PH.D. QUALIFYING	EXAMINATION
------------------	-------------

STUDENT'S NAME _____

AREA: COMMUNICATIONS AND SIGNAL PROCESSING

MARCH 2004

QUESTION # 3 (10 points):

Image sampling using orthonormal functions.

Let f(x,y) be a continuous image function defined over a rectangular region $-A/2 \le x \le A/2$, and $-B/2 \le y \le B/2$ in the xy-plane. Assume f(x,y) to be zero outside the rectangular region. Let $\phi_{mn}(x,y)$ be a set of orthonormal functions used for sampling f(x,y) for $m,n=0,1,2,\cdots$

- 1. (3 points) Define all the conditions that must be satisfied by $\phi_{mn}(x,y)$ to form an orthonormal
- 2. (2 points) Give an expression for sampling or expanding f(x,y) in terms of $\phi_{mn}(x,y)$.
- 3. (5 points) Show that, within the rectangular region defined above, the following functions

$$\phi_{mn}(x,y) = \frac{1}{\sqrt{AB}} \exp\left[j2\pi \left(\frac{mx}{A} + \frac{ny}{B}\right)\right], \quad m, n = 0, 1, 2, \dots$$
 (2)

USE THIS SPACE FOR YOUR ANSWER

PH.D. QUALIFYING	EXAMINATION
------------------	-------------

STUDENT'S NAME	
----------------	--

AREA: COMMUNICATIONS AND SIGNAL PROCESSING

MARCH 2004

QUESTION #8 (10 points):

Restoration of motion blurred images.

A traffic monitoring video camera records a moving car. The motion of the car is parallel to the image plane and produces a continuous translating image pattern f(x,y) on a uniform (constant brightness) background. The image moves with a uniform speed v mm/second along the x-axis on the image plane. The period of exposure for one image frame is T seconds. During the exposure period of -T/2 to T/2 seconds for an image frame, the camera aperture is fully open with constant area. An image frame of the video is blurred due to the motion of the car.

- 1. (6 points) Derive the transfer function corresponding to the motion blur for one image frame of the car.
- 2. (4 points) Assume that the power spectrum of the image noise is modeled by a constant C and the power spectrum of the image signal is modeled by a Gaussian of the form $S(u,v) = A \exp{-\sigma^2 2\pi (u^2 + v^2)}$. Here A is some constant, σ is the Gaussian parameter, and u,v are spatial frequencies.
 - (a) Give an expression for the Weiner (optimal least-square) filter for restoring the motion blurred image frame of the car.
 - (b) Draw a qualitative plot of the MTF of the Weiner filter.

USE THIS SPACE FOR YOUR ANSWER