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5.1  INTRODUCTION 
 

 Quantum mechanics underpins all of semiconductor physics at both the atomic level of 

electrons interacting with the periodic potential of the semiconductor material and at the 

envelope function level appropriate, for example, to metal-semiconductor contacts or metal-

oxide-semiconductor interfaces.  Still, the vast majority of semiconductor devices can be treated 

as classical systems of carriers near equilibrium.  Thus, in bipolar and field effect transistors, 

quantum and hot-electron effects manifest themselves either as minor corrections to the 

fundamentally classical operation principles or as undesirable phenomena that limit device 

performance and reliability.  The past two decades have witnessed considerable research interest 

and effort in semiconductor structures that could exploit quantum and hot-electron phenomena to 

perform circuit functions.  Even though, to date, none of these structures has evolved beyond 

laboratory demonstration, continuing interest in the device research community has been 

maintained by several mutually-reinforcing factors. 

 First, there exists near-universal recognition that transistor-based microelectronics, the basis 

of all modern computing and much of modern communications, will at some point cease to 

improve at the device level.  The current evolution of silicon technology towards ever-denser 

design of ever-faster devices is following a virtually one-dimensional path: the scaling of device 

dimensions by reducing the minimal size of lithographic features.  Lithography-driven 

performance gains can be expected to continue for the next one or two decades.  Smaller device 

dimensions will yield faster carrier transit times at lower operating voltages and currents, leading 

to higher maximum frequencies at lower power per device.1  This evolution faces numerous 

technological hurdles, described elsewhere in this book — from currently unavailable deep-

submicron lithographic techniques with sufficient throughput to the wiring delays and power 
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dissipation problems anticipated in future microelectronic circuits.  Another constraint is the 

rapidly escalating fabrication costs that may divert investment in device-level technology to the 

more profitable software and circuit-design arena.  However, even if both the technological and 

economic constraints are overcome, it appears evident that device-level performance 

enhancement — higher speeds, lower power consumption, or increased device functionality — 

will require new operational concepts.  As described elsewhere in this book, the minimum 

critical dimension (channel length L) of a scaled Si MOSFET operated at room temperature 

bottoms out not too far below L ≈ 0.1 µm.   

 The second, related reason for the continued interest in quantum mechanical and hot-electron 

phenomena has been their deleterious effect on the operation of semiconductor devices even 

before the scaling limit is reached.  Thus, as the oxide thickness d in complementary metal-

oxide-semiconductor (CMOS) technology is scaled down to accommodate shorter L, electron 

tunneling into the oxide conduction band leads to leakage current that eventually results in gate 

breakdown.  Further, at the smallest oxide thickness, d ≈ 30 Å, required near the L ≈ 0.1 µm 

scaling limit, direct tunneling from the MOSFET inversion layer into the gate is expected to 

become a limiting factor.  Similarly, carrier heating near the drain junction due to the high lateral 

electric fields is a principal reliability issue, since hot carriers interact with the oxide and degrade 

the device lifetime.  The anticipated importance of these constraints on the reliability of highly 

dense microelectronic circuitry of the next several generations has prompted much research on 

the phenomenology of tunneling and carrier heating in semiconductor devices, as described in 

Chapter 3.  While much of the effort has concentrated on sidestepping these effects on the road to 

the scaling limit, the device know-how aimed at characterizing and controlling tunneling and 

carrier heating has also been applied to devices based on precisely such effects. 

 The final and perhaps most important factor driving active research in quantum-effect and 

hot-electron devices is the rapidly expanding semiconductor bandgap-engineering capability 

provided by modern epitaxy.  Molecular beam epitaxy (MBE) and metalorganic chemical vapor 

deposition (MOCVD) of III-V semiconductors, silicon, and silicon-based alloys (SiGe, SiGeC) 
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provide exceptional control over semiconductor layer thickness, doping, and composition.  This 

control gives the device designer unprecedented freedom in specifying regions of carrier 

localization and transport, tailored electric fields and potential barriers, and precise amounts of 

built-in strain.  Thus, near-monolayer layer control has introduced size quantization, reduced 

dimensionality of carriers and the many attendant effects — from changes in the density of states 

to high carrier mobilities produced by modulation doping — into the parameter space of 

proposed devices.  Further progress on bandgap engineering in directions other than the epitaxy 

axis, either via conventional processing in the deep submicron regime or via additional epitaxial 

regrowth on nonplanar substrates, is a subject of much current research.  This research promises 

to extend device physics to full two- or three-dimensional quantum confinement (quantum wires 

and dots).  Multi-dimensional confinement in these low-dimensional structures has long been 

predicted to alter significantly the transport and optical properties compared to the bulk or planar 

heterostructure results.2  More recently, the effects of charge quantization on transport in small 

semiconductor quantum dots3 have stimulated much research in single-electron devices, in which 

the transfer of a single electron is sufficient to control the device. 

 Having briefly enumerated the scientific and technological factors that have been driving 

quantum-effect and hot-electron device research, let us turn to the performance advantages that 

such devices offer, at least in theory.  Speed is often cited as a primary benefit.  Quantum 

mechanical tunneling, on which most quantum-effect devices rely, is an intrinsically fast process.   

Analogously, many hot-electron devices employ ballistic transport of carriers moving at 

velocities considerably in excess of the Fermi velocity vF.  However, the very high speeds 

achieved in the active regions of the device often do not translate directly into device 

performance because of various delays elsewhere — for example, the RC time delays that 

accompany electrode biasing.  Frequently, a more significant advantage is the higher 

functionality of quantum and hot-electron devices, that is their capability to perform an operation 

with a greatly reduced device count.  Higher functionality is made possible either by strong, 

tunable nonlinearities in their current-voltage (I-V) characteristics or by unusual electrode 
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symmetries.  As a result, these devices can perform relatively complex circuit functions, 

replacing large numbers of transistors or passive circuit components.  Examples covered in this 

chapter include multistate memory and logic implementations using small numbers of tunneling 

devices, as well as single-device logic gates fashioned from three-terminal real-space transfer 

devices. 

 Finally, although quantum-effect and hot-electron devices face a long struggle with room-

temperature operation and large-scale integration before they become technologically viable for  

general-purpose semiconductor circuitry, even today they appear poised to take over in certain 

niche applications.  Thus, the extreme constraints on device uniformity and operating 

temperature inherent in single-electron devices may render them ill-suited for large-scale logic, 

but the robustness of charge quantization effects in a single device at cryogenic temperatures 

appears ideal for extremely precise current sources in metrological applications.  Similarly, the 

recently demonstrated quantum-cascade laser requires stringent epitaxial precision at the limit of 

MBE capabilities, but the absence of competing semiconductor lasers in the near-infrared makes 

it technologically attractive all the same. 

 In this chapter, the basic device structures and operating principles are discussed in Sections 

5.2 and 5.3 for quantum-effect and hot-electron devices respectively.  These sections also include 

a simple introduction to the underlying physics of quantization effects on the carrier density of 

states and quantum mechanical tunneling, as well as hot-carrier production, ballistic transport, 

and real-space transfer.  The various proposed device implementations — ranging from 

memories and logic circuits, to specialized applications — are presented in Section 5.4.  The 

chapter concludes with a brief overview of the prospects of quantum-effect and hot-electron 

devices, incorporating both the positive impact of probable technological advances and the 

anticipated capabilities of the rapidly evolving silicon technology. 
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5.2  RESONANT TUNNELING (RT) STRUCTURES 
 

 5.2.1  Quantum Mechanical Tunneling 

 The resonant tunneling mechanism arises from two quantum mechanical consequences of the 

Schrödinger equation that have no classical analog.  First, if a particle is confined by some 

potential V(r) on a scale comparable to its de Broglie wavelength, the particle's momentum k is 

quantized.  The continuous energy spectrum E(k) = 2k2/2m corresponding to free motion (m is 

the particle mass) is broken up into energy subbands En(k).  Second, as long as the confining 

potential V(r) is not infinite, the particle has a finite probability of being in the classically 

forbidden region, where its energy E is lower than the local value of the potential.  Both of these 

effects are most easily illustrated in the case of one-dimensional (1D) motion in a finite potential 

well of width LW and height V(z) = V0 (|z| ≥ LW/2) shown in Fig. 1a.  The 1D Schrödinger 

equation for the wavefunction χ(z) can be written as follows, 
 

  
H χ(z) = [             + V(z) ] χ(z)   = E χ(z) -      

2m
2

2
d 
dz

2
,
 

(1)
 

where H is the Hamiltonian defined by the terms in the square brackets and  is the reduced 

Planck's constant.  Equation 1 can be solved in each of the three regions and by imposing 

continuity conditions on χ(z) and dχ/dz one obtains discrete energy levels En, as well as the 

explicit form of the corresponding χn(z).  The normalized χn(z) are related to the probability of 

finding the particle at some coordinate z = z0 by P(z0) = |χ(z0)|2.  In the infinite potential well 

limit (V0 ∅ ), the eigenfunctions χn(z) must go to zero at |z| = LW/2 and the energy levels are 

given by 
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E  =  š  n  

2m L
2

2

2 2

W
n

 
,
 

(2)
 

where n is an integer.  In the more relevant finite potential well case of Fig. 1a, one finds (cf. 

Problem 1) that the well contains a finite number of energy levels En, which do not have the 

rapidly increasing n2 dependence on level number (every 1D potential well contains at least one 

level).  Furthermore, the corresponding wavefunctions χn(z) penetrate into the potential barriers 

according to 
 

  
χ (z)    e-κ  |z|n

n ˜  
(3)

 

where κn = [2m(V0 - En)/ 2]1/2 and the other mathematically possible solution in the barrier, χn(z) 

˜ eκn|z| can be excluded on the physical grounds that it diverges as |z| ∅ .  Although the barrier 

penetration is described by an exponentially decreasing function, Eq. 3 implies that a carrier in 

the state characterized by χn(z) has a finite probability of being found in the classically forbidden 

barrier region |z| > LW/2.   

 A similar treatment of a particle characterized by kinetic energy E incident from one side on a 

1D potential barrier of finite height V0 and width LB, shown in Fig. 1b, suffices to illustrate the 

basic mechanism of quantum mechanical tunneling.  Classically, if E < V0 the particle would be 

reflected regardless of barrier width, but barrier penetration analogous to Eq. 3 ensures a finite 

transmission probability T(E) that depends on V0 and LB.  Indeed, the solutions of the 

Schrödinger equation to the left of the barrier, z < 0, 
 

  
χ(z)     Ae     + Beikz          -ikz

˜  
(4)

 
where A and B are constants, can be naturally associated with the incident (χ(z) ˜ Aeikz) and 

reflected (χ(z) ˜ Be-ikz) particles.  The analogous solutions to the right of the barrier, z > LB, can 

be taken as χ(z) ˜ Ceikz, where C is a constant and we assume that the particle was originally 

incident from the left.  Solving the Schrödinger equation in the barrier region, 0 ≤ z ≤ LB and 

imposing the continuity conditions at the barrier boundaries, one associates the ratios |B/A|2 and 

|C/A|2 with reflection R(E) and transmission T(E) probabilities respectively,4 with R + T = 1.  The 
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result is that if the incident energy E is such that e-κLB << 1, where κ = [2m(V0 - E)/ 2]1/2, the 

transmission probability is approximately (cf. Problem 2): 
 

  T(E) - e -2κLB  (5) 

 It is apparent from Eq. 5 that in the single barrier case the transmission probability T(E) for E 

< V0 is a monotonically increasing function of incident energy E.  This rather uninspiring result 

changes drastically when the same particle is incident on two potential barriers separated by the 

well of width LW, as shown in Fig. 2a.  The explicit double-barrier transmission T(E) probability 

can be obtained5 by repeated application of Eq. 1, but it is instructive to consider the physics of 

the situation.  Unless the potential barriers are very narrow or the energy of a state approaches 

V0, the energy levels in the quantum well will coincide approximately with those of the finite 

potential well in Fig. 1a.  On the other hand, semiclassically4 a particle occupying one the energy 

levels En oscillates between the barriers with velocity vz = kz/m and, in effect, is incident on a 

barrier twice in each period of oscillation 2LW/vz.  Every incidence involves some probability 

T(En) of tunneling out of the double-barrier confining potential, making the energy levels 

metastable with a finite lifetime τn with respect to tunneling out, and hence a finite energy width 

∆En = /τn (Problem 3).   

 If a particle is incident on the double-barrier potential with energy E that does not coincide 

with one of the levels En, the total transmission probability is given by the product of the 

individual transmission probabilities of the first (emitter) and second (collector) barriers, T(E) = 

TETC — an exponentially small quantity given reasonably opaque barriers with TE, TC << 1.  On 

the other hand, if the incident energy matches one of the energy levels En, the amplitude of the 

wavefunction builds up in the well as the reflected waves cancel, just as in a Fabry-Perot 

resonator, and the resulting transmission probability5 

  
T(E=E ) = 

  4T  T 
(T  + T )

E C

E C
2n
 

(6)
 

reaches unity in a symmetric structure with TE = TC.  Hence, the transmission probability T(E) is 

a sharply peaked function of incident energy, illustrated in Fig. 2b, with the energy width of the 
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transmission peaks obtaining from finite lifetime of the discrete levels.4 

 In principle, an imaginary ideal device where monoenergetic 1D particles impinge on a 

double-barrier potential, whose energy levels En are tunable by some voltage V, would exhibit a 

sharply peaked current-voltage I-V characteristic, replicating the T(E) shown in Fig. 2b.  Several 

constituent parts of such a device can be implemented in semiconductors.  As discussed 

elsewhere in this book, semiconductor heterostructures can provide the required double-barrier 

potential.  To a good approximation, electrons and holes in direct-gap semiconductors like GaAs 

obey parabolic dispersions of the form E = 2k2/2m*, differing from free electrons only by virtue 

of the effective mass m* rather than the free electron mass m0.  On the other hand, monoenergetic 

carrier distributions and independent voltage control of T(E) are more difficult to arrange.  But an 

even more fundamental difference between the idealized 1D scenario described by Eqs. 1 to 6 

and semiconductor heterostructures lies in the existence of other spatial degrees of freedom.  

True 1D wires, where carrier dispersion is given by Eq. 1, are difficult to fabricate and even more 

difficult to use, because they are limited in their current-carrying capacity.  Instead, a typical 

semiconductor implementation of the structure in Fig. 2a has the double-barrier potential along 

the epitaxial direction V(z), with free transverse motion in the (x, y) plane.  If the in-plane motion 

can be separated from motion along the epitaxial (tunneling) direction, the total wavefunction 

Ψ(r) of an electron in one of the metastable quantum well levels χn(z) depends on in-plane 

momentum k⊥ and can be written as 
 

  
Ψ    (r) = N χ (z) e ik  r  ⊥⊥

.
n,k⊥ n  (7) 

where N is a normalization factor.  Given an isotropic effective mass, the corresponding total 

energy is given by 
 

  
E = E  +       

  2m*

2k2
⊥

n .
 

(8)
 

Equation 8 indicates that each of the quantized energy levels gives rise to a subband and, in 

contrast to the 1D situation, there are no gaps in the energy spectrum above the lowest-lying 
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subband E1.  An electron at an energy E > En can belong to any of the n subbands from E1, in 

which case it would have a large in-plane kinetic energy) to En.  Further, in the presence of 

scattering, the degenerate states belonging to different subbands become mixed and the 

factorization of the wavefunction in Eq. 7 generally breaks down.  However, since the coupling 

between degenerate states belonging to different subbands involves a finite change in k⊥, the 

single-subband states χn(z) may be sufficiently long-lived to treat their coupling as a perturbation 

leading to intersubband scattering. 

 The in-plane motion drastically changes the effective densities of states both in the quantum 

well and in the regions outside the double-barrier potential, |z| > (LW + 2LB)/2.  Instead of 

discrete levels in the well, each subband En contributes a constant 2D density of states, g2D(E) = 

m*/π 2.  At the same time, in real devices the tunneling carriers arrive from carrier reservoirs 

outside the double-barrier potential.  Typically, the states in the emitter and collector carrier 

reservoirs can be taken as 3D.  As discussed in Appendix A, the appropriate 3D density of states 

is 
 

  
g   (E) =              E  (2m*)    

2š  2
3/2

3
1/23D

 
(9)

 

and one can determine the Fermi level EF in the reservoir in terms of the 3D carrier density n3D, 

temperature T, and the Fermi-Dirac occupational probability fFD(E): 
 

  n     =  � g   (E) f   (E-E ) dE,     f   (E) = (e     + 1)-E/kT           -1
3D

3D
FD F FD  . (10) 

 Instead of the idealized monoenergetic 1D carriers, the incident particles will have a 

relatively broad energy distribution of at least EF in the simplest case of degenerately doped 

electron tunneling reservoirs at low temperatures, such that EF separates occupied from 

unoccupied states in the emitter.  As long as the factorization of the wavefunction into in-plane 

and tunneling-direction components remains valid, in-plane degrees of freedom do not 

complicate the situation unduly.  The in-plane momentum k⊥ remains a constant of motion that is 

conserved as the carrier tunnels from the emitter reservoir through the 2D subbands En with a 
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transmission probability T(Ez) that depends on the energy of motion in the tunneling direction Ez.  

The total tunneling current density J can be computed by integrating over the electron 

distribution in the emitter reservoir: 
 

  
J =        � N(E ) T (E ) dE      e     

  2š z zz

 
(11)

 

where N(Ez) is the number of electrons with the same Ez per unit area.  At a given temperature T, 

the quantity N(Ez) is easily evaluated by integrating the product of the constant 2D density of 

states g2D(E) (see Appendix A) with the Fermi-Dirac occupational probability fFD(E), yielding 
  

  
N(E ) =              ln[1 + e          ](E  - E )/kT  F      z       kT m*     

     š 2z
 
.
 

(12)
 

While these equations are a reasonable starting point for considering realistic semiconductor 

resonant tunneling (RT) structures, it is important to recognize that their validity depends to a 

great extent on the absence of scattering.  Clearly, even in the 1D picture of Fig. 2, the build-up 

of near-unity transmission probabilities of Eq. 6 by the Fabry-Perot mechanism requires the 

electron to retain phase coherence over a very large number of bounces (proportional to (TE + 

TC)-1, the inverse of the single-barrier transmission coefficients6).  The phases of the many 

multiply reflected amplitudes combining to cancel the net reflected wave.  Any interaction that 

changes the phase of the wavefunction, whether elastic — like impurity scattering. or inelastic — 

like scattering by phonons or other electrons, will destroy the overall cancellation of the reflected 

wave.  In a realistic three-dimensional structure with in-plane degrees of freedom, elastic 

impurity scattering relaxes k⊥ conservation.  More generally, scattering unavoidably mixes in-

plane and tunneling direction motion, qualitatively changing the wavefunction penetration into 

the barrier.7  In the absence of scattering, in-plane motion is separable from tunneling.  The wave-

function penetration into the barrier then depends on the quantized energy of motion En in the 

tunneling direction, regardless of the in-plane kinetic energy 2k⊥
2/2m*.  Extending Eq. 3 to the 

case of a more general barrier potential V(z), one finds: 
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Ψ (r)    exp[- � {2m*(V(z) - E  )   } dz ]-1

n ˜
1/2

n
 

(13)
  

Scattering mixes in-plane motion with tunneling and barrier penetration asymptotically 

approaches 
 

  
Ψ (r)    exp[- � {2m*(V(z) - E )   } dz ]-1

n ˜
1/2

 
(14)

 

where the energy that enters into the exponential decay of the wavefunction is the total energy E 

= En + 2k⊥
2/2m*.  The transition from Eq. 13 to Eq. 14 is described by a pre-exponential factor 

that depends on the specific scattering mechanism.7 

 All of the effects associated with scattering and limited phase coherence significantly alter 

the idealized sharply peaked current-voltage I-V characteristic that we would obtain from the 

ideal transmission through the double-barrier potential illustrated in Fig. 2.  The many orders of 

magnitude peak-to-valley ratios predicted by coherent T(E) calculations have not been observed 

experimentally in double-barrier RT structures, even at low temperatures.  In fact, in realistic 

semiconductor RT structures, scattering limitations, and the energy width of the incident electron 

distributions are such that an alternative sequential tunneling model8 predicts the I-V 

characteristics equally well.  In this model, current transport is described by carriers tunneling 

into the 2D density of states in the well followed by uncorrelated tunneling out into the collector.  

The I-V  nonlinearities arise from E and k⊥ conservation without recourse to near-unity 

transmission coefficients of the double-barrier potential in the coherent limit.  These issues, as 

well as other effects that become relevant in optimizing RT structures for device applications, 

such as maximizing peak current densities or reducing the temperature sensitivity of the I-V 

characteristics, are discussed in the next section. 

 

 5.2.2  Two-Terminal RT Structures 

 The first experimental realization of the double-barrier RT device using semiconductor 

heterostructures dates back to 1974, when current peaks corresponding to electrons tunneling 

through the lowest two subbands in a GaAs quantum well confined by AlxGa1-xAs barriers were 
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observed at low temperatures.9  Improvements in epitaxial material quality and device design 

since then have led to RT diodes with very sharp low-temperature I-V characteristics,10 as 

illustrated in Fig. 3.  The inset of Fig. 3 shows the epitaxial layer sequence of the device, with 

AlxGa1-xAs barriers, a narrow LW = 56 Å GaAs well and heavily doped (ND = 2x1017 cm-3) n+-

GaAs electrodes.  The device exhibits a strong negative differential resistance (NDR) 

characteristic above the peak (V > VP) of the I-V curve with the peak-to-valley current ratio 

(PVR) reaching ˜30 at low temperatures.  Still, the measured PVR and overall I-V lineshape are 

quite different from the theoretical prediction of Fig. 2b based on the calculated coherent 

transmission coefficient T(E).  The valley current is much larger than predicted by simple theory 

because of nonresonant processes, such as scattering or phonon-assisted tunneling.  It turns out 

that coherence and the Fabry-Perot model are not required to explain the I-V characteristics of 

realistic RT structures.  It suffices to impose energy E and transverse momentum k⊥ conservation 

on carriers tunneling into the 2D subband En, with the only constraint imposed on the coherence 

of the oscillating wavefunction in the well being that it should be sufficient to produce a well-

resolved 2D subband.  The tunneling out of the well into the collector may then occur in a second 

step that may be completely uncorrelated with the tunneling into the well, resulting in current 

transport by a sequential tunneling scheme. 

 The sequential tunneling model8 is illustrated in Fig. 4, using the n-AlxGa1-xAs/GaAs double-

barrier RT structure of Fig. 3 as an example.  At flatband, when no bias is applied to the device, 

the lowest 2D subband E1 in the well lies above the emitter EF, making E and k⊥ conserving 

tunneling into E1 states impossible.  As the bias V increases, E1 is lowered with respect to the 

emitter EF, as shown in the self-consistent potential distribution of Fig. 4.  Resonant tunneling 

becomes possible once the bias brings E1 into alignment with the occupied states in the emitter, 

at which point a subset of the occupied emitter states — their measure is denoted by the supply 

function N(V) — can tunnel into the well conserving both E and k⊥.  At low temperature, a 

simple geometrical evaluation of the supply function can be constructed by noting that the 

occupied states in the emitter can be characterized in terms of E and k⊥ as follows, 
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E = E  +             ,    0 Š E  Š E        

  2m*

2k2
⊥

z z F
 

(15)
 

whereas the available states in the well lie on a single dispersion E = E1(V) + 2k⊥
2/2m*.  Taking 

the bottom of occupied states in the emitter as the energy reference, the emitter states form a 

parabolic solid of revolution in (E—k⊥) phase space, filled up to EF with carriers.  The supply 

function can be geometrically described by the intersection of the available 2D states in the well 

and the occupied emitter states, see Fig. 4.  It can be easily shown (cf. Problem 4) that N(V) ˜ [EF 

- E1(V)] as long as E1(V) does not fall below the bottom of the occupied states in the emitter, at 

which point the supply function drops to zero.  The current into the well due to E and k⊥ 

conserving tunneling is given by 

  
J =        N(V)T  (V ) E

    q     
  2š   

(16)
 

to which one must add all other current components.  Examples of additional current components 

are direct tunneling into collector states through both barriers (J ˜ TETC), phonon-assisted 

tunneling, impurity or interface roughness-assisted tunneling that conserves E but not k⊥, and so 

forth.  In addition, at sufficiently high V tunneling through the second 2D subband E2 also 

becomes possible.  Those current components that are not cut off by k⊥ conservation once E1(V) 

is biased below the emitter states contribute to the valley current.  For example, the strong 

electron-optical phonon coupling in GaAs leads to a phonon-assisted replica peak when E1(V) is 

biased below the bottom of the occupied states in the emitter by optical phonon energy ωopt = 36 

meV.11  The quantitative modeling of nonresonant current components is not well developed and 

typically relies on adjustable parameters.12  This is unfortunate since the valley current plays an 

important role in the minimum power dissipation of RT-based devices. 

 According to the sequential tunneling model, the relevant transmission coefficient that 

determines the current density is TE (typically, TE << 1) and the NDR is a consequence of E and 

k⊥ conservation that governs carrier tunneling into the well.  In contrast, the idealized coherent 

model of resonant tunneling involves the total transmission coefficient T(Ez) of the double-
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barrier potential given by Eq. 6, which goes to unity if the emitter and collector barrier 

transmission coefficients are equal, TE = TC, at operating bias V ≈ VP.  Surprising though it might 

appear, the two models predict essentially the same I-V characteristics for realistic RT structures, 

in which both the bias required to observe the current peak VP and the width of the tunneling 

carrier energy distribution EF are much larger than the 2D level widths ∆En.6,13  The essential 

point is that while the total transmission coefficient T(Ez) of the coherent model is exponentially 

large compared to the single barrier coefficients, it is also exponentially narrow as shown in Fig. 

2b.  Indeed, if the incident energy Ez is close to matching a 2D subband energy En, the 

transmission coefficient of Eq. 5 can be expanded in terms of the small parameter (Ez - En) as 

follows,13 
 

  
T(E   E ) -              

  4T  T 
(T  + T )

E C

E C
2n˜

        ² E   
(E - E )   + ² E

n

n
2

2

2
n

z
z  

(17)
 

where ∆En = /τn is the lifetime of subband En with respect to tunneling out.  The total current 

through the device is obtained by averaging over Eq. 17.  Since EF >> ∆En, the Lorentzian factor 

in Eq. (17) reduces to a δ-function,* π∆En δ(Ez-En).  The δ-function, in turn, cancels one of the 

(TE + TC) factors in the denominator of Eq. 17, reducing the average transmission coefficient for 

the carrier ensemble.  To first order, the  two pictures predict the same current density,13 except 

in exotic limits.**  Hence, the choice of coherent or sequential tunneling model might appear 

immaterial.  However, the geometric interpretation of Fig. 4 implicit in the sequential model is 

useful in predicting the I-V characteristics of more complicated structures, for instance those with 

nonparabolic in-plane carrier dispersions E(k⊥) or different dispersions in the emitter and well 

(cf. Problem 5).  More importantly, the sequential tunneling approach provides a more natural 

framework for discussing three-terminal RT structures that rely on the NDR in the I-V 

characteristics provided by tunneling into a restricted density of states in a quantum well without 

an attendant second tunneling step.  For this reason, the subsequent discussion will be based on 

the sequential tunneling model. 

 With the exception of direct tunneling to the collector through both barriers, all of the various 
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current components and particularly the E and k⊥ conserving term of Eq. 16 depend sensitively 

on the alignment of the 2D subbands with the occupied states in the emitter.  Yet in a standard, 

vertical two-terminal implementation of RT structures, this alignment can only be controlled by 

changing the applied bias V, only a fraction of which lowers the 2D subbands (see Fig. 4).  If one 

ignores the penetration of the electric field into the emitter and collector regions, one 

immediately obtains 

______________________________________________________________________________ 

* Here we make use of the well-known identity, 
lim                 = š δ(x)

² → 0
² 

x  + ² 22
.
  

______________________________________________________________________________ 
** In a hypothetical device where either EF or qVP < ∆En the situation would be different, with 
the coherent model predicting much greater current densities.14  Such RT structures have not been 
realized to date.  
______________________________________________________________________________ 

that VP(n) = 2En (see Problem 4).  This frequently cited result typically fails to describe realistic 

double-barrier RT structures, where undoped spacer regions around the double-barrier structure 

and relatively low electrode doping lead to significant potential drops in the emitter and collector 

regions.  This is especially pertinent to RT devices designed for high-frequency operation, where 

low emitter-collector capacitance is often achieved by a large collector spacer region.15  A self-

consistent calculation of the potential distribution over the device, including the voltage drops in 

the accumulation and depletion regions as shown in Fig. 4, is therefore necessary to predict VP(n) 

as a function of device parameters.  An additional complication is the dynamically stored charge 

density σW in the well under bias, given by 

  σW = Jτn (18) 

where τn is the lifetime for subband En.  The effect of σW is to increase the electric field in the 

second barrier and hence reduce the bias-induced lowering of the subbands En(V) for a given V.  

In double-barrier structures with symmetric barriers, σW is typically small because TC >> TE at VP 

and τn ˜ TC-1, since only tunneling out to the collector is possible under bias (see Fig. 4).  If the 

collector barrier is made larger, σW can be increased and in the case of highly asymmetric barriers 
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the result can be a bistable I-V characteristic shown in Fig. 5.  The arrows in Fig. 5, which is the 

other bias polarity I-V of the same RT device as in Fig. 3, indicate the direction of the bias sweep.  

If V is increased from flatband, VP occurs at a higher bias because of significant dynamic charge 

storage σW, whereas if the resonant alignment is approached by decreasing V from above VP, the 

valley current and hence σW is small and the I-V characteristic switches to the high-current 

branch at a lower bias.  In effect, the resulting intrinsically bistable I-V arises from the feedback 

of the dynamically stored charge in the well σW on the alignment of E1(V) with the occupied 

emitter states.16  At least in principle, the bistable I-V offers the possibility of constructing a 

single-device two-state semiconductor memory. 

 Double-barrier structures implemented in the n-AlGaAs/GaAs material system have been 

very useful in clarifying the relevant physics of resonant tunneling at low temperatures, but their 

I-V characteristics are less suitable for real electronic devices.  First, the sharp NDR characteristic 

offered by the RT structures needs to survive at room temperature.  At T = 300 K, the peak 

current density JP remains essentially unchanged, but the valley current is supplemented by 

thermionic emission over the barriers and thermally-assisted tunneling through higher-lying 

subbands.  At room temperature, both of these valley current components can significantly 

degrade the available PVR.  Clearly, thermionic emission over the barriers can be exponentially 

reduced by increasing the barrier height, which in the context of AlGaAs/GaAs heterostructures 

implies the use of pure AlAs barriers, maximizing V0.  Yet for high-speed operation there exists 

the conflicting requirement of maximizing JP, since high current densities are necessary for rapid 

charging of the various device and circuit capacitances — ideally JP ≥ 105 A/cm2.  The use of 

very narrow AlAs barriers is therefore indicated but, even so, thermally-assisted tunneling 

through higher-lying subbands remains a problem.  For this reason, the fastest reported 

GaAs/AlAs double-barrier RT oscillators17 with high JP ≈ 105 A/cm2 exhibit a room-temperature 

PVR of only 3. 

 A considerable improvement in the PVR and JP figures of merit in two-terminal RT devices 

has been obtained by moving to the n-In0.53Ga0.47As/AlAs material system, which is lattice 
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matched to InP substrates.  The physics of device operation is still described by Fig. 4, but the 

maximum barrier heights are larger and, more importantly, the lower m* of electrons in the 

InGaAs well leads to higher subband separation (E2 - E1).  The room temperature I-V 

characteristic of a double-barrier n-In0.53Ga0.47As/AlAs device is shown in Fig. 6, with JP > 105 

A/cm2 and PVR ≈ 8.18   This RT structure included a large undoped collector spacer region to 

reduce the emitter-collector capacitance, hence the high VP.  Because of the sharp NDR  when 

the device is biased beyond VP, the biasing circuit becomes unstable over a range of voltages VP 

< V ≤ 2.5 V.  The circuit oscillations are rectified by the RT device, leading to the characteristic 

discontinuous jumps in the I-V curve.19  Note that the AlAs barrier layers are not lattice matched 

to the substrate, but since their thickness can be kept very narrow, about three monolayers for the 

structure of Fig. 6, they can be deposited pseudomorphically without generating large numbers of 

dislocations.  Further improvements in the PVR of the first resonant peak can be obtained in this 

material system by growing a narrow InAs layer in the center of the InGaAs well, which has the 

effect of further separating the lowest two subbands (cf. Problem 6). 

 Another variant of two-terminal RT devices involves GaSb/AlSb/InAs heterostructures.  

These heterostructure are known as polytype because of their staggered bandgap alignment, 

wherein AlSb barriers separate the InAs conduction band from the GaSb valence band edges.20  

The schematic diagram of a double-barrier polytype RT structure with GaSb electrodes, AlSb 

barriers, and an InAs well is shown in Fig. 7.  Under bias, the current can be described in terms 

of holes tunneling from the GaSb emitter into the InAs well conserving E and k⊥ in the usual 

fashion — a geometrical evaluation of the supply function simply requires inverting the emitter 

dispersion in Fig. 4.21  The polytype structure represents an RT version of the Esaki tunnel diode.  

Its advantage  lies in the band-gap blocking beyond VP, since for V > VP the emitter states line up 

with the bandgap of the InAs well, as shown in Fig. 7b.  As a result, impurity-assisted k⊥-

nonconserving tunneling into the well is completely suppressed, removing one of the major 

valley current contributions (the band lineup is similar to the standard tunnel diode).  Very good 

PVR has been achieved in polytype structures, albeit at relatively modest peak current densities.  
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Further, since the bandgap blocking mechanism is independent of subband quantization in the 

well and the electron effective mass in InAs is very small, m* = 0.023m0, RT designs with very 

wide quantum wells LW ≈ 1000 Å are realizable without compromising PVR.22  

 Alongside other combinations of III-V semiconductors, RT structures have been fabricated in 

Si1-xGex/Si heterostructures.23  In addition to the availability of high-quality substrates and 

oxides, Si-based quantum-effect devices are interesting because of their potential integration with 

the dominant silicon technology.  Unfortunately, the lattice mismatch hinders the epitaxy of Si1-

xGex layers with large Ge contents and the available bandgap difference is rather small: in RT 

structures strained to Si substrates, a barrier V0 ≈ 200 meV is available in the valence band and 

no appreciable barrier appears in the conduction band.*  Because of low V0 and relatively small 

2D 
______________________________________________________________________________ 
* A conduction band barrier can be obtained in structures strained to Si1-xGex substrates (actually 
thick relaxed Si1-xGex buffer layers grown on Si substrates).  Low-temperature NDR has been 
observed in such n-Si1-xGex/Si RT structures.24 
______________________________________________________________________________  

subband separation in the Si1-xGex well, where heavy and light hole branches of the dispersion 

give rise to separate subbands, no room temperature NDR has been observed in p-Si1-xGex/Si RT 

structures to date, although PVR ≈ 4 has been observed at cryogenic temperatures.25  

Consequently, while the strained p-Si1-xGex/Si RT structures have been employed for 

spectroscopic probing of anisotropic hole dispersions26 and strain relaxation in microstructures,27 

the prospects of their integration into mainstream technology appear remote. 

 All of the RT structures discussed thus far had been produced by epitaxial growth of a 

sequence of layers, with the necessary double-barrier potential arising from the bandgap offsets 

of the heterostructure constituents.  While this approach has been the dominant one, there has 

been some research into fabricating lateral tunneling structures by depositing electrostatic gates 

on the surface of a modulation-doped 2D electron gas (2DEG) heterostructure.  By applying a 

gate potential VG with respect to the 2DEG, electrons can be electrostatically depleted underneath 

the gates (analogously to gate control of an FET).  Figure 8 shows a schematic diagram of a 
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lateral RT structure.  The potential advantages include: excellent electronic properties of the 

2DEG; tunability of the double-barrier potential by VG, including control over barrier asymmetry 

by separate gate control of the two barriers; and planar device layout, compatible with FET 

technology.  The main drawback is the relative weakness of the electrostatically created 

confining potentials in the plane of the 2DEG.  The minimum geometric separation of the metal 

gates is set by lithographic limitations and far exceeds the monolayer control available by 

epitaxial techniques.  Furthermore, regardless of the surface gate geometry, the double-barrier 

potential parameters LB, LW cannot be reduced below the spacer layer thickness (see Fig. 8).  

Finally, since the confining potential arises from the self-consistent electrostatics, the barrier 

height V0 produced in the plane of the 2DEG is proportional to barrier thickness LW — high 

barriers are necessarily broad.  Hence, the I-V characteristics of lateral RT structures produced by 

electrostatic gating exhibit weak NDR and only at cryogenic temperatures.28  If sharp confining 

barriers in a lateral RT structure could be produce by some means, interesting device possibilities 

would result.  An approach using epitaxial regrowth will be discussed in the next Section.  

 5.2.3  Three-Terminal RT Structures 

 All of the previously discussed double-barrier RT structures are two-terminal devices, 

potentially useful in oscillator and frequency multiplier circuits, but ill-suited for more general 

circuitry.  The addition of a third terminal to control the I-V characteristics of an RT structure, 

either with a small current as in a bipolar transistor or a gate voltage VG as in an FET, has been 

attempted in a number of schemes.   

 Current-controlled variants of three-terminal RT structures involve a separate contact to the 

quantum well that can source or sink a "base" current large enough to alter the alignment of the 

2D subbands En and the emitter EF.  In principle, the base current can be of the same or opposite 

polarity as the tunneling carriers.  The band diagram of a bipolar structure is illustrated in Fig. 9 

for  an n-type double-barrier RT device with a separate contact to a p-type quantum well.  This 

implementation is preferable to unipolar versions both because of improved isolation between the 

controlling base current and the tunneling electron current and because of fabrication constraints.  
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It is easier to contact the narrow quantum well without shorting to the nearby emitter and 

collector layers if the well doping is of the opposite polarity29 (see Fig. 9).  If the RT structure is 

biased close to VP, a small hole current in the well can turn off the collector current IC by biasing 

the 2D subband below the occupied emitter states, giving rise to negative transconductance.   

 A significant constraint on current-controlled three-terminal RT structures like that in Fig. 9 

is the effective base resistance.  To have significant 2D subband separation and hence strong 

NDR in the tunneling I-V characteristic, the quantum-well width LW must be small.  At the same 

time, the lateral base resistance is inversely proportional to LW.  Setting the benchmark for a truly 

competitive high-speed device at 1 ps, we can estimate the RBC time delays associated with 

charging either the emitter-well or well-collector capacitance: 

  RBC ≈ εsL2RS/LB (19) 

where εs is the semiconductor dielectric constant; L is the characteristic lateral extent of the 

device limited by lithographic resolution to L ≥ 500 Å for the foreseeable future; LB is the emitter 

or collector barrier thickness; Rs is the sheet resistance of the base, Rs = (qnBµ)-1 where µ is the 

majority carrier mobility and nB is the charge density per unit base area.  In the case of the well-

collector capacitance, the barrier thickness LB can be augmented by an undoped collector spacer, 

as shown in Fig. 4, but increasing the well-collector separation beyond 1000 Å introduces transit-

time delays on the order of 1 ps.  From Eq. 19, the resulting constraint on Rs is about 103 Ω per 

square.  As in heterojunction bipolar transistors, heavy doping of the quantum well appears to 

resolve all difficulties, but since sharp 2D quantization requires narrow LW ˜ 100 Å quantum 

wells, doping sufficient to achieve RS ≤ 103 Ω is problematic.  First, as can be seen in Fig. 9, 

holes can tunnel from the quantum well into the emitter, contributing a current that will increase 

with emitter-well bias regardless of the 2D subband alignment with emitter states — in other 

words, a nonresonant current component that will reduce the PVR.  The heavier hole m* makes 

the corresponding tunneling transmission smaller, but if the hole density in the well exceeds the 

electron supply function by many orders of magnitude, the nonlinear I-V can be washed out 

completely.  Second, the very existence of a large impurity density in the quantum well 
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introduces substantial scattering, inhomogeneously broadening the subband energy width ∆En to 

much larger values than the lifetime broadening due to tunneling out of the well.  As a result, 

current-controlled three-terminal devices with separately contacted quantum wells appear most 

promising in polytype GaSb/AlSb/InAs RT structures, where bandgap blocking of the tunneling 

current and low m* in the InAs well results in good PVR even for very wide quantum wells, LW 

≈ 1000 Å.22  We will encounter similar structures in the discussion of hot-electron devices, 

where no quantization in the well is required and operation depends on ballistic electron transport 

from the emitter to the collector. 

 Interestingly, a similar vertical structure with a separate contact to the quantum well can be 

employed to produce a unipolar, voltage-controlled tunneling transistor — essentially by 

designing the quantum well to perform the functions of a collector.  Consider the schematic band 

diagram shown in Fig. 10, where the second barrier is designed to be so high and wide as to 

eliminate tunneling out of the well.  The voltages are applied with respect to the quantum well 

contact.  At some emitter bias VE, the tunneling current into the well can be evaluated using Eq. 

16: once again, it depends on the alignment of the 2D subband E1 with the emitter EF.  This 

current is extracted from the well laterally.  Three terminal operation is achieved by applying a 

gate bias to the remaining electrode, as in Fig. 10.  The gate bias VG shifts E1 by two 

mechanisms.  First, the electric field in the second barrier changes the effective confining 

potential of the quantum well, shifting E1 down from its position at VG = 0.30  Second, the 2DEG 

in the well does not screen the VG-induced electric field completely because of the quantum 

capacitance effect.31  The latter is a consequence of the Pauli exclusion principle, by which no 

two electrons can occupy the same quantum state.  Because of this, extra kinetic energy is 

required to fill a given density of states with electrons.  The 2D density of states in the quantum 

well results in a quantum capacitance CQ per unit area, given at low temperatures by: 

 CQ = m*q2/π 2 . (20) 
 

As a result, it becomes energetically favorable (cf. Problem 7) for part of the VG-induced field to 



- 24 - 

penetrate into the emitter barrier, inducing additional charge in the emitter and altering the 

alignment of E1 with occupied emitter states.  The importance of quantum capacitance depends 

on the relative magnitudes of CQ and the geometric capacitances C(1,2) = εs/LB(1,2), where LB(1,2) 

are the barrier thicknesses in Fig. 10.  In RT structures with low effective mass, gate control due 

to quantum capacitance can be significant.  Further, negative transconductance gm + ∂(I-

VE,VG)/∂VG < 0 is expected when, at fixed VE, the gate bias VG lowers E1 below the bottom of 

the occupied states in the emitter and k⊥ conservation cuts off the tunneling current as in a 

standard RT diode.  The main obstacle to the fabrication of such transistors lies in implementing 

good lateral contacts to the quantum well and keeping the gate capacitance C(2) = εs/LB(2) large 

without causing significant gate leakage.  To date, gate control of tunneling has been 

demonstrated at low temperatures32 but with a transconductance too small to make such 

structures practical. 

 An alternative route to a three-terminal RT structure is voltage control by means of a sidewall 

gate electrode adjacent to the active region of a standard RT structure of sufficiently small lateral 

extent L that a gate bias VG can effectively control the I-V curve.  The vertical pillar geometry of 

epitaxially grown RT structures makes the fabrication rather difficult.  One approach has been 

the self-aligned p-type implantation with the top metal contact of an n-type RT diode serving as a 

mask.33  The result is a lateral pn junction in the plane of the active RT region, shown in Fig. 11a.  

Reverse bias can then be used to deplete the RT structure from the side, controlling its effective 

electrical size.  In addition to gate leakage currents, the difficulty with this approach is the lateral 

straggle of the implantation that becomes an issue for submicron lateral device diameter L.  An 

alternative scheme involves the self-aligned deposition of an in-plane metal Schottky gate* 

directly adjacent to the RT diode pillar.34  Gate bias VG on the Schottky electrode can then be 

employed to deplete the effective lateral size of the RT structure.35  By employing an undercut 

RT pillar profile to avoid shorting the gate to the top contact, as illustrated in Fig. 11b, structures 

exhibiting room temperature control of the I-V have been fabricated:36 the I-V,VG curve of a 

GaAs/AlGaAs RT stripe geometry device is shown in Fig. 11(c). Gate control of the resonant I-V 
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peak is achieved with reasonably small gate leakage.  The reason for the observed peak position 

VP shift towards higher bias as VG is increased cannot be unambiguously identified.  The VG-

induced lateral potential distribution will be different in the undoped active region and the doped 

emitter, changing the relative alignment of emitter EF and the quantized subbands En, but contact 

series resistance could also play a role.  Note that the side-gating geometry of Fig. 11a,b 

sacrifices the effective transconductance gm unless the pillar diameter is extremely narrow, 

resulting in formidable fabrication difficulties regardless of the gate electrode fabrication 

technique. 

 A long-proposed alternative to the external gating of standard RT structure is illustrated in 

Fig. 12 for the GaAs/AlGaAs system.37  The original epitaxial structure follows the double-

barrier potential layer sequence, but with very large undoped spacers on both sides of the active 

regions.  The function of these spacers is to prevent RT currents from flowing through the bulk at 

low source-drain voltages V.  An angled interface through the double-barrier sequence is etched 

and an AlGaAs gate insulator is deposited, followed by a metal gate electrode.  A positive gate 

bias VG  

______________________________________________________________________________ 
* Low temperature operation of a p-Si1-xGex/Si three-terminal RT transistor with an oxide-
isolated gate electrode has also been reported.38 
______________________________________________________________________________ 

induces 2DEG in the undoped GaAs layers as in a standard FET, with the usual nearly triangular 

potential V(x).  In Fig. 12 we assume that only the lowest subband E1 is occupied, which holds 

for moderate 2DEG densities.  In the well, subband quantization arises from the AlGaAs double-

barrier potential V(z) in the direction of current flow combined with the FET confining potential 

V(x) under the gate, so the lowest 1D subband E1' lies above the Fermi level in the 2DEG.  A 

potential difference V between the 2DEG's above and below the double-barrier potential will 

produce a tunneling current subject to the usual E and k⊥ conservation.  The supply function can 

be determined as before, with the only difference that the conserved k⊥ = ky, which describes free 

1D motion along the quantum wire.  As a result, sharply nonlinear I-V characteristics similar to 
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standard two-terminal RT diodes is expected, but with effective gate control. 

 Figure 12 shows that the gate bias VG controls the emitter 2DEG density and hence the 

magnitude of the RT current.  More interestingly, VG can also be used to tune VP, because the 

fringing electric field penetrates into the double-barrier region, shifting E1' with respect to EF for 

the same source-drain bias V.  As a result, gm < 0 can be achieved.  If the 2DEG depletion in the 

collector region is ignored, the electrostatic problem reduces to a parallel plate capacitor with a 

slit of width (2LB + LW) and the electric field distribution can be solved exactly by conformal 

mapping techniques.38  The magnitude of the transconductance can then be explicitly calculated 

and, given sufficiently narrow gate insulator thickness, VG can be nearly as effective as the 

source-drain voltage V in shifting the relative alignment of the emitter 2DEG and the 1D subband 

E1'.  In realistic devices, some depletion of the 2DEG adjacent to the collector barrier can be 

expected, leading to smaller fringing fields in the plane of the well for a given VG and hence 

lower transconductance.39 

 The main difficulty in fabricating the three-terminal structure of Fig. 12 is the creation of a 

clean interface through the pregrown epitaxial structure that can support a 2DEG.  The most 

obvious approach of etching through the double-barrier structure and subsequent epitaxial 

deposition of the gate layer would result in oxide formation (especially in the Al-containing 

barrier layers) on the interface.  Proof of concept has been achieved by cleaved edge regrowth,40 

where the pregrown heterostructure is physically cleaved in the growth chamber immediately 

prior to deposition of the AlGaAs insulating layer on the cleaved edge. The I-V,VG curves for 

various VG of the resulting device41 are shown in Fig. 13a (the structure differs slightly from Fig. 

12 in that modulation-doping during regrowth is used to produce a 2DEG under the gate even at 

VG = 0 resulting in a "depletion mode" transistor).  Negative transconductance is indeed 

observed, as shown in Fig. 13(b), albeit at cryogenic temperatures.  Demonstration of room 

temperature operation and, more importantly, the fabrication of such devices by technological 

means, such as in-situ etching followed by in-vacuum transfer to the epitaxy chamber, is yet to be 

reported. 



- 27 - 

 In addition to the severe fabrication problems faced by all of the discussed three-terminal RT 

devices, it is not clear that the negative transconductance they promise can be usefully applied for 

computation.  Although it has been suggested that such devices can, in principle, perform 

complementary functions,38,42 no RT transistor circuit analogous to a CMOS inverter has been 

demonstrated to date.  The difficulty lies in the fact that in complementary CMOS transistors 

current is due to carriers of opposite polarity.  This makes it possible to connect the drains of two 

transistors, rather than the source of one to the drain of the other.  Consider the CMOS inverter 

logic gate, shown in Fig. 14.  The source of the n-channel transistor is connected to ground, the 

source of the p-channel transistor is connected to VDD, and the same input voltage VIN is applied 

to the gates of both transistors.  As VIN increases, the current in the n-channel transistor 

increases, while the current in the p-channel transistor decreases.  When the input switches 

between a low and a high voltage, one of the pair turns on and the other turns off.  The output 

voltage thus switches between VDD, when the n-channel device is off, and ground, when the p-

channel device is off.  If the input is steady, there is no current path between VDD and ground, so 

the circuit consumes very little power.  During switching, on the other hand, one of the 

transistors — the one that is being turned on — provides the necessary transient current to charge 

or discharge the output node.  Note that the output node is connected to the drains of both 

transistors.   

 It might appear that by virtue of the negative transconductance exhibited by three-terminal 

RT structures like the one in Fig. 13, both transistors in the CMOS pair can be directly replaced 

by RT devices.  Unfortunately, it is not always sufficient to have transconductances of 

complementary polarity to implement CMOS functions, at least not in a straightforward way. In 

RT devices, the current depends on the alignment of the emitter and quantum well densities of 

states and hence on the emitter bias VE.  If the p-channel transistor in Fig. 14 were replaced by an 

n-type RT transistor  with negative transconductance, its emitter bias would itself vary between a 

high and a low state, rather than remaining at a constant potential.  In other words, the gate 

voltage VIN is referenced to VOUT, rather than VDD.  This makes it difficult to design a useful 
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circuit.  

 

 5.2.4  Cascaded RT And Superlattice-Based Structures 

 The I-V characteristic of a single double-barrier RT structure exhibits one or more resonant 

current peaks depending on the number n of quantized 2D subbands En.  Several proposed 

applications of RT devices require a multipeak I-V, but with the current peaks approximately 

equal in magnitude and regularly spaced in voltage by ∆VP.  Neither condition is fulfilled by a 

typical RT structure: the subband separation (En - En-1) changes with n, so the peak voltages VP(n) 

are not evenly spaced, while the peak currents increase rapidly with n because the emitter 

transmission coefficient TE increases exponentially as the barrier height drops.  However, the 

desired I-V curve can be obtained from a cascaded RT structure, in which N double-barrier 

potentials are epitaxially grown on top of one another.  If these RT potentials are separated by 

doped layers, the resulting band diagram is shown in Fig. 15.  The distribution of the total 

applied bias V can be calculated self-consistently, including current continuity once the RT 

diodes are biased above threshold, V ≥ NVth.  As V is increased further, one of the diodes will be 

biased beyond VP.  In a perfect structure this would happen at the anode because of dynamic 

charge accumulation in the RT quantum wells.  Realistically, variation in quantum well thickness 

LW or cladding layer doping can cause one of the RT diodes to have a lower VP than the rest.  

Regardless of which RT diode goes off resonance first, it suddenly presents a high resistance to 

the biasing circuit and the total I-V exhibits an NDR region.  The crucial point is that if V is 

increased still further, current continuity requires that almost all of the increase drop over the off-

resonance diode, until it begins to conduct through the next 2D subband E2 — this is the 

situation illustrated in Fig. 15.  This process then is repeated with other diodes, with the result 

that a high-field domain consisting of diodes biased into the second resonant peak expands 

through the structure.  As each diode is biased off resonance, another current peak appears in the 

I-V, for a total of N peaks that are approximately evenly spaced in V. 

 The maximum number of diodes that can be cascaded in this manner depends on the PVR 
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required in the I-V characteristic.  For a given RT diode that is biased beyond VP, the other diodes 

act as a series resistance RS.  As discussed above in the context of bistability, the I-V acquires 

hysteretic loops as RS increases.  If the RS is sufficient to shift VP beyond the NDR region, it also 

reduces the PVR.  By improving RT design to increase the peak current density JP and doping the 

RT regions as well as the cladding regions (which reduces the PVR of individual diodes because 

of increased impurity scattering, but also reduces the RS due to other diodes in series), many RT 

diodes can be cascaded.43  The room temperature I-V curve of an N = 8 cascaded RT structure is 

shown in Fig. 16.  The scatter in the IP, voltage spacing, and PVR of the eight current peaks is 

not great and can be attributed to monolayer variations in the barrier or well layers during 

epitaxial growth.   

 If the quantized subbands in different RT quantum wells are allowed to interact, for example 

by removing the doped cladding regions in Fig. 15, the result is a superlattice (SL) of period d = 

LB + LW shown in Fig. 17.  Consider the wavefunctions Ψ(z) along the SL direction z.  If the 

barriers are infinitely high, V0 ∅ , we simply have isolated quantum wells.  These wells contain 

the usual quantized levels En described by wavefunctions χn(m)(z), where m labels the quantum 

well.  Since χn(m)(z) do not penetrate into the barriers, each 2D subband has a degeneracy of 2N 

including spin.  If the barrier height is finite, the χn(m)(z) wavefunctions penetrate into the barriers 

according to Eq. 3, allowing the wavefunctions in neighboring wells to interact.  The previously 

degenerate levels En will broaden into minibands of width ∆n.  In a bulk semiconductor, 

according to the Bloch theorem, an electronic state can be described by a product of a plane wave 

and a function periodic in the lattice potential.  Analogously, in a superlattice, a state in the nth 

miniband can be described by linear combinations of wavefunctions periodic in the SL period d, 

ϕn(m)(z)  + ϕn(z - md) multiplied by a plane wave44 
 

  
Ψ   (z)  =        e         ϕ    (z)k                        ik md    (m)z Σ

m = 1

N
z

n
 

(21)
 

Equation 21 is a restatement of the Bloch theorem for superlattices.  As long as ∆n << (En - En-1) 

ϕn(m)(z) are to a good approximation built up from combinations of χn(m)(z).  For some range of 
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barrier parameters V0 and LB, only interactions with adjacent wells are significant and the 

problem simplifies drastically because the periodic components of Eq. 21 can be taken as the 

ordinary single-well wavefunctions χn(m)(z).*  The dispersion E(kz) for motion along the SL axis 

becomes 

 ESLn(kz) = En + Sn + 2Tncos(kzd) (22) 

where the shift integral Sn is defined as 
 

  
S   ≡ � χ     (z) V ' (z) χ    (z) dzn           n           0          n

(m)                       (m)
  

(23)
 

and the transfer integral Tn as 

  
T   ≡ � χ     (z) V ' (z) χ       (z) dzn           n           0          n

(m)                       (m+1)
 
.
 

(24)
 

The potential V0'(z) employed in the calculation of the shift and transfer integrals, Eqs. 23 and 

24, includes all potential wells other than the mth — see Fig. 17.  From Eq. 22 it follows that the 

width of the nth miniband ∆n = 4Tn.  The allowed values of kz can be obtained by imposing 

periodic boundary conditions on Eq. 21: kz = 2πp/Nd, where p = 0, 1, 2, ... (N - 1), so each 

miniband contains exactly 2N states. 

 The dispersion of the lowest miniband for motion along the SL direction is plotted in Fig. 

18a, while the SL density of states, including the transverse degrees of freedom described by k⊥ 

is shown in Fig. 18b.  It is evident that the effective mass along the SL, m* = 2(kz-1∂E/∂kz)-1, is a 

strongly varying function of kz: starting with a "band-edge" value m*SL + m*(kz = 0), the mass  
______________________________________________________________________________ 
* This is known as the tight-binding approximation and is a reasonable description of 
semiconductor superlattices if the barriers are not too narrow.  The single-well wavefunctions 
χn(m)(z) from different wells are not quite orthogonal and Eq. 22 is valid only to the extent that 
the overlap between χn(m)(z) and χn(m+1)(z) can be neglected. 
______________________________________________________________________________ 

becomes heavier as kz increases, diverges at kz = π/2d (the inflection point in E(kz), see Fig. 18a), 

and becomes negative thereafter. 

 If a constant electric field ε is applied along the SL direction and no scattering is present, the 

semiclassical equation of motion (∂kz/∂t) = qε implies that kz changes linearly with time.  Since 
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v(kz) is periodic, carriers execute oscillatory motion.  After reaching the miniband edge at kz = 

π/d they are Bragg-reflected to kz = -π/d by the periodic SL potential (see Fig. 18a and Problem 

9).  These Bloch oscillations exist for any periodic potential, including that of the original 

semiconductor lattice a0.  They cannot be observed in bulk semiconductors because collisions 

typically return the carriers to the bottom of the band long before they can complete one period.  

That is, the scattering time τ is insufficiently long for realistic electric fields ε.  A periodic 

potential with period d >> a0 is required to relax the constraint on τ.  Early on, high-frequency 

ultrasonic waves propagating through the semiconductor were suggested as a possible realization 

of such a potential45 and it was the pioneering suggestion of Esaki and Tsu to employ 

superlattices for this purpose that opened the modern era of heterostructure bandgap 

engineering.46  In that celebrated paper, the effects of a finite scattering time τ on the average drift 

velocity vD of electrons propagating in a 1D superlattice with dispersion given by Eq. 22 was 

evaluated classically: 
 

  
 v   =  �  e     a(t)dt-t/τ

D
t = 0

�

, (25) 

where a(t) + a[kz(t)] is the acceleration of the miniband electron in the superlattice direction.  

Using the tight-binding approximation of Eq. 22, they obtained vD in terms of ε, τ, SL period d, 

and m*SL (see Appendix B), 
 

  
v    =  D

     
m*  dSL

  ξ  
1 + ξ2

 
(26) 

where ξ = qετd/ .  The average drift velocity peaks at ξ = 1, that is when the electric field ε  = 

/qτd.  Beyond this point, increasing ε results in a lower vD because, on average, more and more 

carriers reach the negative-mass region of E(kz).  As a result, the I-V characteristic should exhibit 

NDR. 

 Although it might appear that the NDR regime can be reached simply by increasing ε, this is 

not the case.  The above analysis breaks down in high electric fields, where, due to Zener 

tunneling, the single-band approximation is no longer valid.  It is, however, true that the 



- 32 - 

constraint on τ for observing NDR is easier to achieve by a factor of 2π (Problem 9) than for 

Bloch oscillations.  Nonetheless, these effects have proved elusive in I-V measurements, because 

of scattering, Zener tunneling between different minibands, and, particularly, electric field 

domain formation due to space-charge instabilities associated with the nonlinear current flow 

through the SL.47  For this reason, while I-V nonlinearities in SL transport have been observed 

and attributed to the excursion of carriers into the negative-mass regions of the dispersion,48 these 

nonlinearities have not been used in devices to date. 

 Thus far our discussion has considered electric fields ε that are weak in the sense that the 

carriers are essentially delocalized along the SL and obey the dispersion of Eq. 22.  In higher 

fields, the nth miniband breaks up into a set of discrete levels, separated by energy intervals qεd, 

with wavefunctions centered in different wells and extending over ∆n/qεd periods.49,50  This so-

called Wannier-Stark ladder of states, illustrated in Fig. 19a, forms for all values of ε but 

becomes physically meaningful only when adjacent ladder states can be resolved: qεd > /τ 

which is the Bloch oscillation criterion again.  As soon as the extent of the Wannier-Stark 

wavefunctions falls below N periods, they no longer reach from one end of the superlattice to 

another.  For any dc current to flow some scattering process becomes necessary.  The current will 

remain small until ε brings into resonance Wannier-Stark states arising from different minibands, 

that are by then confined to individual wells:51 qεjd = Ej - E1, j = 2, 3 ... .  At these sharply 

defined values of εj, the current can flow by sequential tunneling between different Wannier-

Stark states in adjacent wells, followed by relaxation to a lower-lying state (see Fig. 19b).  

Ignoring possible series resistance outside the SL, the I-V curve should then exhibit peaks at V = 

Nqεjd, followed by NDR regions where current flow once again requires scattering or some 

inelastic mechanism. 

 A particularly interesting case of the latter is photon emission in the regime where ε > εj, 

which was proposed by Kazarinov and Suris decades ago as a system capable of voltage-tunable 

lasing.51  The scheme is shown in Fig. 19c and the photon energy is ω = q(ε - εj)d, tunable in 

the infrared by the applied voltage and appropriate choice of SL parameters.  The problem with 
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this exciting possibility is the same as with observing I-V peaks at V = Neεjd, and even the Esaki-

Tsu NDR at low ε: all of these schemes rely on a uniform electric field ε extending through the 

superlattice.  At the same time, current flow through the SL leads to dynamically stored space-

charge densities in the various quantum wells that produce nonuniform ε.  Devices that operate 

in the NDR regions of their I-V characteristics are particularly susceptible to the electric field 

breaking up into high- and low-field domains.48  For this reason, voltage-controlled lasing 

illustrated in Fig. 19(c) has not been observed and it is not clear whether it can be observed even 

in principle.  Another problem with experimental measurements on current-carrying superlattices 

has been the impedance matching of the SL to the Ohmic contacts, discussed in Appendix C. 

 On the other hand, the alignment provided by εj between different Wannier-Stark states in 

adjacent wells can also turn the biased SL into a lasing medium, provided that at least some 

fraction of the E2 ∅
 
E1 relaxation processes is radiative — cf. Fig. 19b.  The voltage tunability of 

the emitted radiation is now lost, since ω = (E2 - E1), which is set by the SL parameters.  Also, 

since the lower level in the radiative transition is called upon to supply the higher level in the 

downstream well, population inversion is difficult to achieve.  On the other hand, the device need 

not operate in the NDR region of the I-V curve, so the problem of maintaining uniform alignment 

between adjacent periods of the SL becomes more tractable.  Recently, infrared lasing in a 

conceptually similar device — the quantum cascade laser (QCL), based on intersubband 

transitions in a modified SL structure — has been achieved.52  A more detailed discussion of the 

QCL, including its output characteristics as well as the structural design required to overcome 

domain formation and establish population inversion, will be discussed in Section 5.4.4. 

  

 5.2.5  RT Nanostructures And The Coulomb Blockade 

 If a double-barrier RT structure with well width LW is etched into a sufficiently narrow pillar  

or biased to a narrow effective size by a lateral gate, new effects come into play.  The first and 

more obvious is the possibility of lateral size quantization in the quantum well.  Current 

fabrication techniques can only produce structures with lateral extent L >> LW, while gate-
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induced electrostatic confining potentials are much weaker than the heterostructure potential 

V(z), so lateral quantization will be much weaker.  To a good approximation each of the 2D 

subbands En in the well will give rise to a series of fully quantized, atomic-like states Enm, where 

m labels the different states due to the lateral confining potential V(x,y).  In principle, the same 

lateral quantization into 1D subbands could apply to the doped emitter and collector regions.  

However states in these regions are broadened by impurity scattering and their description by a 

3D density of states is often a good approximation.  Moreover, the confining potential in the 

emitter and collector regions is usually much weaker than that in the undoped well due to the 

screening by charged impurities.*  

 The RT transport resulting from alignment of the occupied emitter states with discrete 

quantum dot levels in the well can be treated within the usual sequential tunneling formalism8,53 

but with a new effect.  The charging energy U required to transfer even a single electron from the 

emitter into the well becomes significant for small L.  If the charging energy is ignored, the 

situation is shown in Fig. 20a.  Since the lateral confining potential V(x, y) changes between the 

emitter and well, k⊥ is no longer a conserved quantity and only energy conservation holds as a 

tunneling selection rule.  As the bias V lowers E11 below EF in the emitter, tunneling through this 

single state becomes possible — this defines the threshold Vth.  At higher V, additional tunneling 

channels open up.  The resulting I-V will exhibit a rising staircase of step-like features, with bias 

spacing corresponding to the energy separation of the levels.54  The strength of these features 

depends on the transmission coefficient of the emitter barrier TE(V) and also on the degeneracy of 

the E1m states, which may be large if V(x, y) is approximately parabolic.  Finally, NDR is not 

expected in the I-V characteristic, since k⊥ conservation no longer cuts off the tunneling through 

higher-lying E1m states when E11 drops below the bottom of the occupied states in the emitter.  

Instead, the I-V   
______________________________________________________________________________ 
* The lateral confining potential V(x,y) is determined by a self-consistent electrostatic potential 
with boundary conditions set either by the pinning of the Fermi level at the semiconductor-air 
interface in etched pillars or by VG in gated structures (in addition to the Schottky barrier in 
metal-gated structures or the built-in pn junction voltage in implanted structures). 
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______________________________________________________________________________ 

should become nonlinear whenever the density of levels changes appreciably, for example when 

E2m levels arising from the second subband become accessible. 

 This picture of tunneling into a quantum dot would be quite unpromising from the device 

standpoint.  However, the charging energy U associated with electronic transport through an RT 

nanostructure is important.  If L is small, the energy U = q2/2Cw associated with the tunneling of 

a single electron into the well, where Cw is the effective capacitance of the quantum dot, can 

appreciably alter the alignment of Enm with emitter EF.  This effect is illustrated in Fig. 20b.  A 

simple, geometric estimate of the capacitance is Cw ≈ εsL2/d, where d is the effective collector 

barrier thickness (if the depletion in the collector electrode is negligible, d = LB).  For current to 

flow, at least one electron must tunnel into the dot.  So, Vth shifts to higher bias by the single-

electron charging energy U.  The shift in the bias of other step-like features depends on the 

average occupation of the well by electrons, which is determined by the transmission ratio TE/TC 

of the emitter and collector barriers.55  If  TE/TC << 1 (the case for a symmetric double-barrier 

structure once it is biased to V > Vth), the occupation of the well by more than one electron at a 

time is rare and all the step-like features in the I-V corresponding to additional channels coming 

into resonance will be shifted by U.  On the other hand, if TE/TC >> 1, each available level is 

occupied most of the time, so the opening of every additional channel requires sufficient biasing 

to overcome the charging energy — this is the so-called Coulomb blockade of tunneling.  For 

example, the second current step requires V  to lower E12 below emitter EF by at least 2U to 

surmount the energy barrier due to the simultaneous occupation of the well by two electrons.  An 

additional complication is that the charging energy will vary with electron number because of 

electron-electron interactions in the dot and also because the effective dot size L changes.  Since 

both the empty (TE/TC << 1) and occupied (TE/TC >> 1) regimes are accessible in the same 

asymmetric double-barrier RT nanostructure by changing the bias polarity, such devices have 

been studied to probe the energy spectrum of quantum dots with and without electron-electron 

interactions.54,55   
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 It is the charging energy required to change the electron occupation of the dot together with 

the possibility of tuning the energy alignment of the dot levels with respect to the emitter electron 

reservoir via a third terminal that makes RT nanostructures promising for devices.  

Schematically, a three-terminal nanostructure involves nothing but the addition of a gate 

electrode that can change the potential between the quantum dot and the emitter (see Fig. 20), but 

is sufficiently isolated from the dot to prevent any possibility of electron transfer from the gate.  

Then, if the device is biased by VE near a voltage step corresponding to the addition of another 

electron to the dot, a small change in VG can tune the occupation of the dot.  This controls the 

current through the dot, resulting in a single-electron transistor.  Because of the fabrication 

difficulties associated with vertical RT nanostructures, gate control of single electron tunneling 

has proved easier in the planar geometry. The dot and the controlling electrode are defined by 

electrostatic metal gates deposited on top of a high-mobility 2D electron gas heterostructure.  A 

top view of the gated structure is shown in the inset of Fig. 21.  The outside gates are biased into 

deep depletion, forming a small island of 2DEG connected to the reservoirs by tunneling barriers.  

As we had seen in the context of planar double-barrier RT structures (see Fig. 8), these islands 

are necessarily large and the electrostatic barriers are wide and low, so the energy quantization in 

the island is weak. But, this is an advantage in the context of Coulomb blockade devices, because 

the energy spectrum of the dot is now entirely defined by the charging energy U.  The gate 

electrode can alter the effective size and capacitance of the island.  As long as the island 

capacitance Cw is small while the island size is relatively large, L ˜ 0.1—1 µm, the I-V 

characteristic as a function of VG should show regularly spaced steps corresponding to the adding 

of electrons to the island.  At low temperatures very regular conductance (G + ∂I/∂V) peaks have 

been observed in such structures,3 an example is shown in Fig. 21. 

 In principle, precise single-electron control over electron occupation or the tunneling 

transport in small quantum dots or islands has led to many proposals of logic and memory 

circuits based on single-electron transistors (SETs) and other devices.56  To some extent, single 

electron devices can be considered the logical endpoint of miniaturization-driven semiconductor 
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technology.  The main difficulty from the practical standpoint is posed by the extremely stringent 

fabrication requirements on large-scale SET circuitry, especially at non-cryogenic temperatures.  

Currently, SET characteristics, like the data in Fig. 21, are measured at T < 1 K, to ensure the 

condition U = q2/2Cw >> kT.  Clearly, device sizes will need to be reduced by orders of 

magnitude before higher temperature operation can be contemplated.  For T = 4.2K the charging 

energy must be certainly larger than 1 meV.  This requires a capacitance Cw < 10-16 F, a very 

stringent condition.  It is imperative that there be no parallel capacitance due to leads or other 

electrodes.  Note that a simple thin wire has an intrinsic capacitance of about 10-16 F per micron.  

It is also not clear that semiconductor SET realizations have any advantages over metal tunnel 

junctions for most proposed devices: the first observation of Coulomb-blockade phenomena57 

and the first SET with voltage gain58 both employed small Al tunnel junction capacitors.  One 

specific application for which the single-electron transistor appears promising is the construction 

of precision current standards.  In a gated 2DEG island, by sequentially lowering and raising the 

emitter and collector barriers at small VE in the Coulomb-blockade regime, where only one 

excess electron can occupy the island, the transfer of one electron per cycle of barrier biasing can 

be achieved.59  If the barriers are cycled at frequency f, the emitter-collector current is given by I 

= qf, making for a very precise current source.  It is anticipated that such a device may provide a 

new metrological current standard, although single-electron transfer along a chain of small 

metallic islands may prove a more successful implementation.60  
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5.3  HOT-ELECTRON STRUCTURES 
 

 5.3.1  Hot Electrons In Semiconductors 

 In many of the resonant tunneling structures discussed in the preceding section electrons (or 

holes) are injected into the collector region with energies that are several kT above the collector 

Fermi energy EF, where T is the lattice temperature.  These electrons are clearly not in thermal 

equilibrium with the lattice and their occupation of available states is not described by the 

standard Fermi-Dirac function fFD(E).  Further, their velocity distribution in the direction of 

current flow is strongly peaked, at least in the immediate vicinity of the collector barrier, making 

up a "ballistic" electron packet.  As the electrons propagate into the collector, the velocity 

distribution broadens due to scattering, resulting in a distribution that can be taken as Maxwellian 

and parametrized by an effective temperature Te > T.  In either case, the electrons are "hot" with 

respect to the lattice. 

 Another possible reason for carrier heating is a strong electric field εεεε in some region of the 

device.  Depending on the energy relaxation time, a large fraction of the carriers can be 

accelerated into states of high kinetic energy.  As in the course of ongoing miniaturization device 

dimensions shrink at a faster rate than various electrode voltages, the internal fields rise and 

carrier heating becomes more significant.  Thus, oxide damage by hot electrons accelerated by 

the large lateral εεεε at the channel drain has become a major reliability issue as silicon FET's are 

scaled down.  Undesirable though carrier heating may be in standard silicon technology, a 

number of devices based on hot electrons have been proposed.  In this chapter we will focus on 

injection devices, where the hot carriers are physically transferred between adjacent 

semiconductor layers.*  As we shall see, although the first hot-electron injection devices61 were 

proposed as far back as 1960, the abrupt heterojunction interfaces and doping profiles made 

possible by modern epitaxy have greatly widened hot-electron device possibilities. 
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 Let us consider the two principal techniques for producing hot carriers by electric current —  
______________________________________________________________________________ 
* Transferred electron devices, like Gunn oscillators, employ hot-electron scattering into lower 
mobility satellite valleys of the semiconductor dispersion E(k) — they are covered in Chapter 6. 
______________________________________________________________________________ 

ballistic injection and electric field heating — and the resulting carrier distributions in more 

detail.  Ballistic injection by thermionic emission from a wider-bandgap semiconductor and by 

tunneling into states of high kinetic energy is illustrated in Figs. 22a and 22b respectively.  

Immediately upon injection, the corresponding velocity distribution is also shown (cf. Problem 

11).  As the carriers propagate away from the injection point, their energy and velocity 

distribution will change and broaden.  Given the initial velocity and momentum distribution 

ƒ(r,v,t = 0) and ignoring the possibility of interband transitions (like electron-hole 

recombination), the evolution of ƒ(r,v,t) with time as a function of spatial position can be 

determined by solving the Boltzmann transport equation.  In the simplest case of parabolic 

dispersion, the Boltzmann equation has a physically transparent form: 
 

  

Žƒ                                     Žƒ 
Žt                                      Žt

+ v   ∇∇∇∇ ƒ + a    ∇∇∇∇ ƒ = (   )     r.
v

.
coll

 
(27)

 
with semiclassical equations of motion given by 

  v = k/m*             m*a = q(εεεε + v x B) (28) 

where εεεε and B are the electric and magnetic fields, m* is the effective mass in E(k) = 2k2/2m*, 

and a is the acceleration.*  The collision term on the right of Eq. 27 represents all scattering 

processes, including phonon emission and absorption, impurity scattering, electron-electron 

interaction, and so on.  It can be formally defined as the integral of the scattering probability 

W(k',k) between states characterized by wavevectors k and k' over the first Brillouin zone 

multiplied by the appropriate occupation probabilities.  A great simplification results in the 

relaxation time approximation, which replaces the entire collision term by -(ƒ-ƒ0)/τ, where τ 

characterizes the time it takes for the distribution to relax to its equilibrium value ƒ0 — the 

Boltzmann equation is then no longer an integral equation.  This is rarely possible, however, 

because different characteristics of the distribution function relax at different rates. Because of 
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this,one usually defines separately the momentum τk and energy τe relaxation times in terms of  
______________________________________________________________________________ 
* In the case of an arbitrary dispersion E(k), the equations of motion become v = -1 kE(k) and 
∂k/∂t = q(εεεε  + v x B), with corresponding changes in Eq. 27. 

______________________________________________________________________________  

 W(k',k).62  Still another complication is that the transition matrix element W(k',k) depends on 

the electron energy in different ways for different scattering mechanisms.  For states of higher 

energy new scattering mechanisms set in: optical phonon emission, impact ionization, and so on.  

Finally, since the collision integral extends over the Brillouin zone, it depends on the density of 

states available for scattering (i.e. on the explicit form of E(k), leading to ever greater complexity 

as energy increases and larger sections of the Brillouin zone become accessible), and even on k 

orientation.  For this reason, Eqs. 27 and 28 are rarely tractable analytically and numerical Monte 

Carlo techniques are often employed.63   

 Of course, there exists one limiting case which avoids the difficulty altogether: ballistic 

motion, in which collisions are negligible.  This limits the critical dimension of any device to 

vzτk, where vz is the (high) injected electron velocity and τk is the momentum relaxation time.  

This is the preferred operating regime of ballistic hot-electron transistors (HETs), in which 

electrons are injected into a narrow base layer of length LB.  Control over injection energy in 

heterostructures (see Fig. 22) can generate a narrow hot-electron distribution, centered around a 

high velocity normal to the base layer, as shown in Fig. 23.  As long as LB < vzτk, a large fraction 

of the hot electrons will traverse the base without scattering. 

 The energy and velocity distribution of hot carriers created by a strong electric field εεεε is 

necessarily rather different.  Before the electric field is applied, the carriers are in equilibrium 

with the lattice.  The field accelerates the carriers according to Eq. 28, shifting the distribution 

function ƒ(r,v,t) away from equilibrium.  Since the scattering mechanisms depend on the carrier 

energy E, the same difficulty in solving the Boltzmann equation arises.  However, momentum 

relaxation times τk are generally much shorter than τe, so numerous electron-electron collisions 

can establish a quasi-equilibrium within the electronic system that is effectively decoupled from 
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the lattice.  In this limit, one can define the effective electron temperature Te from the average 

energy <E> of the electron ensemble: <E> = 3kTe/2.  The resulting hot-electron distribution is 

shown in Fig. 23. 

 Evidently, the effective electron temperature Te depends on the magnitude of the electric field 

in a complicated fashion given by the solution of Eqs. 27 and 28.  Once again, Monte Carlo 

simulations are generally required, especially in the presence of heterostructure barriers that are 

necessary for real-space transfer (RST) devices based on field-induced electron heating.64   In 

these devices, carriers are heated by an electric field applied parallel to a heterostructure barrier 

V0.  If Te becomes sufficiently high, some fraction of the electron distribution will acquire 

enough energy to spill over the barrier and transfer to a different region of the structure, which 

may have a different mobility or a separate electrical contact.  Even though only electrons in the 

high-energy tail of the hot-carrier distribution function can surmount V0 for a given heating field 

εεεε, they are quickly replenished (on a scale of τe), so the RST process can be fast and efficient. 

 It should be emphasized that both ballistic injection and real-space transfer devices involve 

the injection of nonequilibrium carriers over (or through) heterostructure barriers into adjacent 

layers of the structure.  Conceptually, the real distinction lies in the different hot-carrier 

distribution functions illustrated in Fig. 23.  Operationally, the three-terminal implementations of 

ballistic and RST devices employ rather different controlling electrode geometries.  As will 

become clear, there is a strong parallel between ballistic hot-electron transistors and standard 

bipolar transistors: the hot-electron current across the base is controlled by a smaller base current 

of equilibrium carriers moving in different portions of k space.  Base transparency for ballistic 

carriers (i.e., the base transport factor αT of a bipolar transistor) relies on the short time required 

to traverse the narrow base compared to the momentum relaxation time τk.  Also, as in bipolar 

transistors, speed limitations arise from the base traversal time ≈ LB/vz (here hot-electron 

transistors really shine by virtue of large injected vz) and the RBC delay associated with charging 

the base-emitter and base-collector capacitances through a finite lateral base resistance. 

 Real-space transfer devices, on the other hand, have no ready analog among standard 
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transistors.  Two-terminal versions, which rely on RST of hot carriers to a lower-mobility region 

of the structure to produce NDR in the two-terminal I-V characteristic, are essentially similar to 

Gunn oscillators.  In three-terminal versions, RST of hot carriers to a region that can be contacted 

separately is employed to control the transferred current by a heating field.  As we shall see, 

three-terminal RST devices possess unusual terminal symmetries, arising from the insensitivity 

of hot-carrier distributions to the heating field polarity, that can be exploited for increased 

functionality. 

 

 5.3.2  Ballistic Injection Structures 

 Figure 24 shows a schematic band diagram of a ballistic HET based on tunneling injection 

and implemented in GaAs/AlGaAs.65  Hot electrons are injected at an energy ∆ ≈ qVBE with 

respect to the Fermi level in the heavily doped base (held at ground potential), traverse the base 

and are collected after surmounting the collector barrier, which is a function of collector bias 

VCB.  There is a clear analogy between this type of HET and the current-controlled three-terminal 

RT structure of Fig. 9.  However, since quantization in the base region of Fig. 24a is not required, 

HET base width can considerably exceed the LB ≤ 100 Å strong-quantization condition.  This 

leads to lower base resistance RB and, hence, reduces the time delays associated with charging 

the base-emitter and base-collector capacitance.  Of course, Eq. 19 for the RBC time delay still 

applies, so ballistic HET design involves a trade-off between low base resistance, which requires 

large LB and base doping, and high base transport factor αT, which requires short LB and minimal 

base scattering.  For amplification, the highest αT is achievable for VCB > 0.  In that 

configuration, electrons that have experienced scattering in the base can still be collected.  If VBE 

is much larger than the collector barrier height, the emission of one or more optical phonons still 

leaves the electron with enough kinetic energy to reach the collector, provided the direction of its 

velocity has not changed.  Fortunately, optical phonon emission by high-energy electrons is a 

predominantly forward scattering process and the effective τk is not as short as it is for electrons 

just above the optical phonon emission threshold.  Still, the very high αT required to produce 
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competitive differential current gain β + αT/(1-αT) is difficult to realize in ballistic HETs even 

with the shortest LB allowed by Eq. 19.   

 First, there is the matter of quantum mechanical reflection at the collector barrier.  In our 

discussion of tunneling we found that given a collector barrier height ΦC, there is a non-zero 

reflection probability R(Ez) for incident electrons with kinetic energy Ez > ΦC.  In the case of 

rectangular heterostructure barriers, R(Ez) remains significant unless Ez >> ΦC, except at some 

special values of Ez that depend on the barrier parameters (cf. Problem 2).  This difficulty can be 

circumvented to some extent by grading the collector barrier (Problem 12, see also Fig. 24a for 

an example), but reducing R(Ez) to nearly zero at moderate hot-electron injection energies is 

problematic.*  

 It might appear that  αT can be improved by increasing VBE and hence the injection energy, 

since this should reduce the collector reflection coefficient and the base transit time 

simultaneously. Unfortunately, this approach runs into the second important limitation of HET 

performance.  If the electron kinetic energy exceeds the energy of the satellite valleys in the 

dispersion (e.g., the L valley in GaAs, which lies 0.3 eV above the Γ conduction band minimum), 

the high density of final states leads to very efficient intervalley scattering by phonons and 

impurities.  At electron energies below the intervalley scattering threshold, but above the optical 

phonon emission threshold (36 meV in GaAs) the dominant form of phonon interaction is 

emission of polar optical phonons, a process that has only a weak dependence on the carrier 

energy.  At the same time, ionized impurity scattering in the heavily doped base is minimized 

with increased injection energy.  Consequently, the optimum VBE for high gain is just below the 

threshold for intervalley scattering.  In GaAs/AlGaAs HETs analogous to Fig. 24(a), this has 

limited the highest observed gain to β ≈ 10 at low temperatures,65 corresponding to αT ≈ 0.9.  

Higher gains of β ≈ 30 (T = 77 K) have been observed in similar HET structures with a narrow 

LB = 200 Å pseudomorphic InGaAs base, because of larger the Γ-L energy separation.66  More 

recently, similar structures have yielded β ≈ 10 at T  = 300 K,67 which may be approaching the 

limit for HET structures grown on GaAs or InP substrates. 
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 Compared to heterojunction bipolar transistors (HBTs), ballistic injection HETs suffer from   

______________________________________________________________________________ 
* It should be emphasized that this envelope function approach to heterostructure barrier 
transmission is only valid if the heterojunction semiconductors are lattice matched and have 
similar dispersions in k space.  An example is the GaAs/AlxGa1-xAs heterostructure with x ≤ 
0.45, where electrons in both materials move in the same Γ valley of the conduction band.  
Although frequently used, the applicability of envelope function transmission calculations to 
other types of heterostructures is questionable.68  
______________________________________________________________________________ 

relatively low base transport factors.  Furthermore, the upper limit Eq. 19 places on the lateral 

base resistance RB is more stringent in the case of HETs with tunneling injection, since the 

emitter  barrier must be fairly thin to keep the tunneling current high.  This renders HETs 

noncompetitive for most device applications.  They have proved valuable for research into non-

equilibrium carrier transport, however.  The use of an injection HET as a hot-electron 

spectrometer is illustrated in Fig. 24a, while a representative set of hot-electron energy 

distributions is shown in Fig. 24b.  The idea is to measure the collector current IC as a function of 

VCB < 0 at a fixed VBE (which sets the injection energy).  In a certain range of VCB the collector 

barrier height varies linearly, δΦC ˜ δVCB, and ∂IC/∂VCB is proportional to the number of carriers 

arriving at the collector barrier with Ez = ΦC.  To the extent that VCB does not affect the hot-

electron energy distribution in the base, the injected distribution, and the above-barrier quantum 

mechanical reflection, one can deduce the mean-free-path l as a function of injection energy and 

correlate the dynamics of energy loss with various scattering mechanisms.65,69  For example, the 

main peak in Fig. 24b corresponds to hot-electrons arriving at the collector barrier without a 

single phonon-emission event, with l ≈ 1000 Å.  This is quite remarkable considering that these 

electrons had to traverse not only the doped GaAs base but also the AlGaAs collector barrier.  

Lateral hot-electron spectrometers have been constructed in 2DEG using electrostatic barriers,70 

as in Fig. 8.  The minimal scattering in 2DEG at low temperatures leads to considerably longer 

l ≈ 0.5 µm.  As a result, very high β > 100 was measured at T = 4.2 K in devices with LB ≈ 1700 

Å.  More importantly, similar structures have provided the laboratory for studying the physics of 

ballistic transport in small systems.71 
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 Finally, it should be noted that hot-carrier injection has been employed to good effect in 

HBTs by designing structures with a wider bandgap emitter, schematically illustrated in Fig. 25 

for an AlInAs/InGaAs HBT lattice-matched to InP.  The advantages conferred by hot-electron 

effects are several.  Electrons are injected by thermionic emission over the emitter-base barrier at 

an energy ∆ ≈ 0.5 eV above the conduction band edge in the p-InGaAs base.  Here the purpose of 

ballistic injection is to shorten the base traversal time by replacing the relatively slow diffusive 

motion by faster ballistic propagation.  Since there is no collector barrier to surmount, scattering 

does not degrade the transport factor αT, as it does in unipolar hot-electron transistors.  Further, 

the fact that the injected velocity distribution is sharply peaked in the direction perpendicular to 

the base aids device scaling by minimizing lateral excursion into the extrinsic base region.  As 

discussed in more detail elsewhere in Chapter 1, hot-electron HBTs exhibit high gain and high-

speed operation, with fT exceeding 100 GHz at room temperature.72  Note that in optimized 

transistors the base is so thin (LB << 1000 Å) that the diffusive transport time across the base is 

also shorter than 1 ps and hence high-speed HBT operation is not in itself evidence of ballistic 

transport.* 

 If the transport across the HBT base is truly ballistic and the velocity distribution of injected 

hot  electrons is sufficiently narrow, ∆vz/vz << 1, the result is a coherent transistor that is 

predicted to have gain above fT.73  When the injection from the emitter is varied at some 

frequency f, an electron density wave of wavelength λ = vz/f is set up in the base.  The minority-

carrier density wave is screened by majority carriers and the base remains neutral everywhere.  

Such is the situation with all bipolar transistors.  Neglecting recombination, the base current in 

the HBT flows only to neutralize variations in the overall number of minority carriers.  At low 

frequencies,  λ >> LB, the minority charge in the base increases and decreases in phase with 

injection.  This leads to a characteristic frequency roll-off of the current gain β ˜ 1/f and the 

characteristic value for the β =1 frequency cutoff 2πfT = vz/LB.  The functional form of this roll-

off begins to change when the wavelength of minority-carrier density wave becomes comparable 

to the base width.  If LB is an integer multiple of λ, which corresponds to f being an integer 
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multiple of vz/LB, there is no change in the total minority charge, as the electron density wave 

goes through the base.  Hence, the collector current modulation is accomplished, in this case, 

with no high-frequency base current input, leading to β ∅ .  Obviously, in a real device β will be 

limited by the recombination current, scattering-induced damping of the density wave, and the 

finite velocity distribution width ∆vz.  
______________________________________________________________________________ 
* It is an exceedingly difficult matter to demonstrate the ballistic nature of transport in a given 
transistor and claims of ballistic HBT operation have always been controversial.  An easier, but 
indirect approach involves measurements of gain in a series of transistors with variable base 
width LB, which allows one to discriminate between ballistic and diffusive transport mechanisms 
by appealing to a theoretical model. 
______________________________________________________________________________ 

  Still, as long as a high degree of coherent transport is maintained, β(f) will peak at integer 

multiples of 2πfT, leading to current gain above the usual cut-off frequency (we present a more 

detailed discussion of this effect in Appendix D).  Moreover, the transistor power gain has been 

predicted73 to peak at multiples of πfT, exhibiting two peaks for each peak in β. The difficulty 

with implementing such a transistor lies in maintaining coherence across the base.  Since optical 

phonon emission is a very effective scattering mechanism, the injection energy ∆ = m*vz2/2 

should remain below the optical phonon energy but still much larger than kT, implying cryogenic 

operation.  Further, device parasitics can wash out the gain peaks above fT.  To date, the proposed 

coherent transistor has not been experimentally characterized.  

  

 5.3.3  Real-Space Transfer Structures. 

 Proposals of generating NDR in the two-terminal I-V characteristics of a device by real-space 

transfer (RST) between semiconductor layers of high and low mobility date back several 

decades.74  These ideas received further development in the context of modulation-doped 

multiquantum well GaAs/AlGaAs heterostructures75 and first experiments using such structures 

were carried out in the early 1980's.76  A schematic illustration of the two-terminal GaAs/AlGaAs 

RST structure is shown in Fig. 26.  If longitudinal electric field εx is small, electrons reside in the 

undoped GaAs quantum wells and the source-drain I-VD depends linearly on εx with the slope 
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determined by high GaAs mobility.  However, as εx is increased, the power input into the 

electron distribution exceeds the rate of energy loss into the lattice by phonon emission, and the 

electrons heat up to some field-dependent temperature Te.  At sufficiently high Te, there will be 

partial transfer to the doped AlGaAs layers over the heterostructure barrier Φ, where the mobility 

is much lower due to heavy doping and higher m*.  The two-terminal I-VD then exhibits NDR 

with the peak-to-valley ratio determined by the magnitude of the transferred electron density and 

the ratio of the mobilities in the GaAs and AlGaAs layers (cf. Problem 13 for an analytically 

tractable model).  The analogy to the Gunn effect, where high-mobility carriers are scattered to 

low-mobility valleys in momentum space, is obvious.  In fact, Gunn effect and RST mechanisms 

are competing processes that depend on the relative magnitude of the barrier height Φ and the 

valley separation. 

 In addition to the interplay between transfer mechanisms, a realistic treatment of electron 

heating in an RST structure involves the formation of longitudinal electric field domains, 

redistribution of electrons both vertically and laterally, the self-consistent electric fields εz in the 

transfer direction, and quantum mechanical reflections at heterostructure interfaces.  As long as 

the electron ensemble in a given GaAs channel of Fig. 26 can be described by a local temperature 

Te(x), which is a function of position between source and drain, the density of the RST electron 

current J(x) can be estimated by the thermionic emission formula 
 

  
J(x) -                    eqn(x)v(T ) 

      L
e

W

-Φ/kT  e

 
(29) 

where n(x) is the sheet density in the quantum well, LW is the well thickness and v(Te) = 

(kTe/2πm*)1/2.  Obviously, this current depends exponentially on Te.  A semiclassical treatment 

of RST between two layers with a conduction band discontinuity Φ (e.g., one of the 

GaAs/AlGaAs heterointerfaces in Fig. 26a, involves solving the appropriate Boltzmann equation, 

on either side of the junction, with the appropriate boundary conditions that include quantum 

reflection by the barrier.  The transverse electric field εz must be calculated self-consistently from 

the Poisson equation that includes the electron density n(z) and the fixed charges that are present 
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(e.g., ionized impurities in the AlGaAs).  If the band bending due to εz is much smaller than the 

heterostructure barrier Φ, the εz-dependent terms in the Boltzmann equation may be dropped, 

leaving εx as the only electric field in the problem.  Still, the collision integral on the right of Eq. 

27 compels the use of Monte Carlo techniques.  The results of such calculations as applied to 

RST structures are collected in Ref. 64. 

 Like two-terminal resonant tunneling diodes, two-terminal RST structures illustrated in Fig. 

26 are potentially useful as high-frequency oscillators.  The figures of merit in this case are the 

speed with which electrons cycle between high (GaAs) and low (AlGaAs) mobility layers and the 

magnitude of the resulting NDR in the I-V characteristic.  Unfortunately, while the hot-electron 

transfer time to the AlGaAs can be quite short, the return process of relatively cold electrons by 

thermionic emission over the space-charge potential barrier of the ionized donors is much 

longer.77 An additional difficulty is the formation of macroscopic traps in the AlGaAs due to 

fixed charge inhomogeneities: these potential pockets effectively collect transferred hot electrons 

and present a higher barrier to their return.  In fact, the RST transfer times are typically longer 

than the momentum-space transfer times.  Further, the maximum high-frequency power that can 

be extracted from an RST oscillator is limited by the peak-to-valley ratio of the NDR, but a large 

PVR is obtained only if the mobilities of the two layers differ by orders of magnitude (Problem 

13).  Such a large mobility ratio is no easier to engineer in RST structures than in homogeneous 

multiple valley semiconductors.  For these reasons, two-terminal RST oscillators do not appear 

to offer any significant advantages over Gunn oscillators and have not benefited from much 

experimental development.  What makes RST structures considerably more interesting from the 

device standpoint is the possibility of extracting the transferred hot-carrier current via a third 

terminal, resulting in an RST transistor (RSTT).78 

 Figure 27 shows a schematic cross-section and the corresponding band diagram of an RSTT 

device implemented in GaAs/AlGaAs.  The source and drain contacts are to a high-mobility 

GaAs channel, while the collector contact is to a doped GaAs conducting layer that is separated 

from the channel by a large heterostructure barrier.  An electron density is induced in the source-
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drain channel by a sufficient positive collector bias VC with respect to the grounded source, but 

no collector current IC flows because of the AlGaAs barrier at VD = 0.  As VD is increased, 

however, a drain current ID begins to flow and the channel electrons accordingly heat up to some 

effective temperature Te(VD).  This electron temperature determines the RST current injected 

over the collector barrier and the injected electrons are swept into the collector by the VC-induced 

electric field, giving rise to IC.  Thus, transistor action results from control of the electron 

temperature Te in the source-drain channel that modulates IC flowing into the collector electrode.  

In contrast to the two-terminal device of Fig. 26, the RST current is removed from the drain 

current loop, leading to very strong NDR in the ID-VD curve, with room-temperature PVR 

reaching 160 in GaAs/AlGaAs devices79 similar to Fig. 27.  Subsequent improvements in RSTT 

design included structures with InGaAs channels, either lattice-matched to InP substrates or 

pseudomorphically strained to GaAs, taking advantage of the lower electron effective mass and 

higher Γ-L valley separation in InGaAs.  More importantly, these devices used epitaxial rather 

than alloyed contacts to the source-drain channel.80  The drain ID and collector IC characteristics 

of such an RSTT are shown in Fig. 28: the PVR in the ID-VD characteristics reaches 7000 at T = 

300 K.  Another version had a top-collector design with self-aligned collector regions81 that avoid 

the vertical overlap between the source and drain contacts evident in Fig. 28.  The result is 

reduced parasitic capacitance between the source, drain, and the collector: a current gain cut-off 

frequency fT > 50 GHz was reported.  Finally, there have been recent reports of δ-doped 

pseudomorphic InGaAs/GaAs RSTT82 with high channel mobility, a PVR > 105, and a 

transconductance of 23.5 S/mm at T = 300 K, as well as silicon-compatible hole-based RSTT 

with SiGe channel and collector layers.83 

 As might be expected from our discussion of the RST process between two layers, theoretical 

modeling of RSTT devices is extremely involved and Monte Carlo simulations are required for 

quantitative comparison with experiment.64,84  Some qualitative insight can be gained by 

assuming that the RST current J(x) exists only within a certain domain of the concentrated 

longitudinal electric field along the channel.  In this high-field domain we will take the electron 
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temperature Te as uniform and assume that the channel carriers move at their saturation velocity 

vsat, so ID = qn(x)Wvsat, where W is the device width and the diffusion component of ID is 

ignored.  Current continuity in the source-drain loop gives dID/dx = -J(x)W.  Substituting Eq. 29 

for J(x) one obtains that both n(x) and ID(x) decrease exponentially with a characteristic length 
  

  
        λ =                e      v   L 

      v(T )e

 Φ/k  T  B esat   W

 
(30)

 

For high Te, λ becomes quite short, making the diffusion component non-negligible, but the 

exponential decay of ID(x) remains qualitatively unchanged (Problem 14).  The remaining 

difficulty is the estimation of Te for a given drain bias VD.  This has been done semi-analytically 

by assuming a uniform electric field εx in the channel and taking into account only two energy-

loss mechanisms: optical phonon emission and electron RST to the collector.85  In this model, at 

sufficiently high VD the region of high Te becomes much larger than λ and, by virtue of Eq. 30, ID 

becomes vanishingly small.  However, since Monte Carlo studies show that k space transfer into 

lower mobility satellite valleys is a dominant scattering mechanism at high fields, simple energy- 

loss models are of limited applicability. 

 An interesting aspect of RSTT devices is the nature of their intrinsic speed limitations.  The 

two contributing factors are the time-of-flight delays associated with space-charge-limited 

current and the finite time required to establish the hot-carrier ensemble of temperature Te.  

Significantly, the relevant length entering the time-of-flight delay is not the gate length of a 

standard FET, because once the high-field domain is established the speed with which Te can be 

modulated is not limited by the source-drain transit time.  Instead, the relevant length is the 

extent of the high-field domain in the channel plus the thickness of the potential barrier 

separating the channel from the collector.  Barrier thicknesses in RSTTs are ˜103 Å, as are the 

high-field domains when Te is large (Problem 14).  As a result, the time-of-flight delay should be 

in the 1 ps range, competitive with state-of-the-art conventional transistors.  As for the 

establishment of an effective Te in the hot-carrier distribution, the relevant mechanisms are 

optical phonon emission, k space scattering, and electron-electron interaction, which might be 
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the dominant mechanism for reaching quasi-equilibrium in the high-energy tail of the 

distribution.  Once again, Monte Carlo simulations88 of RSTT structures indicate that 

equilibration of hot-electron ensembles takes less than 1 ps, at least at high electron 

concentrations and operating voltages. 

 Let us briefly consider possible applications of RSTTs.  Obviously they can be used as 

conventional high-speed transistors, in which case the figures of merit are the transconductance 

gm + ∂IC/∂VD (at fixed VC) and current-gain cut-off frequency fT.  Like resonant tunneling 

devices,  RSTT combinations can be used for memory and logic elements by virtue of the strong 

NDR in the source-drain circuit.  Further, since the source and drain contacts of an RSTT are 

fully symmetric, these devices have additional logic functionality.  A single RSTT like that 

shown in Fig. 27 can perform an exclusive-OR (XOR) function, because the collector current IC 

flows if source and drain are at different logic values, regardless of which is "high".  This and 

related logic implementations will be discussed later in the chapter.  Finally, by changing the 

doping and design of the collector region, light-emitting operation of RSTT structures has been 

demonstrated in the InGaAs/InAlAs material system.86  The only change from Fig. 27 is the 

opposite doping in the n-InGaAs channel and the p-InGaAs active region grown on top of the p+-

InGaAs collector.  As in a standard RSTT, hot electrons are injected by RST over the InAlAs 

barrier, but then they recombine radiatively with holes in the active region.  As long as radiative 

recombination in the channel is negligible, the optical output is insensitive to the parasitic 

leakage of collector holes into the channel.  This means that the optical on-off ratio is directly 

determined by IC and hence the device works like a light-emitting diode with built-in logic 

functionality. 

 

 5.3.4  Resonant Hot-Electron And Bipolar Transistors. 

 As we have seen, three-terminal RT structures in which the control electrode directly 

modulates the alignment of the resonant subband and the emitter are difficult to fabricate.  An 

alternative approach is the incorporation of a double-barrier RT potential into the emitter of a 
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hot-electron transistor.87  A schematic band diagram of the resonant hot-electron transistor 

(RHET) is shown in Fig. 29.  Its operation essentially combines the resonant emitter IE-VBE 

characteristic with the current gain β available in the HET.  Consider the collector current IC as a 

function of base-emitter voltage VBE at some fixed base-collector voltage VBC.  At small VBE the 

emitter RT structure is below threshold, the emitter current is negligible and the collector current 

IC consists of the small thermionic emission current over the collector barrier ΦC.  At larger VBE 

a resonant current flows through the emitter, injecting hot electrons at ∆ ≈ qVE above EF in the 

base.  Given proper design, with ΦC < ∆ ≤ Γ-L energy separation in the base, a large fraction αT 

of the injected electrons traverses the base and contributes to IC.  The large Γ-L separation makes 

InGaAs heterostructures on InP substrates advantageous for the implementation of RHETs, as 

discussed in Section 5.3.1.  As before, the current gain β + αT/(1 - αT) is limited by the hot-

electron mean-free-path in the heavily doped base, but room-temperature β ≈ 10 has been 

reported in InGaAs/AlAs/InGaP RHET structures on InP substrates.67  Finally, as VBE biases the 

emitter RT diode beyond VP, the emitter current drops.  The corresponding PVR in IC will 

approximately reproduce the PVR of the emitter diode, although changes in αT as a function of 

injection energy might alter this result somewhat.  Peak-to-valley ratios of approximately 10 have 

been reported in the IC-VBE characteristics of RHETs at both T = 300 K and T = 77 K.67,87 

 Very similar characteristics can be obtained by inserting a double-barrier RT diode or several 

cascaded RT diodes on the emitter side of the emitter-base junction in an npn bipolar transistor.88  

Such structures were fabricated in InGaAs/AlInAs: the operation is analogous to RHET, except 

that the emitter bias VBE divides between the RT diodes in the emitter and the emitter-base np 

junction to maintain current continuity.  As long as VBE < Vbi of the np junction, the emitter 

current increases as in a conventional bipolar transistor, with somewhat higher emitter series 

resistance due to the RT diodes, and the current gain β is large.  Beyond flatband, VBE ≥ Vbi, most 

of the additional VBE drops in the RT diodes and IE exhibits one or more NDR regions when the 

diodes are biased beyond VP.  Consequently, IC also exhibits peaks as a function of VBE.  The 

gain in the NDR regions is typically lower than in low VBE characteristic, because the hole 
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current into the emitter keeps increasing with VBE.  Since the electron current into the base drops 

at VBE > VP, the result is lower emitter efficiency.  The multipeaked IC characteristic of a bipolar 

transistor with two RT diodes in the emitter has been used as a frequency multiplier.  By driving 

the base with an ac signal of frequency f and sufficient amplitude to bias both RT diodes through 

their resonances, signals at 3f (for sawtooth input) and 5f (for sinusoidal input) were generated 

with reasonable conversion efficiency.89  

 Like RSTTs, resonant hot-electron and bipolar transistors exhibit higher logic functionality in 

a single device, illustrated schematically in Fig. 30.  Given a common-emitter IC-VBE 

characteristic with reasonable PVR shown in Fig. 30a, the output IC can be high when VBE = 

Vhigh < VP, but low when  VB = 0 or 2V high (where the RHET is in the negative transconductance 

regime).  As a result, an exclusive-NOR (XNOR) function can be easily implemented in a single 

device, as shown in Fig. 30b.  With the emitter grounded and two inputs to the RHET base, VOUT 

will be high when one of the base inputs is high and low otherwise.  Room temperature XNOR 

gate operation with a reasonable VOUT voltage swing has been demonstrated, using a device 

layout similar to Fig. 30b.72  In addition to the necessary resistor network, a drawback of these 

designs is that unless the PVR in the IC characteristic is very large, there is still power dissipated 

in the collector resistor when both base inputs are high.  In a single device this added power 

dissipation can be minimized simply by downscaling the area and reducing IC, but this is not 

possible in large circuits where IC must charge interconnect capacitances. 
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5.4  DEVICE APPLICATIONS 
 

 5.4.1  RT Oscillators. 

 Despite the high speed and functionality offered, in principle, by quantum-effect and hot-

electron devices, their technological applications thus far have been few.  In some cases, the main 

obstacle has been room-temperature operation, in others the difficulty of large-scale fabrication 

or the integration of nonconventional devices into standard technology.  For these reasons, many 

of the device applications discussed below exist only as laboratory demonstrations.  While 

possibly relevant in the relatively distant future, when their edge over conventional devices might 

become compelling — at very small device dimensions L, cryogenic temperatures T, or whatever 

other design criteria future technology may require — few quantum and hot-electron devices 

offer a sufficient advantage today.  One happy exception is the use of RT diodes as solid-state 

high-frequency oscillators.  The advantages of two-terminal RT oscillators include relative ease 

of fabrication, reasonable output power, and high maximum oscillation frequencies fmax 
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compared to competing microwave tunnel and transit-time diodes.   

 Figure 31 shows the simplest equivalent circuit of a two-terminal diode oscillator with a 

static I-V characteristic that includes an NDR region described by peak (VP, IP) and valley (VV, 

IV) points in both voltage and current.  This equivalent circuit has been successful in the analysis 

of tunnel diodes with I-V characteristics similar to the RT diode of Fig. 6.  The real part of the 

equivalent circuit impedance Req is given by: 
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where -RD = (VV - VP)/(IV - IP) is the negative diode resistance; CD is the diode capacitance; and 

RS is the series lead resistance.  For steady-state oscillation, Req must be negative, so from Eq. 31 

the cut-off frequency fmax is found to be 
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To increase fmax, the quantities to minimize are then the parasitic series resistance RS and diode 

capacitance CD.  A sharp current drop after VP and a high PVR are also helpful in minimizing RD 

and hence increasing fmax, but there is the competing requirement of maximizing high-frequency 

output power Pmax.  Although the exact value of Pmax depends on the actual I-V) in the VP < V < 

VV region, generally Pmax ˜ (VP - VV)(IP - IV), making both PVR and a high current density 

essential for good oscillator performance. 

 By analogy with tunnel diodes, Eqs. 31 and 32 have been employed in the design of RT diode 

oscillators with empirical parameters (e.g., taking for CD the measured two-terminal emitter-

collector capacitance) and extended to include collector transit- and tunneling-time effects.19  

However, the equivalent circuit of Fig. 31 is physically unsatisfactory.  The current flowing in an 

RT diode depends on the alignment of the emitter and the 2D subband in the well, with the 

tunneling current densities into and out of the well balancing in steady state, Jin = Jout.  It is 

difficult to construct a useful equivalent circuit for RT diodes either in the coherent or in the 

sequential picture.  The main difficulty lies in the unknown energy distribution of the 
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dynamically stored charge density σW = qnW in the well, which makes it impossible to describe 

Jout as a unique function of the electrostatic potential difference VC between the well and the 

collector.* 

 A reasonable and tractable model arises if one assumes that carriers equilibrate in the well.  

Then, the collector current can be described by a function of  σW and VC, and its small variations 

about a steady state can be written in the form:** 
  δJout =  δσW/τ + δVC/RC (33) 
where τ is the lifetime of the carriers in the well, while the collector resistance RC reflects 
thedependence of tunneling rate on the well-collector potential difference due to changes in the 
collector barrier shape.  Variation in the stored charge density σW and its time dependence obey 
Gauss' and Kirchhoff's laws: 
______________________________________________________________________________ 
* The Fermi level difference — which is the true meaning of "voltage" — between the well and 
the collector cannot even be meaningfully defined without some assumption about the electron 
distribution in the well. 
______________________________________________________________________________ 
** This model has been suggested by P. Solomon in a private communication (1995) to one of us 
(SL).  Rigorously, parameters τ and RC can be defined as follows: τ-1 + (∂J/∂σW) at fixed VC and 
RC-1 + (∂J/∂VC) at fixed σW.  Their interpretation as lifetime and resistance is only approximate. 
______________________________________________________________________________ 

  δσW  = CE δVE - CC δVC,     ∂(δ σW)/∂t = δJin - δJout (34) 

where CE and CC are the emitter-well and well-collector capacitances, respectively.  By 

definition, δVE + δVC = δV, the variation in total emitter-collector bias V.   

 Not far from the tunneling resonance, Jin is a unique function of VE, which determines the 

emitter-well alignment, δJin = δVE/RE.  Combining this with Eqs. 33 and 34 for Jout, one obtains 

  ∂(δσW)/∂t = -δσW/τeff + CGδV/τG  (35) 

where the geometric quantities CG and τG are defined as 
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and τeff is given by 
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It is the effective time constant of Eq. 37 that determines the diode dynamics.  If the applied 

voltage V changes abruptly by δV, the charge density in the well will evolve exponentially 

towards the new steady-state value (σW + δσW) with a time constant given by τeff. The magnitude 

of δσW is described by an effective capacitance Ceff: 

  δσW = CeffδV = (CGτeff/τG)δV  (38) 

Evidently, Ceff can be either positive or negative, depending on the sign of CG in Eq. 36.  The 

value of this capacitance is irrelevant to the dynamics of the variation. 

 If the δσW/τ component of Jout were absent from Eq. 33, the RT diode would be in a true 

linear response regime and could be rigorously described by an equivalent circuit consisting of 

RE paralleled with CE in series with RC paralleled with CC.  Solving such an equivalent circuit 

would give Eq. 35, but with τeff replaced by τG.  This, however, is not a good approximation for 

real RT diode oscillators.*  In the operating regime VC is large, the value of τ is shorter than τG, 

and hence  

______________________________________________________________________________ 

* Once again, the point is that these diodes are operated at high VC and hence far from 
equilibrium.  By contrast, near equilibrium Jout can be described by the Landauer formula,  δJout 
= δVC/RC, where RC is a function of the collector barrier transmission coefficient TC.  But at high 
VC it is the lifetime τ and not RC that describes the tunneling rate of the carriers in the quantum 
well. 
______________________________________________________________________________ 

τeff ≈ τ.  This is particularly true in structures with large undoped spacer regions on the collector 

side of the double barrier.  In such structures, the collector barrier transparency becomes only 

weakly dependent on VC, effectively making RC in Eq. 33 very large.  The key parameter for high 

speed is τ, which should be minimized by making the collector barrier as transparent as possible 

while keeping the sharpness of the 2D quantization sufficient for NDR in the I-V characteristic. 

 Figure 32 summarizes experimentally measured, room-temperature oscillator performance of 

high-speed RT oscillators fabricated in different material systems: GaAs/AlAs, InGaAs/AlAs, 

and InAs/AlSb.19  While the power density Pmax available in GaAs/AlAs is limited by the 

relatively low PVR at T = 300 K, InGaAs/AlAs RT oscillators exhibit good output power, while 



- 58 - 

InAs/AlSb devices show promise for submillimeter wave  (f > 300 GHz) performance and hold 

the record for solid-state oscillator frequency at 712 GHz.90  No other solid-state sources generate 

coherent power at submillimeter fundamental frequencies.  One possible application of such 

devices is for low-noise local oscillators in high-sensitivity radiometers.  A more detailed 

discussion of microwave diode performance and applications is available in Chapter 6 of this 

book. 

 

 5.4.2  Memories. 

 Several approaches have been pursued in constructing memory circuits from quantum-effect 

and hot-electron devices.  Single device memories can be constructed from asymmetric two-

terminal RT diodes with a bistable I-V characteristic shown in Fig. 5 by biasing the device below 

VP in the bistable region and changing the memory state using voltage pulses.  Alternatively, an 

ordinary RT diode with an NDR I-V characteristic in series with a load resistor RL can be dc 

biased into a regime with two stable bias points, as shown in Fig. 33a.  Once again, voltage 

pulses can be used to change the memory state.  The drawback of such memories is that at least 

one of the memory states corresponds to a high current through the RT diode.  The resulting 

power dissipation is prohibitively large compared to the larger and more complex conventional 

memory designs.  One approach for overcoming the power dissipation problem is to increase the 

functionality of the RT memory by employing a multistate design.  As discussed in Section 5.2.3, 

proper design of a cascaded RT structure with N diodes results in a multipeaked I-V characteristic 

with N  current peaks of approximately equal magnitude evenly spaced by ∆VP (see Fig. 16 for a 

cascaded RT structure with N = 8 and ∆VP ≈ 0.95 V).  By biasing such a structure with a constant 

operating current IOP supplied by an FET, as shown in Fig. 33b, the output node VOUT can be at 

any of the (N + 1) stable voltage points.  Switching between VOUT states is performed by setting 

an input voltage via a momentarily enabled write line.  As soon as the write line is disabled, the 

cascaded RT will adjust to the nearest stable VOUT value and maintain it indefinitely, leading to 

an (N + 1)-state memory.44  However, this type of multistate memory still dissipates POUT = 
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IOPVOUT of power, with average <POUT> ≈ IOP∆VPN/2.   Minimum power dissipation requires 

high PVR, since IOP > IV, where IV is the worst-case valley current among the N peaks, and small 

∆VP.  Also, <POUT> increases with N and the accumulated series resistance from the N RT 

diodes enters into the RC switching time delay.  Furthermore, practical implementation of 

circuits based on multistate RT memories requires stringent reproducibility of characteristics 

between different devices.  Ultimately, the quantifiable advantage of a multistate memory is the 

reduction of the number of elements necessary to store the same amount of information by a 

factor of log2(N + 1) for an (N + 1)-state device replacing a binary flip flop. 

 A different approach is the series connection of two negative-resistance devices, which can 

be RT diodes, RSTTs, RHETs, or any other device with an NDR I-V characteristic.  In fact, many 

of these devices were proposed in the 1960's with tunnel diodes in mind.91  If the total applied 

bias VDD exceeds roughly twice the critical voltage VP for the onset of NDR in one device, the 

voltage division between the two devices becomes unstable because of current continuity.  One 

of the two devices takes on most of the applied bias, thereby determining the voltage of the 

middle node VOUT.  This is illustrated by the load-line construction in Fig. 34: operating points A 

and C are stable, while B is unstable.  As VDD is ramped up beyond 2VP, the system will choose 

one of the two stable points depending on which of the devices goes into NDR first — either 

because of a fluctuation or, realistically, because of a slight difference in the I-V characteristics.  

Switching between the two states can be accomplished either by controlling the parameters of the 

two devices (in the case of three-terminal RT structures or RSTTs) or by changing the middle 

node bias via an additional electrode.  Significantly, the current flowing through the two NDR 

devices connected in series when VDD > 2VP depends on the valley current, (see Fig. 34).  If the 

PVR of the devices is large, the current will be small regardless of whether the circuit is in state 

A or C. 

 A schematic memory constructed from two RT diodes in series with an additional control 

electrode separated from the middle node by a tunnel barrier is shown in Fig. 35a.  Such devices 

have been fabricated in the InAs/AlSb/GaSb material system,92 which provides good room-
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temperature PVR in the I-V characteristics, after their original demonstration at T = 77 K using 

InGaAs/AlAs/InP RHETs.93  As in Fig. 34, biasing the RT diodes in series with VDD > 2VP 

switches one of them to the valley region, so a small current I << IP flows and VOUT is close to 

either VDD or ground.  To change VOUT, a voltage VIN is applied to the sub-collector control 

electrode, causing current IC to flow between the middle mode and the sub-collector.  Since this 

current flows by tunneling through the sub-collector barrier, it increases rapidly with the potential 

difference |VOUT - VIN|.  When the sub-collector current reaches IP, VOUT switches, resulting in 

hysteresis in the VOUT vs. VIN characteristic, shown schematically in Fig. 35b.  The magnitude of 

the VOUT voltage swing depends in the RT diode I-V characteristic and can nearly reach VDD if 

the PVR of the diodes is high enough.  Conversely, the required switching bias VIN depends on 

the single barrier IC-(VOUT - VIN) curve.  A smaller subcollector barrier requires a smaller |VOUT -

VIN| difference to reach IP and switch the middle node, in effect squeezing the hysteretic loop in 

Fig. 35b along the horizontal axis.  Crucially, until a switching VIN pulse is applied to the control 

electrode, the total current flowing through the memory is limited from below by the valley 

current in the RT I-V characteristic, since the additional subcollector leakage current can be made 

very small by designing an appropriate subcollector tunnel barrier. 

 Memory cells based on two RT diodes or RHETs in series, along the lines of Fig. 35, are 

smaller than standard CMOS designs.  Thus, the RHET version97 operating at T = 77 K claims 

an order of magnitude in area savings, while the room-temperature RT diode implementation96 

offers area savings of 2-4 depending on whether the diodes are laid out horizontally or stacked 

vertically.  The remaining issue for large-scale memory arrays is power dissipation.  Since a 

reasonable IP is needed to charge up the interconnect capacitance and the standby power 

dissipation depends on the valley current, the relevant figure of merit is the available PVR.  By 

using polytype InAs/GaSb/AlSb RT diodes, a room temperature PVR of nearly 20 has been 

achieved,96 but much higher PVR appears necessary to achieve acceptable power dissipation.  As 

a result, NDR-based memories with their exotic materials appear unlikely to challenge CMOS in 

high-density memory applications.  On the other hand, they may be suitable for applications that 
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require small amounts of memory and can afford higher static power consumption. 

 

 5.4.3  Logic Elements. 

 In addition to memory devices, the use of RHETs and RSTTs for logic elements has been 

proposed and, in some cases, demonstrated by a number of groups.  In particular, the compact 

XNOR functionality of RHETs, illustrated in Fig. 30b, has been employed in the design of 

elementary logic components, such as latches and full-adders.94  A typical building block in such 

designs is the three-input majority logic gate, shown in Fig. 36, which uses three RHETs.  By 

using a four resistor summing network connected to the emitter-base diode of the first RHET, the 

operating point lies below VP in the IC-VBE characteristic if fewer than two of the three inputs is 

high and above VP if two or three inputs are high — cf. Fig. 30a.  The second RHET senses 

whether the output of the first RHET is above or below VP.  The third RHET, which is larger and 

delivers higher IC, increases the output current drive of the logic gate.  By combining this 

majority logic gate with two XNOR gates made of two RHETs each, a full adder operating at T = 

77 K was demonstrated.99  Room temperature operation of a hybrid full-adder incorporating 

bipolar transistors with and without RT diodes in the emitter-base junction has also been 

reported.95  Such designs accomplish the required logic function with a reduced number of 

transistors.  Note, however, that the reduced transistor counts available in RHET and resonant 

bipolar logic designs come at the expense of fabricating additional resistors.  But since thin-film 

resistor fabrication in microelectronic technology requires additional processing steps and real 

estate, it is not clear that such circuits provide great area-saving advantages.  Further, the impact 

of all these resistors on the switching speed and propagation delay in such circuits has not been 

characterized to date.  Finally, the integration of these circuits with conventional silicon 

technology is problematic, while the possibility of a stand-alone quantum device logic circuitry 

built in III-V semiconductors competing with the ever-advancing silicon CMOS logic is 

extremely remote. 

 Integration of high functionality devices with conventional logic circuitry is considerably 
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easier when they are built in Si/SiGe heterostructures.  As discussed in Section 5.2.2, silicon-

based RT diodes and transistors23-25,37 perform acceptably at low temperatures only, because of 

the low Si/SiGe barriers.  On the other hand, there has been recent progress in Si/SiGe real-space 

transfer devices.  The drain ID-VD and collector IC-VD characteristics of a p-Si/SiGe RSTT at 

room temperature83 are shown in Fig. 37.  The structure of the device is identical to the 

GaAs/AlGaAs RSTT of Fig. 27, but with Si0.7Ge0.3 layers comprising the channel and collector 

regions, separated by an undoped 3000 Å Si barrier.  Negative collector bias induces a hole 

density in the channel, while VD drives a source-drain current and heats the holes.  As VC 

increases, the drain characteristic exhibits RST-induced NDR, with PVR slightly exceeding two 

at VC = -5.5 V. A further increase in VC results in increasing leakage current due to cold hole 

tunneling.  While the PVR is greatly inferior to that available in III-V RSTTs, it is sufficient to 

implement a single-device XOR gate: with VC = -4.0 V and VS, VD = 0 or -4 V for low and high 

inputs, the gate has a 10 dB on/off ratio at T = 300 K and a 65 dB on/off ratio at T = 77 K.  For a 

source-drain separation L = 0.5 µm, this device had a current-gain cut-off frequency fT = 6 GHz.  

Finally, simulations indicate that there is considerable room for improvement of the drain circuit 

PVR by reducing the barrier thickness and fine-tuning some of the structural parameters.83 

 Since the input source and drain terminals in an RSTT are completely symmetric, even higher 

logic functionality can be obtained by increasing the number of input terminals.  For example, 

three input terminals permit a single-device implementation of an ORNAND gate.  Depending on 

whether the control input is high or low, the output current behaves as either a NAND or an OR 

function of the other two inputs.96  The device structure is illustrated in Fig. 38a, where the 

control input V3 is subject to periodic boundary conditions for ORNAND functionality.  The 

logic operation of this device at T = 77 K, VC = -5 V and Vlow, Vhigh = 0, -3 V respectively, is 

shown in Fig. 38b.87  The same device is expected to perform at room temperature if either the 

cold hole-leakage current or the channel length L is reduced.   

 In principle, Si/SiGe RSTTs are compatible with silicon microelectronics, although the 

epitaxial deposition of pseudomorphic SiGe layers for the active regions obviously requires 
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additional fabrication steps and reduces the thermal budget available for subsequent processing.  

The trade-off between the added fabrication complexity and the area savings due to the higher 

functionality will decide the future of silicon-based RSTTs.  If technological evolution eventually 

brings silicon technology to cryogenic (T = 77 K) operating temperatures, the chances of silicon-

based quantum-effect and hot-carrier devices will improve dramatically.*  

 

 5.4.4  Quantum Cascade Laser. 

 As we have seen, prospects of quantum-effect or hot-electron devices replacing conventional 

semiconductor technologies — whether digital logic and memory chips or analog amplifiers and 

switches — are hampered by difficulties with room temperature operation, device 

reproducibility, and fabrication complexities.  The advantages of novel devices, typically higher 

functionality and speed, have not and for the foreseeable future will not displace standard FET 

and bipolar technologies.  On the other hand, such devices as submillimeter RT diode oscillators 

and Coulomb blockade current sources are poised for success in niche applications, precisely 

because conventional solid-state alternatives do not exist.  Yet another, potentially more 

significant area where quantum-effect devices are about to make their mark is solid-state laser 

sources in the mid-infrared, operating in the λ = 4—12 µm wavelength range, where current 

technology relies on low-power and low-yield lead-salt devices.  The recently developed 

quantum cascade laser  

______________________________________________________________________________ 

* Any silicon-based heterostructure with higher barriers than the 0.2-0.3 eV available in Si/SiGe, 
would greatly brighten the prospects of such devices.   
______________________________________________________________________________ 

(QCL),52,97 combines resonant tunneling and hot-electron aspects in a device structure that makes 

full use of heterostructure bandgap engineering.  The lasing occurs in an intersubband transition 

and λ is tunable in the infrared region via the quantum well design. 

 Figure 39 shows a partial band diagram of the QCL gain region together with its output 

characteristics.  The entire QCL structure is grown by MBE, lattice-matched to an n-InP 
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substrate.  The total gain region comprises 25 stages of an InGaAs/AlInAs coupled-quantum-well 

active region followed by a superlattice Bragg reflector.  The undoped, coupled-quantum-well 

active region is designed for the following 2D subband structure under the operating applied bias 

of ˜105 V/cm: an upper-lying E3 subband with a wavefunction |χ3(z)|2 concentrated in the first 

well, and two lower-lying subbands E2 and E1 concentrated in the first and second well 

respectively (see Fig. 39).  The radiative transition is E3 ∅
 
E2, so the laser output energy is ω = 

E3 - E2.  As in all lasers, the radiative transition has to compete with other E3 ∅
 
E2 relaxation 

mechanisms.  In the QCL, the main nonradiative relaxation mechanism involves optical phonon 

emission.  This process is relatively slow, however, because ω >> ωopt and hence E3 ∅
 
E2 

relaxation requires large in-plane momentum transfer.  On the other hand, since E2 -
 
E1 ≈ 30 

meV ≈ ωopt, E2 ∅
 
E1 relaxation by optical phonon emission is very fast.  The superlattice (SL) 

downstream of the coupled quantum well completes the set of conditions necessary for 

population inversion between E3 and E2.  In the InGaAs/AlInAs SL Bragg reflector region, the 

well and barrier widths are adjusted in pairs98 to compensate for the applied bias and give rise to 

an approximately flat miniband structure shown in Fig. 39.  The sequence that contributes to 

photon emission is as follows: an electron in the E3 state of a given active region relaxes 

radiatively via the E3 ∅
 
E2 transition, then relaxes via the E2 ∅

 
E1 transition by phonon emission, 

tunnels from the E1 state into the lowest SL miniband of the Bragg reflector, and finally tunnels 

into the E3 state of the next active region downstream.  There the process is repeated, until the 

electron cascades down all of the 25 stages and is collected in the doped optical cladding layers 

that sandwich the active region. 

 In order to achieve optical gain, population inversion between the E3 and
 
E2 states in the 

QCL active regions is needed.  This requires rapid removal of electrons from the lower E2 state 

and long nonradiative lifetime in the upper E3 state.  As described above, optical phonon 

emission vacates the E2 state very quickly, but is much slower to vacate the E3 state.  The other 

factor required for a long nonradiative lifetime in the E3 state is the prevention of direct tunneling 

out of the active region.  However, as shown in Fig. 39, direct tunneling out of the E3 state into 
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the SL region is blocked because E3 lines up with the SL minigap.  That is, the SL acts as a 

Bragg reflector (see discussion in Section 5.2.3). 

 Finally and crucially, the layers near the middle of the SL region are doped in the 1017 cm-3 

range to provide carriers for injection into the coupled quantum well regions and ensure the 

overall charge neutrality under operating conditions, when a current density J flows through the 

structure.  To avoid space charge accumulation associated with J, a reservoir of fixed positive 

charge is needed to compensate the current-carrying electrons in each QCL stage.  The role of the 

SL regions is best appreciated by comparing the QCL structure of Fig. 39 with the conceptually 

similar SL structure of Fig. 19.  Even if SL were biased into resonance between adjacent wells, 

rather than into the NDR regime originally proposed by Kazarinov and Suris, tunneling from the 

higher-lying E2 states into the continuum would work against population inversion.  Also, a 

constant electric field in an undoped SL would be impossible to maintain in the presence of 

significant current.  Introduction of a doped SL region was the key design innovation that led to 

the successful implementation of the first QCL.53   Subsequent QCL designs relied on the SL 

regions to suppress tunneling from the upper level of the radiative transition into the continuum.  

To this end, the SL regions were designed to serve as electronic Bragg reflectors with minigap in 

the range of energy near the E3 state, cf. Fig. 39.  Note that since effective Bragg reflection 

requires very accurate grading of layer widths in the SL regions, this elegant approach places 

stringent demands on band structure modeling and layer control by molecular beam epitaxy. 

 The lasing characteristics shown in Fig. 39 at lower left corresponds to a λ ≈ 4.5 µm laser 

with cleaved facets operated in pulsed mode, but continuous mode operation at T = 140 K and 

pulsed operation at room temperature has recently been reported in an optimized QCL structure.99  

The power output is quite high, but the threshold current density Jth increases rapidly with 

temperature, reaching 3x103 A/cm2 at T = 100 K.  If the E3 ∅
 
E2 radiative transition is treated as 

an atomic two-level system, the degradation of performance at higher T can be attributed to 

reduced population inversion due to temperature-induced backfilling of the E2 level from the 

electrons in the doped SL regions.99  The realistic situation is certainly more complicated.  A 
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recent theoretical analysis of gain in QCL pointed to the importance of hot-electron effects in the 

presence of in-plane subband nonparabolicity.100  Indeed, not only do electrons tunnel into E3 

with a considerable spread in energy of in-plane motion, but those that relax nonradiatively to the 

E2 subband are initially very hot — on average, ( ω - ωopt) ≈ 250 meV = 3000 K above the 

bottom of the subband for the λ = 4.5 µm transition.  If the in-plane subband dispersion is 

nonparabolic (certainly true that far above the subband minima), ω = (E3 -
 
E2) changes as a 

function of in-plane energy and therefore the gain depends on the difference between hot-electron 

distributions in these subbands.  The shapes of these distributions are radically different in the 

limits of low and high sheet-carrier concentrations nD per QCL period, provided by the doped SL 

regions.  For nD << 1011 cm-2, the rate of electron-electron collisions is low and the distribution 

functions are not Maxwellian.  The dominant scattering process is then due to optical-phonon 

emission within the same subband.  It is reasonable to assume that the distribution of electrons 

tunneling into the upper E3 subband from the SL miniband is in quasi-equilibrium with the lattice 

temperature T.*  After a nonradiative E3 ∅
 

E2 intersubband transition, the lower subband 

electrons are in states of high kinetic energy.  Subsequently, they cascade down emitting optical 

phonons and partially escaping into the SL miniband reservoir.  The resulting distribution is 

given by a quasi-discrete ladder with the occupation probabilities decreasing towards the bottom 

of the E2 subband, as if the effective temperature were negative. 

 The calculated gain spectra for low nD are shown in Fig. 40a for several lattice temperatures 

T.  The peak gain is substantial even at T = 300 K.  Note that no overall population inversion 

between  

______________________________________________________________________________ 

* This assumption implies a sufficiently rapid energy relaxation in transport between the QCL 
stages. 
______________________________________________________________________________   

the E3 and E2 subbands is assumed, ξ + n3/n2 = 1.  In the absence of lasing, ξ is determined by 

non-radiative kinetics as the ratio of the E3 ∅
 
E2 nonradiative transition rate and the rate of 

carrier removal from the E2 subband.  In the low-concentration regime, the peak wavelength in 
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the gain spectra does not depend on temperature.  To our knowledge, this regime has not yet been 

realized experimentally. 

 On the other hand, the gain spectra calculated for the high nD limit,101 where it is safe to 

assume Maxwellian hot-electron distributions, also show a range of positive gain, but the peak 

gain is much lower.  Moreover, the peak shifts to longer wavelengths at higher T.  These effects 

have been observed experimentally in existing QCL structures.  In the high-concentration regime, 

the range of positive gain for n2 > n3 arises entirely from the nonparabolicity.  In fact, if quasi-

Fermi levels EF3 and EF2 are introduced to characterize the hot-electron distributions in the two 

relevant subbands, positive gain occurs when ω < (EF3 - EF2), a condition that is familiar from 

the theory of conventional semiconductor lasers.  By contrast, the existence of positive gain in 

the low-concentration limit does not rely on nonparabolicity and persists to concentrations far 

from overall population inversion.100  Room temperature gain spectra calculated for several 

values of ξ at low nD are shown in Fig. 40b.  Implementation of the low-concentration regime 

appears to be a promising strategy for maximizing QCL performance. 

 

 

 

 

 

 

 

 

 

 

5.5  SUMMARY AND FUTURE TRENDS 
 

 In this chapter, we have reviewed some of the recent research in the area of quantum-effect 
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and hot-electron devices.  It has not escaped the reader that while many of these devices are quite 

successful according to some (but not all) benchmarks, none has found large-scale commercial 

application to date.  A decade or two ago this situation could perhaps be attributed to the 

immaturity of the field and the need for further development.  But today, a quarter century after 

the first experimental demonstrations of both resonant tunneling diodes and hot-electron 

transistors, this excuse is no longer available.  It is imperative to confront the basic issue: what 

are these devices good for?   

 To be sure, exotic device research can be proud of its scientific accomplishments.  

Fascinating new physics has been discovered, with the fractional102 quantum Hall effect serving 

as a prime example, and many previously obscure issues have been elucidated.  The basic effects 

relevant to electronic devices, such as tunneling in heterostructures, ballistic transport, carrier 

heating, and charge injection across potential barriers, are no longer manifested by hardly 

discernible blips in low-temperature characteristics.  They are now available as robust and 

reproducible phenomena, with on/off ratios quite adequate for the implementation of useful 

devices.  Despite these successes, or perhaps precisely because of them, the general attitude 

toward the exotic device research has hardened into a widespread skepticism.  If these devices 

have not made it, despite the considerable world-wide effort, why should we throw good research 

funding after the bad?  

 In our opinion, there is, indeed, little chance that either resonant tunneling or hot-electron 

devices will form the basis of a successful stand-alone technology.  On the other hand, they have 

significant potential in connection with other technologies, such as optoelectronic integrated 

circuits that are likely to benefit from the introduction of ultra-fast functional elements, based on 

resonant tunneling or hot-electron effects.  The recently developed quantum cascade laser 

appears particularly hopeful in this regard, since it promises good performance in the mid-

infrared wavelength range (λ > 4 µm).  Moreover, superb frequency characteristics can be 

expected from this class of lasers, with modulation frequencies exceeding 100 GHz.  It is 

generally believed that light will eventually replace electrical current as the carrier of information 
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signals, both in computer and communications applications, currently the main drivers of 

innovation in semiconductor devices.  Still, the "dark" age of electronics is far from over, and it 

is interesting to contemplate possible application of exotic devices within the context of the 

future evolution of circuits which operate without emitting, absorbing, or transforming light. 

 The evolution of semiconductor electronics has always been intimately connected with 

advances in materials science and technology.  The first revolution in electronics, which replaced 

vacuum tubes with transistors, was based upon doped semiconductors and relied on newly 

discovered methods of growing pure crystals.  Prior to the 1950s, semiconductors could not be 

properly termed "doped" — they were impure.  Today, semiconductors routinely used in devices 

are cleaner, in terms of the concentration of undesired foreign particles, than the vacuum of 

vacuum tubes. 

 Subsequent evolution of transistor electronics has been associated with the progress in two 

areas: miniaturization of device design rules, brought about by advances in the lithographic 

resolution and doping by ion implantation; and development of techniques for layered-crystal 

growth and selective doping, culminating in such technologies as MBE and MOCVD, that are 

capable of monolayer precision in doping and chemical composition. 

 Of these two areas, the first has definitely had a greater impact in the commercial arena, 

whereas the second has been mainly supplying the device physics field with new systems to 

explore.  These roles may well be reversed in the future.  Development of new and exotic 

lithographic techniques with nanometer resolution will set the stage for the exploration of various 

physical effects in mesoscopic devices, while epitaxially grown devices, particularly 

heterojunction transistors integrated with optoelectronic elements, will be gaining commercial 

ground.  When and whether this role reversal will take place, will be determined perhaps as much 

by economic as by technical factors.  We believe that most significant applications of 

heterostructure electronics will be associated with its use in silicon electronics. 

 The logic of industrial evolution will motivate new paths for a qualitative improvement of 

system components, other than the traditional path of a steady reduction in fine-line feature size.  
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Miniaturization progress faces diminishing returns in the future, when the speeds of integrated 

circuits and the device packing densities will be limited primarily by the delays and power 

dissipation in the interconnects rather than individual transistors.  Further progress may then 

require circuit operation at cryogenic temperatures and/or heavy reliance on high bandwidth 

optical and electronic interconnects.  Implementation of optical interconnects within the context 

of silicon microelectronics requires hybrid-material systems with islands of foreign 

heterostructures grown or grafted on Si substrates.  In terms of the old debate on Si versus GaAs, 

our view is that silicon is the ultimate customer for GaAs.  In this scenario, the current 

noncompetitiveness of quantum and hot-electron devices for general purpose digital and analog 

electronics could give way to novel devices serving as small, highly functional application 

specific components that add significant value to main blocks of microelectronic circuitry.   

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 Appendix A.  Densities Of States And Fermi Integrals 

 Consider the phase space of a single particle in d dimensions (d = 1, 2, or 3).  It contains 2d 
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axes, corresponding to the d coordinates and pd momenta of the particle.  It is a basic tenet of 

quantum statistics that a hypervolume Vd in the phase space contains 2Vd/2π )d distinct states, 

where the factor of two in the numerator arises from the spin degeneracy.  Thus, the density of 

states in the phase space is given by: 

  1D: 2 dL  dp/(2π ) (A1a) 

  2D: 2 dA  d2p/(2π )2 (A1b) 

  3D: 2 dV  d3p/(2π )3 (A1c) 

where dL, dA, and dV are elements of length, area, and volume, respectively.   

 Band theory of solids retains the same expressions A1a-c.  They now describe the density of 

states in each band.  Of course, p is no longer the electron momentum, but the crystal momentum 

(in terms of the wavevector k used in the chapter, p = k).  Inasmuch as the occupation of 

different states in equilibrium depends only on their energy, it is convenient to express the 

density of states as a function of energy.  If we define N(E) as the number of states in a given 

band with energy less than E, then the density of states for various dimensionalities d is given by: 

  1D: g1D(E) + L-1 dN/dE (A2a) 

  2D: g2D(E) + A-1 dN/dE (A2b) 

  3D: g3D(E) + V-1 dN/dE (A2c) 

Note that the density of states has different unites for different dimensionalities (cm-d eV-1 in d 

dimensions).  Closed-form expressions for g(E) can be obtained only for simplest band 

structures, e. g., for isotropic bands, E(p) = E(p).  For isotropic and parabolic bands, E = p2/2m*, 

where m* is some effective mass, N(E) can be found explicitly by counting the states from the 

bottom of the band up to some crystal momentum p: 

  1D: N(E) = 2pL/(2π ) = L(2m*E)1/2/π  (A3a) 

  2D: N(E) = 2πp2A/(2π )2 = A(m*E)/π 2 (A3b) 

  3D: N(E) = 2(4πp3/3)V/(2π )3 = V(2m*E)3/2/3π2 3  (A3c) 

Substituting Eqs. A3a-c into the appropriate expressions for g(E) one obtains the following 

densities of states: 
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  1D: g1D(E) = (m*/2E)1/2/π  (A4a) 

  2D: g2D(E) = m*/π 2 (A4b) 

  3D: g3D(E) = m*3/2(2E)1/2/π2 3 (A4c) 

 The actual density n of electrons in the system (per unit length, area, or volume, as 

appropriate) is found by integrating the density of states multiplied by the Fermi-Dirac 

occupation probability fFD(E-EF), as in Eq. 10.  The resulting general equation, 
 

  
  n   =  � g(E)  f   (E-E  ) dE,     f   (E) = (e     + 1)-E/kT           -1

FD F FD

0

�

, (A5)
 

provides a relation between n and the Fermi level EF.  In general, this relation contains a Fermi 

integral of order s, 

  

  F (E /kT) ≡                   � F
0

�

s
     E  dE 
1 + e       (E - E )/kTF

s     1 
Γ(s + 1)

 
, (A6)

 

where Γ is the gamma function: Γ(1/2) = π1/2, Γ(1) = 1, Γ(s + 1) = sΓ(s).  It follows from Eqs. 

A4a-c that the Fermi integrals for 3D, 2D, and 1D systems are of order s = 1/2, 0, and -1/2 

respectively.  Analytic solutions of the Fermi integral are available only for integer s, so for 3D 

and 1D systems Eq. A5 must be evaluated numerically.  In 2D, on the other hand, the density of 

states is constant and the appropriate Fermi integral is F0(η) = ln[1 + eη], yielding 

  n = (m*kT/π 2)F0(EF/kT) = (m*kT/π 2) ln[1 + e(E - EF)/kT] , (A7) 

where the prelogarithmic factor (m*kT/π 2) is the effective density of states in the 2D subband.  

A similar calculation gives Eq. 12.  Note that the lower limit of integration in Eq. A5 refers to an 

appropriate zero energy point.  In a bulk semiconductor this would be the bottom of the 

conduction band, in a quantum well this would be the bottom of a given 2D subband (cf. Eq. 12).  

 

 

 Appendix B.  Drift Velocity In A Superlattice With Scattering 

 Take a superlattice (SL) in the tight-binding approximation, such that the dispersion along the 

SL direction z is given by Eq. 22.  Consider the motion of an electron initially at rest at kz = 0 in a 
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constant electric field ε.  As a function of kz, the band velocity is 
 

  
 v(k ) = -           sin(k d)z z

2Td 
 
, (B1)

 

where d is the SL period and T is the transfer integral defined by Eq. 24 (one can show by direct 

calculation that T is a negative quantity).  Since (dkz /dt) = qε, the acceleration a(t) is given by: 
 

  
 a(t) =         =              = -           cos(k d)qεz

dv 
dt

dv 
dk 

dk  
dt

z
z

2Td 2
2

 
. (B2)

 

 On the other hand, the effective mass m*(kz), defined by kz = m*(kz)v(kz), is 
 

  
 m*(k ) = -           z

 k 
2Td sin(k d)z

z
2

 
. (B3)

 

Taking the kz ∅ 0 limit of Eq. B3, we obtain the effective mass m*SL at the bottom of the 

miniband, m*SL = -( 2/2Td2).  Note that the miniband width ∆ in terms of m*SL is given by 

  ∆ = 2 2/m*SLd2 . (B4) 

Substituting Eq. B3 into Eq. B2, we have 
 

  
 a(k ) =          cos(k d) qεz

   1 
m*  SL

z  . (B5)
 

Finally, inserting Eq. B5 into the Esaki-Tsu expression for the average drift velocity vD, Eq. 25, 

one finds:46 

  

 v   =  �  e     a[k (t)] dt-t/τ
D

t = 0

�

   =            �  e     cos(       t) dt-t/τ

t = 0

�
qεd qε 
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qετ 
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(B6)

 

This result is equivalent to Eq. 26.  Note that, in the absence of scattering (τ ∅ 0), the average 

drift velocity goes to zero.  The particle is localized and performs purely oscillatory motion.  

These are the famous Bloch oscillations discussed in Section 5.2.4. 

 Appendix C.  Contacts And Superlattices 

 Consider a superlattice (SL) of N identical periods sandwiched between doped contact 

electrodes.  Suppose a voltage is applied between the electrodes and a current flows through the 
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SL.  Given a sufficiently small current, the space-charge effects associated with the current can 

be neglected.  One might imagine that a uniform electric field exists across the SL, as shown in 

Fig. 41a.  The real situation is shown in Fig. 41b: most of the applied voltage drops over the first 

and last barriers, while the superlattice in-between exerts little if any influence on the I-V 

characteristic of the device.  This is a manifestation of the dramatic difference between coherent 

transmission and incoherent decay in quantum mechanics. 

 In order to appreciate this difference, consider two apparently related processes illustrated in 

Fig. 42.  Figure 42a shows a symmetric coupled-quantum-well system, with the wells separated 

by a tunneling barrier of height V0 and width LB.  In the absence of interwell tunneling (e.g., in 

the V0  ∅  limit), each well would contain a quantized level E0 as shown.  Tunneling between 

the wells splits E0 into symmetric and antisymmetric states.  The doublet splitting ω between the 

symmetric (lower) and antisymmetric (upper) states is, approximately, ω ≈ E0e-κLB, where κ = 

[2m*(V0 - E0)/ 2]1/2 and m* is the electron mass.  If, at time t = 0, an electron is placed in the left 

well, it will oscillate between the wells with a characteristic frequency ω.  After a "short" time τ1 

= π/ω, the electron will be in the right well with unity probability. 

 Next, consider the escape process of an electron initially placed in the metastable state E0 of a 

single quantum well separated from the continuum by the same barrier of height V0 and width 

LB, as shown in Fig. 42b.  Due to the possibility of escape, the state has a finite lifetime τ2 and 

hence a finite energy width Γ = /τ2 ≈ E0e-2κLB, cf. Eq. 5.  Since e-κLB is the small parameter in 

our tunneling problem, typically Γ << ω.  Therefore, the lifetime τ2 can be "long", perhaps orders 

of magnitude longer than τ1.  

 The energy splitting ω in the coupled-quantum-well system is similar to the miniband width 

∆ in the superlattice problem.  It describes the resonant transmission rate between discrete states, 

which is much faster than the seemingly analogous incoherent decay process into the continuum.  

In order to achieve a constant electric field in the superlattice, shown in Fig. 41a, the first and last 

barriers of the superlattice must be impedance-matched by making the 2κLB of the first and last 

barriers equal to the κLB of the internal superlattice barriers.  To first order, this can be achieved 
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by making the first and last barriers narrower by a factor of approximately two.  Failure to do so 

has been a common problem in many experimental studies of superlattice transport.103 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Appendix D.  Coherent Transistor Base Transport 

 In general, every bipolar or hot-electron ballistic transistor is characterized by a base transport 

factor α which is a complex function of frequency ω: 
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α ≡ (       )     = e       |α|

ŽI 
ŽI

C

E VBC

-iωτ

 
. (D1)

 

The time τ which enters into the phase of α is the base transit time.  In practice, all transistors 

operate at frequencies sufficiently low that ωτ << 1.  In a well-designed bipolar transistor the 

deviation of |α| from unity is negligible at low frequencies, since the base is much narrower than 

the diffusion length.  Consider the case |α| = 1 more closely.  The complex current gain β(ω) 

becomes: 

  
β =           =                =α

1 - α
-iωτe 

1 - e-iωτ
e                      
2i

-iωτ/2 1 
sin(ωτ/2)  

. (D2)
 

At low ω, the frequency dependence of the current gain is, therefore, 
 

  
|β| =                    - ( ωτ)

1 
2sin(ωτ/2)

-1

 
. (D3)

 

The magnitude of the current gain rolls off as ω-1.  This type of roll-off (typically referred to as 10 

dB per decade or 3 dB per octave) is normally observed in microwave characterization of 

transistors.  Extrapolating Eq. D3 to unity gain, one obtains the cut-off frequency fT = (2πτ)-1. 

 Note, however, that Eqs. D2 and D3 predict regions of high gain above fT.  These are the 

"coherent" gain peaks, corresponding to integer numbers of minority-carrier density wave periods 

in the base.  The necessary condition for observing these peaks is the persistence of near-unity |α| 

at high frequencies.  In fact, all that is required for |α| > 1 at f = 2πfTp, where p is an integer, is |α| 

> 0.5 at that frequency.73  This condition, however, is extremely difficult to realize.  If the base 

transport is diffusive, |α| << 1 above fT.  As discussed in Section 5.3.2, ballistic transport offers 

one possibility of circumventing this problem.  Another possibility is to replace random diffusive 

transport in the base by directed drift in specially graded base structures.104 
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