum models. Here, curve 1 represents the total
tering rate due to the combined action of all interfac
confined, and barrier phonon modes in the heterostruct
with different values of barrier width,b. Two other curves
have been obtained by approximating the complex pho
spectrum of the heterostructure with bulk phonons of w
~curve 2! or barrier~curve 3! material. In the electron energ
range where the phonon energy is crucial for the scatte
rate value, the results of the three models differ significan
Only if the electron kinetic energy exceeds the highest p
non energy in the system can we use the quasibulk appr
mation suggesting some intermediate composition for the
fective bulk semiconductor material.19 The basis of this
approximation is that the total of the matrix elements alwa
falls between the corresponding values for bulk well a
bulk barrier materials;12 this situation is illustrated in Fig. 6
It is seen, however, that this total is substantially different
different values of the phonon wave vectorq. Therefore,
since the emission scattering rates for different phon
modes depend on the phonon energy stepwise, we ca
choose the unique effective quasibulk approximation in
whole range of different scattering processes and have to
a more complex phonon spectrum. In this article, we ha
shown that for the three-interface heterostructures, an
equate model of the phonon spectrum is given by the pho
spectrum of a single quantum well.

IV. CONCLUSIONS

Polar electron–optical–phonon interaction in an asy
metric three-interface heterostructure—quantum well p
adjusted barrier layer of finite width,b—has been studied
The interface phonon spectrum of this system is found
consist of three basic types of modes. Two of the interfa
modes in the limit of the large barrier width can be related
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symmetric and antisymmetric solutions for an isolated qu
tum well and have similar dispersion. The third interfa
mode represents a symmetrized linear combination of sin
interface modes of the outer heterointerfaces. We h
shown that the individual phonon potential distributions
the three-interface heterostructure are substantially mod
when changing layer dimensions. The decrease of the ba
width, b, gives rise to the redistribution of the outer interfa
mode potential from the right outer interface~between bar-
rier layer and half-space narrow gap semiconductor! toward
the left outer interface~between barrier half-space and we
layer!. At the same time, both inner phonon modes switch
the barrier layer simultaneously changing their symme
We have found that this mutual redistribution of interfa
modes keeps the total electron–optical–phonon scatte
rate practically unchanged for initial and final electron sta
localized in the quantum well region. This enables us to
the simpler phonon spectrum of a single quantum well
the analysis of intrawell electron relaxation in the thre
interface heterostructures used in cascade laser design.
interesting to note that this approximation holds true over
entire electron kinetic energy range, including the reg
where the difference in energy between GaAs-like and AlA
like optical phonon modes is crucial for scattering rate v
ues. This fact can be explained from the traditional vie
point of the sum rule for electron–phonon interaction
heterostructures. The applicability of the sum rule for sc
tering rate calculation has been examined also by compa
the total scattering rate by all interface and confined opt
phonons with the results obtained in the quasibulk appro
mation for the phonon spectrum. We show that in the cas
injected or hot electrons with kinetic energy comparable
the typical energy of optical phonons, the quasibulk appro
mation cannot be used for accurate calculation of
electron–phonon scattering rates in heterostructures.

FIG. 6. Scattering matrix elements as functions of phonon wave vectorq for
intrasubband 1–1 transitions. The sum of all matrix elements„1… falls be-
tween the corresponding values for bulk well„2… and bulk barrier„3…

phonons. All matrix elements are normalized to the value of bulk Ga
matrix element at smallq. Initial electron kinetic energy in the 1st subban
is E1560 meV. Abbreviations: IS~A!—inner symmetric~antisymmetric! in-
terface mode; O—outer interface mode; C—the total of barrier and w
confined modes.
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APPENDIX

In the dielectric continuum model, the electrostatic p
tential of an interface polar optical mode satisfies the Lapl
equation in each layeri ; therefore, thez dependence of the
potential envelopes can be represented by the functionf (z)
from ~6!. The continuity conditions for the electrostatic p
tential and the normal component of electrical displaceme

f i~zi !5 f i 21~zi !; « i

]

]z
f i~zi !5« i 21

]

]z
f i 21~zi ! ~A1!

may be then written in a simple matrix form,16

F 1 e2qdi

2« i « ie
2qdi

G S Ci ,1

Ci ,2
D

5F e2qdi 21 1

2« i 21e2qdi 21 « i 21
G S Ci 21,1

Ci 21,2
D , ~A2!

wheredi5zi 112zi . The transfer matrix is defined as

Ci5Qi~zi !Ci 21 . ~A3!

After imposing the boundary conditions,C0,15C3,250, we
obtain the dispersion equation for interface modes,

@Q1~z1!Q2~z2!Q3~z3!#2250. ~A4!

For a three-interface heterostructure with«05«25«b(v)
and «15«35«w(v), after some straightforward algebra w
arrive at relations~2!–~4!.

Potential distributions~6! for interface modes are the
easily obtained using boundary conditionC0,251 and rela-
tion ~A3!. The proper normalization of the phonon potentia
is achieved through the ordinary quantization procedure
lattice displacements,9

Um,q5(
i

S \V i

2m ivm~q!
D 1/2

eiqr

AS
vm,i~z!~ âm,q1âm,2q

1 !;

~A5!

(
i
E

zi

zi 11
dzuvm,i~z!u251

and the relation between the displacement and the pote
fields in the Born–Huang theory

Em,i52¹S eiqr

AS
wm,i~z!D 5

m i

ei*
~v t,i

2 2vm,i
2 !Umi . ~A6!

HereV i ,m i , andei* are, respectively, the volume, reduce
ion mass and effective charge of the elementary unit cel
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