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Abstract—In - this paper, we study the problem of joint final distribution which depends on the starting point of the
model selection and parameter estimation under the Bayeste chain. Third, one may argue that it is hard to implement the
framework. We propose to use the Population Monte Carlo algorithm in a parallel fashion because at each time stége

(PMC) methodology in carrying out Bayesian computations. fie . .
PMC methodology has recently been proposed as an efficient algorithm produces only one sample, which depends on the

sampling technique and an alternative to Markov Chain Monte Sample produced in the previous time step.
Carlo (MCMC) sampling. Its flexibility in constructing tran sition PMC has recently been introduced in [10] and [11]. It
kernels allows for joint sampling of parameter spaces that blong s essentially an iterative sampling method which at each

to different models. The proposed method is able to estimate jioration employs importance sampling (IS) to produce a
the desired a posteriori distributions accurately. In comgarison

to the Reversible Jump MCMC (RIMCMC) algorithm, which is s_et f)f gpproximately uncorrelateq samples from the target
popular in solving the same problem, the PMC algorithm does ot~ distribution. It also uses resampling [12] to prevent sampl
require burn-in period, it produces approximately uncorrelated degeneration when needed. However, it is well known that for

samples, and it can be implemented in a parallel fashion. We importance sampling, the importance function (IF) needseto
demonstrate our approach on two examples: sinusoids in whgt carefully chosen to ensure that the “region of importanese” i

Gaussian noise and direction of arrival (DOA) estimation in . . L
colored Gaussian noise, where in both cases the number of sagjs reached quickly [13]. Itis the ability of PMC to accommodate

in the data is a priori unknown. Both simulations show the Multiple importance functions (or rather, transition kals),
effectiveness of our proposed algorithm. and to adaptively improve their sampling efficiency that ek

it superior to pure importance sampling. Between different
iterations, the algorithm can, based on certain critetiange
the structure of the transition kernels to ensure that the
Model selection is an important topic in signal processingubsequent sampling procedure is carried out more effigient
It has found application in various areas including array In [11], a fixed number of pre-selected transition kernels
signal processing, communications, and speech signal prave been used and each of them has been assigned different
cessing and therefore has been studied extensively. A treogBights at different iterations. The efficiency of the algon
review provides some common approaches and criteria fg4s been demonstrated by an example with the posterior being
model selection [1]. The model selection problem is oftes mixture Gaussian distribution. It has been shown thattthe p
presented as a problem of joint model selection and parametaced samples by the algorithm accurately approximates the
estimation. Many researchers have addressed it within tigtribution. In [14], the authors have proposed an albarit
Bayesian framework. The main difficulty of this approacts lieto adaptively choose transition kernels so that the asyticpto
in solving multi-dimensional integrals. Some early works ovariance of the estimates decreases. In [15], it has beearem
model selection are based on the use of large sample thegitated that the PMC algorithm could progressively sample
and approximating the final posterior by Taylor expansioifiom distributions that had diminishing Kullback distance
around the maximum likelihood (ML) estimates of the unfrom the target distribution. Comparisons between MCMC and
known parameters [2], [3], [4]. In [5], the authors develdpePMC have been made in [11] and [16]. In both cases, PMC
an efficient iterative algorithm for carrying out the maxihas outperformed MCMC, mainly because of the slow mixing
mization needed for obtaining maximum a posterior (MARjroperty of the MCMC. Improved performance of PMC in
estimates. More recently, Reversible Jump Markov Chagarameter estimation by the use of Rao-Blackwellizatios ha
Monte Carlo (RIMCMC) sampling [6] has been introducegeen shown in [17].
for approximating joint posteriors and computing estirsaié In this paper, we propose to apply the PMC methodology
model order and parameters of interest [7], [8], [9]. Altgbu to joint model selection and parameter estimation. We use
computationally intensive, this algorithm was shown toéawa two-stage sampling procedure: we first sample the model
very good performance, especially when the sizes of aveilalprder from a set of discrete transition kernels, and then we
data are small. However, algorithms based on RIMCMC haggmple the parameters from a set of transition kernels that
several drawbacks. First, a burn-in period, whose sampées gorrespond to the sampled model. This two-stage sampling
discarded, is required. Second, typical MCMC implemeatati procedure allows us to sample from parameter spaces with
may have poor mixing, i.e., the chain may converge to different dimensions. When the samples are properly weijht

_ _ _ the samples and the weights produce approximations of the
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09-1-1154. The paper is organized as follows. In Section Il we pro-

I. INTRODUCTION



vide the formulation of the problem, and in Section Ill, we As stated abovell,(k(*)) is an indicator function, and
describe the steps of the algorithm. There we also giveZ@filHk(k“)) essentially calculates the total number of
proof of convergence of the algorithm. In Section IV, welrawn samples{(k(®,0@)}Y with k() = k. Thus, one
demonstrate the performance of the proposed algorithm wighn calculatek* by first drawing samples{(k“),o(i))}f\’:l

two experiments: (a) detection of sinusoids in white Garssifrom p(k, 8]y), then selecting the model ordérthat is most
noise and estimation of their frequencies and (b) detectigequently sampled.

of number of sources whose signals impinge on an array|t is well known that one can directly generate samples
of sensors. In the latter case the signals are corrupted flyym the posterior distribution only in a very few cases. Whe
additive colored Gaussian noise and the objective, toop isduch generation is impossible, one may resort to the use of
estimate the Direction of Arrival (DOA) of the signals. Inimportance sampling. In the following, we first briefly rewie
both examples we compare our algorithm with the RIMCM€his technique and then apply it to solve the model selection
algorithm. Our main objective is to demonstrate that PMC iﬁ'oblem.

a valuable alternative to RIMCMC. Importance sampling has been used mainly for numerical
integration [13] and has many applications in signal preices

, ) . and communications [18], [19]. For example, in signal pro-
In this section, we formulate the problem of joint model S&essing, in order to obtain the minimum mean square (MMSE)

lection and parameter estimation in a Bayesian framewask. Aqgtimate of a parameterfrom the observation, we have to
sume we have an observation vecfowhich containsi, data ;e the following integration:

samples. We also hav& competing models\g, ..., M1,

and one of them generates the observations. Associated with s d
. &= [ ap(zly)de

each model, there is a vector of parameiggse Sy, where

Sk, denotes the parameter space./ofy.. The objective is 0 \yherep(z|y) is the posterior distribution of, and is the

identify the true model as well as to estimate the parametgfig Se estimate ofz. The above integration is usually hard

6 associated with the model. o _ to solve directly. It may also be hard to draw sampté8
We can view the model order as a realization of a discrelgectly from the distributionp(z|y) in order to perform the

random variable, so that the total parameter sga®uld be  ¢|5ssical Monte Carlo numerical integration. Alternaliyeve

K— . . .
expressed as follows = Ur—o {k} x Sk, which is a union - can draw samples(® from animportance functiolF) ¢(z),
of disjoint subspaces. Note that eaSh may have different 4 perform numerical integration as follows:

dimension and may include different parameters. The olkigct
of Bayesian inference is to obtain the posterigk, 8]y),

Il. FORMULATION OF THE PROBLEM

which can then be used (if needed) to compute point estimates i = /:vp(:c|y)dac
In the Bayesian context, one typically employs the MAP
model selection rule, which can be expressed as _ /Ip(fdy)
= q(x)dx
. q(x)
k* = argymax {p(kI.V)} N _
o1 Z zWp(z®ly)
— wrgemax{ | plk6ly)do} S N TGy
0€$k =1

_ ~ o~ It has been shown that when the sample skas large,

- Tk max{/geﬁ1512 Hk(k)p(k’0|y)d0} (1) the estimatet obtained by the above importance sampling
- o e algorithm converges to the mean of the posterior. If we define

wherell (k) is an indicator .funct|0n th-a.t takes the-value Lo — p(m“()i\)y)%, the above estimate can be interpreted as

whenk = k and is0 otherwise. The difficulty of using (1) _a@®) : .

L e . the weighted mean of the drawn sample®. If p(z|y) is

for model selection is that the posterior is usually highbyn ) . . .

. . . . only known up to its proportionality constants (in other d®r

linear in 6, and the integration does not have a close form ly) is unscaled), then we calculaie?) b

expression. In that case, one can resort to a Monte Ca?l%cy ' y

technique to approximate the integrfgh) f(6)p(6)d6 by first ) p(zD]y)

drawing a sample(i) of size N directly from the distribution w q(z(D)

6), and then performing Monte Carlo integration b . . .
p(9) P ¢ J y and normalize the weights according to

N
[, f@w®)00 = % > 10 @ o e

| S, at)

From the strong law of large numbers, the above approxima- /
tion converges to the true value of the integration with probOne interesting interpretation of the sample weight pairs
bility one. Thus, if one can draw the samplgg®, @)} {z(), w()} is that they form a discrete random measure
directly from the posteriop(k, 8y), then (1) becomes {z®,w®}, where the samples® constitute the support of

N this measure, anad(?) are weights associated to these samples.

o~ arg max{i Z Hk(k:(i))}. (3) When the sample size is large, the measyfapproximates”
N &~ the posterior distribution of:.



In light of the above importance sampling algorithm, wé. Generic PMC Methodology

can draw sample$(k'”, 0")} L, (where, 6" € Sk@) oM 5ne way to overcome the main difficulty encountered by IS
an IFg(k. 6), and assign each sag?ple a proper weight, so _ e poor choice of IFs — is to introduce into the sampling
that the random measugk”,0')), w@} X, approximates procedure multiple IFs with different properties, andaterely
the posterior d|str|bu_t|on. We can then approximate the-inty,q adaptively select them according to their performance.
gration in (1) according to This iterative procedure is a learning process, during twhic
- we gain knowledge about the target distribution. For exampl
k* = argy maX{/ . Hk(/f)p(/ﬁ@b’)d@} in the initial stages of the sampling, it is preferred to have
Oeui, s IFs with heavy tails so that the parameter space could be
~ p(E,0|y) ~ explored fully, while in the later stages, the IFs with good
= Orgrmax /0 L (k) =="g(k, 6)d6 local exploring property may be preferred to stabilize the
eur sy g(k,0) _ ; _ _
samples. This process could be implemented in the following

=R

N L
1 S p(k@ 0(1)|y) way. Before the start of the algorithni) IFs g, - - - are
~ i (@AY P 1Y) 91, y9D
= OTgkmax { N Zl Ly ( g(k@, 00 selected. Define the vector of random variabte$ [k 6] and
N the vector of sampleg(*t) £ [k(it) 9it)] wheret stands
—  arg max 1 Z 0 (k@ )o@ (4) for ite_ration_. Then the overall I (x) can be constructed at
N & each iteratiort as follows
where D
(KD, 60y) g6 = Do )
) & PED,070y) 5)
g(k,01) D
t
The above expression indicates that one can approximate the Z a;- = L ()
a posteriori probability of the model with indéx p(k|y) by d=1
summing up all the weights of the samplg&(™,60")}Y |, 1t is clear thaty™ (x) is a mixture of D functions and that

wherek(® = k. With the MAP criterion, we choose the model,() ~quid be interpreted as frequency of using theglfx)
whose sum of weights is maximum. Moreover, one can use sampling. The following procedure is used to sample from

weights to estimate the unknown parameters of each rﬂode&(t)(x)_ Let ) ¢ {1,---, D} denote the index of the IF
by that is used for sampling(**). Thend“*) is determined by
ak _ sz,\’zl w® 9@ I1, (k) ©) drawing it from a mgltinqrtr;ial distributioa’\/l(ozg”, e ,ag))
vazl W) T (k) : followed by generating " from g . (x).

_ _ The significance of the above construction gf)(x) is

The above importance sampling procedure may suffer fragat one can modify;(!)(x) at each iteration by changing
poor choic_es of IF vv_hi_ch can, for example, make mos_t (_)f thee WeightScxff), according to the performance of eaghin
sample weights negligible and cause the subsequent estimaf,e hast. One criterion to evaluate the performance ofjthe
inaccurate. This situation may arise when the IF generajgShe sum of the weights of the samples they generate [11].
samples that concentrate on regions with low probabilitgsnaris criterion favors the IFs that focus on exploring the so
un_der the target poste_rlor: The ch0|ce_ of the IF is both adit aRalled “region of importance” of the target distributiomca
science, and many criteria for selecting good IFs have begp,g generate samples with large total weights. According t

developed [13]. One can, for example, choose an IF with heatwS criterion,a(t) is updated by the following equation:
tails that dominate the tails of the target distributionwark d

with an IF that mimics the behavior of the target distribatio ) SV wGtDIL,, (x (G D)
However, both of these strategies require certain infaonat Qg = ng wit—1) (8)
about the target distribution, which is usually not avdiab =1
In the following section, we propose to use a PMC algorithmherell,, (x(**~1)) is an indicator function that takes a value
which obtains samples from an IF that is adaptively modifiet! if the samplex(“*~1) is generated by the IF; and 0
so that the “quality” of the samples improves with iterasonotherwise.
and one can evaluate the integral in (1) with greater acgurac These time-varying IFs;®*)(x) generateN samples at
each iteration, and with the weighfsv(>"}¥ , they form a
I1l. PROPOSEDALGORITHM random measurﬂ(t) S {X(i’t),w(i’t)}ijil that approximates
PMC has the ability to progressively learn about the targéte distribution of the random variable®). The objective of
distribution and to adaptively modify the IF based on ththe algorithm is to ensure that this distribution convertges
gathered information so that the sampling procedure besontiee target distribution whenis large.
more efficient. We first introduce various elements of the PMC For monitoring the sampling efficiency, we can use the
algorithm in Section 11I-A, and then present the algoritheed entropy relative to uniformity [20], i.e.,
to solve our model selection problem in Section 1lI-B. We N .
i i - log w(®t)
present the convergence result for the proposed algorithm i o — _ Zw(zyt) g (9)
Section III-C. log N

i=1



where H®) is a measure of uniformity of the weights(**) The samples produced by so called iterated particle systems
at time¢. If the IF converges to the target distribution, theiil8] like PMC and particle filters [22] may be degenerated,
the weight of each sample(-Y) converges to%, and H® i.e., the weights of a few samples dominate the remaining
converges to 1, and every sample can be seen as draamples. Resampling [23] is thus introduced to prevent the
approximately from the target distribution. samples from degeneration. We use )1V | to denote the

For the presented iterative IS algorithm, it is beneficial te’amples after resampling.
relate the samples in a current stage with the samples from\WWe summarize a generic PMC implementation as follows.
the previous stage. PMC introduces dependence of the ¢urféor each iteratiort,
samples{x(*Y}N  on the samples in the previous iteratiorl. Generate samples from the mixture of transition kernels.
{x+=11N by replacing the IFg4(x) (which do not depend 2. Compute the weights of the sample§-*).
on the past) with transition kernels. This idea is closelsiteel 3. Perform estimation based on the weights.
to smoothly approximating the posterior distribution gsthe 4. Resample.
kernel technique [20], except that PMC uses multiple kerned. Compute the Weightsg*l) for each kernel (-, -).
at each stage. Recall that?),t € {1,2,..T} is the set of
random variables approximated by the iterative importance ,
sampling algorithm at each iteration A transition kernel B. PMC for Model Selection
Q(x=1 x) is defined as follows: In a parameter estimation problem only, as demonstrated in
_ 9 P(x < x|x(-1) = x(:-1) [11], [17], the above steps are sufficient to produce approx-
Q(X(zytfl),x) — = — . (10) imation of the target distribution. Under model uncertgint

I x a direct extension of the above method would be to Kin

The transition kernel is a generalization of a transitiortrira parallel PMC algorithms, one for each model, and compare
of discrete state Markov chains, wheffx"~1),x) is the their performance to determine the model. Of course, thigna
probability density of the state of the chain at iteratibn approach is very computationally expensive when the number
conditional on the chain being in state'~!) at iteration of competing modelss is large, because the computational
t — 1. We can replace our previous IF with a transition kerng@bad is “equally” distributed upon the different modelsr8ar
Q(x(=1 x), where Q(x(“'~1 x) can take the form, for observation, which serves as inspiration for using RIMCMC
example, of a Gaussian kernel (in the case wheis one- instead of multiple MCMC under model uncertainty, has been

. . . g lit=1) .
dimensional)Q(z(**~1 z) = ¢21r? exp{— =2 ;2 ) it made in [8].
is clear that the new sample§!) drawn from this kernel will Observe that there is a natural hierarchy in our full param-

be aroundz(»*~1), and the shape of the kernel is determinegtter space®: the space for the parametéris determined

by o2. In this case, the kerneD(z("t~1) z) is a family of only by the choice ofk. After the determination oft, it

normal distributions withz(“*~1) as location parameter. is sufficient to sample only from the parameter spageto
PMC uses a mixture of multiple kerne{€4(.,x)}?_, in Pproduce samples that approximate the distributiof|k, y).

each iteration to improve the sampling efficiency, and tHéis thus natural to decompose our sampling kernels into two

sampling is performed as in (7), i.e., components: one for sampling of the model ordefrom
b the index set{k};—,', and the other for sampling from the
(it) (t) (it—1) parameter spac§y. Let Q(-,-) denote the kernel we use for
X ;ad Qa(x ) (11) sampling the model order, and 1€k, (-, -) denote the kernel

D we use for samplin@*. We propose the following two-stage

Zagt) - 1 (12) sampling §cheme:

=1 At iteration ,

1) draw a model order samplet™®) from Q(k(»'~1 k)
and _ (t-1)

2) draw a parameter sampté™") from Qp ., (8.0, ,0)

whereafit) is determined as in (8).
We summarize the procedure by explaining how we gen-
erate one particular sample at iteration First, we select

. o . . ~(t=1) . .
the indexd of the transition kernel from the multinomial Wher_e_Ok(i,,) is th_e estimate of the parameter of the
distribution M(al”,--- ,al))); then we generate a sample specific model at iteration — 1.

xl(.t) by the kernel with indexd. Because the samplggt) It is worth mentioning that the model order is a discrete
is actually generated by the kern@ly(x(“*~1) x(%1) the random variable, so that the kern@l-,-) is represented by

weight of this sample can be obtained by a K x K matrix with transition probabilities. For example, if
(i.) Q(-,-) = Ixxx, which is aK by K identity matrix, we will
w P(X ly) ‘ (13) always havek (t—1) — g(it)
Qa(x(1=1), x(1) In the following we useD predetermined kerneig,(., .) for
which follows from (5). We use the proportionality operatogenerating model order, whete= 1,2, --- , D, and for each

 here to include the case when the posterior distribution isodelk, we have a single kerné)y, (-, -) for generating the
not scaled. Equation (13) represents the weight in thermalgi parameters that belong to the parameter sgac@®©ne reason
PMC algorithm, and it has been used in many applications of using multiple model kernels is to improve the sampling
the PMC, for example, [16], [17], [21]. efficiency, as stated in Section IlI-A. An extension can be



easily made to generate parameters using multiple kernels
under each model. However, the rationale is the same, and weAt £ =0

keep our choice of single kernel for the parameters in order Fori = 1,"(;' , IV )
to maintain the presentation clear. Draw £(-%) from the priorp(k)
Based on the above decomposition of transition kernels, the Draw 8% from the priorp(6;...0, ) }
sampling of (k") 0,(;{2)) can be expressed by Compute the normalized weights*?) o p(y|k(:0), Ol(j(’fg))
N CA _ R Obtain estimate&©, " using {w®}¥ | and the samples
(©10,0,00) ~ > ay’ Qa(k" ™1, k)Qq, (64, 6) Assigna') =1/D,d=1,--- D
d=1 Resample and gét (), *(+%)
and the weight for each sample can be expressed according toFor¢t =1,--- , T
(13) as follows: Fori=1,---,N
p(kGD 900 1) Determined() by sampling fromM(al”, - | a{?))
(i,t) ) VG ( . (it
w D o Py {14) Draw k(1) from Q yei.o) (K*1=1 k)
o (k(:t= kit ) 0.+ ,0 i i ~(t—1
Qdf; >( ’ )Qek(l’t) ( K5 5 k(l’ﬂ) Draw 0;(7:,1) from Qek_(i,f) (01(:(10), 0)
where>" " | w("") = 1. The estimate of the marginal posterior Compute the normalized We'ghts(‘ ,
for the model order can be obtained by summing up the wit) o PyIK®D,0. )
normalized weights for each model Q 10 (G40 kG0)Qg (9?@,3,0;’5,)”)
N . Obtain estimateg®, 6(*)
P(kly) ~ Zw(z,t)nk(k(z,t))_ Assignaff“) _ va—l WO (d0)
i=1

Resample to obtai*(-") and@* ("),

TABLE |
THE PROPOSED ALGORITHM

The resampling procedure equalizes the weight of the
samples, and is commonly carried out by duplicating samples
proportional to their weights [24]. Namely, fer=1,--- | N,
we first sample the indej ~ M (w®D ... w1 and then
we let x*(:t) = xUit) - After resampling, the models with
large total weights (thus large estimated marginal pasteri _ - _
occupy greater portion of the sample. entries of Qq(-,-). Specifically, if Qa(2,3) = 0.5, then 50

Now, we can provide another justification for using multipl@€ercent of the samples that have model ortér =) = 2

kernelsQq(-, ) for sampling the model order. Ld denote at iterationt — 1 will be moved okl =3 in the next
a matrix with entries all ones. By choosing eith@y(-,-) = iteration. Now it is clear that the above requirements are

somewhat conflicting with each other: the first requirement

+U or Qq(-,-) = 1, and assigningy) = % for all d in :
the initial stage of the algorithm, there will always be equdransiates to the strategy of selectiqg(-,-) that have large

number of samples for each model at every iteration, whici@gonal entries, while the second requirement dictates ho

corresponds to the naive approach mentioned in the begjnnifi ch00S&Xa(-, -) with off-diagonal entries not too small. As
of this section. Consequently, it is desirable to find a fitors @ '€Sult, we suggest to design multiple kernels that actaeve

kernel that distributes the right amount of computatioirakt trade-off between these requirements: some kernels may hav

to each competing model, preferably according to their tr¢dligible off-diagonal entries, while some may have reédy
posterior, i.e., the models with high posteriors should gi'9€ off-diagonal entries. Our choice of transition késria

more “attention”. Since the true posterior is not known, on@€ following simulation section is an example of the above
can use multiple transition kernels and let the algorithff'99ested design. We will also show in the simulations that

choose the most efficient distribution of computationaktinm strategies that do not obey the above suggestions may lead to

Section IV, we demonstrate that, indeed, by usinglifferent PO performance of the PMC algorithm.

transition kernels, we get better performance than when we!" Table I, we summarize the proposed algorithm and in

use only one kernel. Fig. 1, we present a graphical illustration of it.
We also provide some heuristic guidelines for designing
the set of predetermined kernedg,(-,-) for model order. C. Convergence

First, we would like to build our current computation based S .
o ; . . . A natural question is whether the above stated algorithm
on the distribution obtained from the previous iteratiors A

a result, we would expect that the majority of the mod&?" approximate the target distribution, or specificafiyfor

order sampleg (-0} | generated at iteration correspond eicﬂalteeratmrt, when the number of samples goes to infinity,
to the model orders with the largest total weights in itenati W v

t — 1. Second, we would also like to improve upon the ) N (0) £/ (ist)

previous distribution by exploring the parameter spacesemo ngnoozw UeY) = /f(x)p(x|3')dx (15)
thoroughly. One way to achieve this is to allow portions & th =1

majority samples in iteratiofr-1 to “move” to the other model for all function f(-) that satisfy certain regularity conditions.
orders, and this behavior is determined by the off-diagoni4l(15) is true, then when the functiofi(-) is 1T, (k**), the



Initialize and else, let
samples '

t

2 Ohirn) = TTe Thiin T e i(m) (20)
Determine sampling kernels
| wherec is a constant. It is clear thatzlﬁs large enough and the
estimates fok:(*) stabilize, therv?, ,, stabilizes for all;*).
By settingai(iyl) relatively large, the above scheme allows us
[lj eoe E‘Ij to have kernels with heavy tails at the initial stages of the
Resample s i e Dl s Use the algorithm so that we can explore the whole parameter space,
esc‘(;:]“:gffc:" and have lighter tails to focus on local sampling in the later
Kernels stages of the algorithm, Once the order estimates stabilize
e - 1 N o2 shrinks and allows the kernel to explore the local
ulate mixture LX X . . .
weights a, parameter space instead. We will demonstrate the impraveme
Update|weights of the sampling efficiency for this choice &fy , , (-, ).
It is also worth mentioning that our proposed algorithm is
Normalize weights capable of sampling nuisance parameters if their condition
Compute estimates | diStribUtions are known. Specifically, denote wittthe vector
of nuisance parameters. Then we can sampét iterationt
YES More iterations? according toz(iﬂf) ~ p(z(i’t”k*(i’t)a 0*(1-707)’)! Whereo*(iﬂt)

and k*(»Y) are the resampled parameters of interest and the
/ Output ; model order, respectively.

IV. SIMULATIONS

In this section, we present extensive Monte Carlo simufatio
results of the proposed algorithm. Two simulation experitae
are considered. The first simulation experiment is the joint
detection and estimation of sinusoids in white Gaussiasenoi
[5]. The second simulation experiment is the joint detactio
of number of sources and estimation of direction-of-aftriva

Fig. 1. Graphical illustration of the proposed algorithm.

above equation becomes

N (i) (i) (DOA) of signals emitted by the sources [25]. The signals
]\}Enoo w Vg (k) impinge on an array of sensors and are corrupted by colored
=1 Gaussian noise. In subsections IV-A and IV-B, we briefly
present the mathematical model for these problems. Far thei
an / (], 0]y)d6 (16) detailed description, we refer the readers to [8] and [9]. In
' subsections IV-C and IV-D, we present simulation setups and
results for each problem, respectively.

= (k|>’)- (17)

We prove the following theorem regarding the convergengg Detection and Estimation of Sinusoids in White Noise
of the PMC algorithm for model selection.

Theorem 1:For the PMC algorithm detailed in Table I, we
have the following convergence result:

We have an observation vectpwith d,, data samples. The
observations are generated by one of the followihgnodels:

N Mo : yln] = e€[n]
lim Y w@OT(KOY) = p(k 18
N—00 4 ( ) plkly): (18) My y[ln] = Zac,j cos(2mfjn) + as,;sin(2w f; n) + €[n]
Proof: The proof is given in the Appendix. [ ] j=1
wheren =0,1,--- ,d,—1,k=1,..., K—1, ¢[n] are iid noise
D. Discussion samples, and[n| ~ N(O o?).In matrix form, the observation
It is easy to extend the above algorithm to support multipéector can be expressed as follows:
kernels for exploring the parameter spaSg., instead of y = H(f,)ay, + € (21)

using a single kernel. Alternatively, we can adaptivelyrdea
the single keme@%m (-,-) to achieve improved sampling wh_erey is the_dy x 1 observa;tion vt_actor, is ad, x 1 Gaussian
efficiency. Assume that), o (O(t) 0(t+1)) is a Gaussian Noise vector, |e¢ ~N(0,0 I),Tfk is a_\k:xl frequency \{ector
kernel N'(8"), 07 T). We propose to use a time-varyin defined asfy, 2 [f1 fz - fil", a is a2k x 1 amplitude
k . P p y gk/ector andH(fy,) is ad, x 2k matrix whose elements can be

kernelQeW,w( ) = N0, 02, ,1) as follows. If k(1) is expressed according to
the MAP estimate of the model order at iteratigriet

t H(fk)n,gj_l = COS(27Tfj n)
= t+c Uk“ t) (19) H(fk)mgj = sin(27rfj n)

2
O k(ist+1)



The unknown parameter vector &, = [02 a] f]T. Our H(¢,) is an M x k matrix whose elements can be expressed
objective is to jointly determine which model generated they

observationgy and estimate the parametefis Note thato?

and a;, are treated as nuisance parameters. Therefore, we H(py,)m, = exp{j(m —1)¢;} (28)
use the Bayesian methodology: we integrate out the nuisance

parameters and determine the model order and frequency froRerej = v—1, m=0,1,--- M —landl=1,--- k. The

the joint posterior distributiom(k, f,|y). vectorg, is defined byp,, = [¢1, ..., ¢x] ", whered, is given
We first assign prior distributions to the parameters. W& ¢1 = woXo sin(y1) with ¢, being the angle between tifé
assume the models have equal prior probability, thus, incident signal and the sensor array, the carrier frequency
1 of the received signal)y the distance between the sensors,
p(k) = I7a (22) andwv the propagation speed of the signal. In summary, each

) ) ) elementy,,,[n] of y[n] could be expressed as
Note, that in the RIMCMC setting, the prior for model order

is usually set to be a truncated Poisson distributigh) oc k
AFexp(—A)/k! x TI{0 < k < K — 1} with hyperparameteh ym[n] = an]exp{j(m — 1)¢1} + em[n]. (29)
in order to facilitate the ‘Birth’ and ‘Death’ moves. We use =1

the Jeffreys’ prior for the noise variance [26], We need to determine which one of the followikgmodels

1 .
p(a_Q) x =. (23) generates:
ag
Then we can write the joint posterior distributigiik, 8,|y) Mo : y[n] = €[n]
as follows. My yln] = H(¢pan]+en] k=1,---,K—1.
p(k,Orly) o p(y.k,0k) Besides determining the model order, we need to estimate
= p(ylk, 0r)p(O, k) ¢,. Again we integrate out the nuisance paramet&rs2

o p(ylk, ax, fi, 02) p(k, ax, f|0?)p(c2)24) [a[l] a[2] ...a[d,]] and%, and estimate the model orderand
¢, using the marginalized posterior distributiptk, ¢, |y).

. ) . 19k
Assuming, thaf; has a uniform prior orj0, 3]* anday, has Define the projector on the signal subspace by [5]

a zero mean normal prior, we have

P, — H(¢,) (H(o,) "H(ay)  H(g)"
= U.()Ul (1) (30)

ggd let the projector on the noise subspace be

1 a) ¥ tan ) .
_ - FE— 2% (25
2702 [1/2 exp{ 952 (25)

where =, ' = §~2HT (f;)H(f;), with 62 being a hyperpa-
rameter that can be integrated out numerically if we choo
for it an inverse gamma prior of the fordG(«s, Bs5). (See pL

p(k, ag, fi|o”) o

section V-C of [8] for detailed discussion.) Eo= 1P y
After integrating outa;, and o2 in (24), we obtain = Ud(¢,)Ul () (31)
_ 2k here U,(¢;) and U.(¢,) are orthogonal matrices whose
L f TPL dy/2___ =2 26 Wi s( P (D g
p(ks fily) o (v Piy) (02 4+ 1)k (26) columns span the signal subspace and the noise subspace,
where respectively. Define
Py = I- H(f,)M,'H (f) zln] = UM@y)yln] (32)
and z.[i] = UXNey)ylnl. (33)
My, =H" (f)H(fi) + ;" Let Z, 2 [z,[1],- - , 2z.[d,]], and defineZ, similarly. We can

In the simulations in subsection IV-C, we show that OLﬁhOW that

PMC algorithm is capable of approximating the marginalized

i U\ o —dyk | —1d
distribution (26). P(Zs: Ze A b, b, W) = = H |G

dy
J— _a H -1 _a
B. Detection of number of sources and estimation of DOA X eXp Zl (zs[n] —a[n])” C™" (2s[n] — aln))
We have anM x d, complex observation matri¥ . Each N

column of Y, y[n], is an M x 1 vector representing the data ﬂ.fdy(Mfk)|W71|dy exp { — Z A (W2, [n]
received by a linear array df/ sensors that can be expressed - ‘
as (34)

Y[n] = H(¢k>a[n] + G[n] (27) WhereA _ [5[1] 5[2] é[dy“, é[n] A U?Ha[n], C A

where €[n] is an M x 1 zero mean Gaussian noise wittU'EZU,, andW £ UHSU,. We will then assign the priors to
covariance matrix2, a[n] is a k x 1 amplitude vector, and the different sets of parameters and integrate out the megsa



parameters. Let [25] Whent > 1, if k= argmax 3N w10, (kGD), we

1 haveC{) = =Lc{"Y; if not, thenC{” = =Lcl™Y +
plk) = K (35) %C,(:). Of course, other choices of the transition kernels
ploilk) = U, 2x) (36) are possible, but we found that our choice resulted in good
p (Wl oy k) o WL ~(M=h) (37) Performance.

) The averaged estimates of marginal distribution of model
~ = 4 5 orderk = 1,2,3 when SNR= 3dB and/. = 3 is shown in
p (A|¢k’k’w ) = HN(O’p L) (38) Fig. 2, from which we observe that the estimates stabilized
n=t fairly quickly. Note, that the estimates of other models ever
where p? is a hyperparameter that can be determined nal zeros and we did not show them in this figure. We also
merically (see Section V of [9] for discussion). Finallyteaf show in Fig. 3 the averaged estimates of the frequenciegalon

integrating outW ! and A, we get with the true values of the frequencies. It is also clear that
L L M—k estimates converge fast.
ok $|Z) o a1/2(M—k)(M—k—1) Hn:l I‘(Ny —n+1)
' ‘ (27T)k(p2)kNy 0.7, T T T T T T T T T
xR @) |

whereR £ 2% z.[n]z.[n]", and'(d, —n+1) is the gamma os
function with argumend, —n+ 1. In the simulation in section
IV-D, we show that our PMC algorithm can approximate (39

o
N

Estimate of P(k|y)

C. Simulation Results for Sinusoids in White Noise

We used the following setup for the experiment. We si

I

&

dy = 64, k = 2, and fi = 02, fo = 0.2+ 1/(le x TR s e o © o
dy), wherel. = 1,2,3,4, —arctan(as, /a,,) = 0 and

—arctan(as, /a.,) = 7/4. We tested the detection perfor-

mance for I\ZIR:I;dB and SNR=10dB. The SNR was defin€d. 2. Estimated(k|y) vs number of iterations.

~
oo H

sy +ag

as10log;, o } and both sinusoids had the same SNR.

In our simulations we assume#’ = 5. For the PMC
algorithm we generated 3,000 samples in each iteration, &
we ran the algorithm for a total of 10 iterations. As a prio 021l
for the hyperparamete¥®, we usedZG(2,10). We employed 0.206f
three 5 x 5 matrices as transition kernels for model ordel  3ozos

Ql(iai) =04, Ql(l,j) = 0.15, fori 75 7 QQ(i,i) = (.80, %0.2047 ]

-a-Estimated F,

-o-Estimated F2
True Value F
---True Value F,

Q2(i,7) = 0.05, for i # j; Qs(i,i) = 0.92, Q3(i,j) = it 0202 1
0.02, for i # j. As discussed in the end of section IlI-B, 0”9‘2’ - -

. . . . . 198 —
by using these transition matrices, at each iteratiamf the o100 |
algorithm, a majority of the model order .samp_lasi,j}jy:l _ ool
represented the models with large total weights in the previ Iteration

iteration t — 1, while we still allocated a small portion of
the samples to represent those models that have small, even
negligible, total weights. The rationale for the above ckoi Fig- 3. Estimatedf, f> vs number of iterations.

of transition kernel is as follows. Even if after resampling _ . .

at iterationt — 1 all the samples represented modelthe e also compared the sampling efficiencies of different
other models would not become extinct at At iteration choices of kernels. We first proposed a set of alternative
t = 0, instead of sampling uniformly ofo, 0.5]¥, which kernels for model order thatoes notsatisfy the requirements
is the prior for frequency, we chose to sample from an W€ suggested in lll-B. The alternative kernels were defined
99 (£,) to make sure that the samples reach the region & follows: Q1(i,4) = 0.4, Q1(i.j) = 0.15, for j # 4
interest quickly. The functiop(® (£, ) is defined by (f,) = @2(i:4) = 0.80, Q2(i,j) = 0.05, for j # 4; Qs(i,4) =
J\/(fk,CECO)), wheref), is ak x 1 vector whose values are thel:92 Qs(i,j) = 0.02, for j # 4. It is clear that none

frequencies of the largegét peaks of the periodogram of the()!c these kerr_1els obe_y our first requirement, i.e., dominant
data andC,(co) is ak x k diagonal matrix whose diagonald'agonal entries. In Fig. 4, we calculated the averagedr(ove

o _ 100 realizations) entropy with respect to uniformify®)
elements, sayC;”[i,i] represent a quarter of the width of g0 45 (9) of three PMC implementations: 1) usig(-, -)
the peak of the periodogram located at frequerfcy We '

) ) ) e for model orderk and time-varying kernel for parameters
chose the following form of time-varying transition kerne,. 2) using Qu(-,-) for model orderk and time-invariant
Qek(i,t)('?e) = NE :

N t 1 0 _
Okwflhcé))’ and letC{" = C”. \emelfor parameterg; 3) using the alternative kernél(-, )



TABLE Il

for model orderk and time-varying kernel for parameters COMPARISON OF DETECTION PERFORMANCE.

6. We can see that by employing the time-varying kernel,

the sampling efficiency increased steadily with each itenat Algorithm [ SNR [ [ [k<1|k=2]k>3 |
We can also see that the implementation with the alternatiye 1 0 100 )
kernelsQ,(-, -) has lower efficiency than the use of the kernels PMC 3dB | 2 1 99 0
Qa(-, ). (multiple kernel) 4| 77 23 0
1 2 98 0
& PMC with Time Varying Q - PMC 3dB | 2 9 90 1
57 [ P vty (single kernel) 48 | 9 | 2
E ! 1] 0 98 2
go4 PMC 3dB [2| 1 92 7
2.l (alternativeQ ;) 4| 89 11 0
> 1] 0 100 0
£ o o PMC 10dB|2| 0 | 100 | O
s (multiple kernel) 4 0 100 0
01 1 1 1 99 0
1 2 3 6 8 s 10 w1 PMC 10dB | 2 2 98 0
eration (single kernel) 4| 5 95 0
1 0 99 1
Fig. 4. Efficiency vs Iteration. PMC _ 10dB| 2 0 96 4
(alternative® ) 4 0 96 4
We implemented the RIMCMC algorithm in the following 1 0 99 1
way. The algorithm was run for 30,000 iterations with 5,000 3dB | 2 1 95 4
samples as burn-in period. We also used two different propgs  RIMCMC 4| 81 19 0
als for updating the frequency, one for local exploratiod an 1 0 100 0
one for exploration of the “region of importance”, see Satti 10dB | 2 0 98 2
IV-A of [8]. Note that we chose the total number of samples RJIMCMC 4 1 99 0
generated by RIMCMC (30,000) to be large enough so that
the estimated posterior can be stabilized. Also note, thiat t
number was the same as the total number of samples usec - — — — —
the PMC (3,000x 10) [16]. S RIVIENE
We compared these two algorithms under scenarios whi =T e

the SNR= 3dB, 10dB and the spacing parameter= 1,2, 4.
For each of the different scenarios, both algorithms we
run for 100 realizations, and the comparison of the detecti
performance is shown in Table II. The entries in the table a
the number of times a particular modelwas chosen out of
100 realizations. It can be seen that the performance of 1
two algorithms was comparable. Note that we also present
performance of the PMC algorithm that employed only or
transition kernel, and the algorithm with alternative ladsn
Qu(-,-) defined above. We observed that for these two choic I e S A
of kernels, the performance degraded when the sinuso

were closely spaced and the SNR was low. The last result

supports our claim that using multiple kernels for modeleord

is beneficial, it also supports our heuristics of intellitign Fig.- 5. MSE vs SNR.
choosing these predetermined kernels (as discussed imthe e
of section 111-B).

We also observe that when the total number of samples \A%%t
relatively small, the estimation performance of the RIMCM
deteriorated. For example, when the total number of samples )
was set to 10,000 and 2,000 samples were used for the bdfn-Simulation Results for DOA
in period, and we used 2000 samples per iteration with 5We used the following setup for the modé}; = 30, k = 2,
iterations for PMC, the PMC outperformed the RIMCMC fop; = 20°, ¢; = 45°, the number of sensors wag = 5
low SNRs. Fig. 5 shows the estimation performance of ttend the amplitudes of the signals were fixedaat = 10,
two algorithms under the above settings and whes- 3. It  a = 10. In order to generate a spatially colored noise, we
is clear that when the SNR is below 6dB, the PMC performssed a second order AR process with pol&s:xp {—;1.057}

10l0g10(MSE)
! |

ter than the RIMCMC. In this figure we also plotted the
LB [27].
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TABLE Il
COMPARISON OF PERFORMANCE OF DETECTION

T T T T T T T
0.9r ---Modell
I —Model 2

[ Algorithm [ SNR[k<1[k=2]k>3] oo e,

=)
~

eET
\,

-1dB| 44 | 56 =N
0dB | 45 55 2.
PMC 1dB| 37 | 63 g0
4,000 samples| 2dB | 35 65 8oat

3dB 14 82

-1dB| 66 34
0 dB 60 40

RIJMCMC 1dB 48 52
4,000 samples| 2 dB 37 63
3dB 27 83
-1dB| 48 52
0 dB 49 51
RIJMCMC 1dB 40 60

o
N

0.1f

. . . . . . .
0 500 1000 1500 2000 2500 3000 3500 4000
Iteration

Fig. 6. Estimateg(k|y) vs number of iterations obtained by the RIMCMC
algorithm.

OPRP OO0 0000 O0|dhhODOOO

15,000 samples 2 dB | 30 69 ol
3dB 15 85 0csl

5 o8t o -
%o.ssf ~
B o

and 0.9 exp {—;0.907} whose driving noise was a circularly § oas

complex white Gaussian process with identicdl The SNR & oaf

was defined byl0log10(525). The hyperparametey® was 035

determined according to the criteria developed in Section o

of [9] for different SNRs. As mentioned in [9], this setur ~ °* 15 R T 3 s

was very difficult because the two sources were within a

beamwidth of the receiver array, and the data size was very

small. Fig. 7. Estimatedp(k|y) vs number of iterations obtained by the PMC
For the PMC algorithm we used 1,000 samples in eagéfgorithm.

iteration, and we ran the algorithm for a total of four itévas.

We used threes x 5 matrices as transition kernels for the )

model order, which were identical to those used in the preio!!l- Ag2in, €ach entry of the table represents the number of

experiment. At iteratiort = 0, we sampled the model ordertimes a particular model is selected in 100 realizationsatft

and the DOAs uniformly. Note that in this situation, we did¢ nd®€ S€en that when the total number of samples was small and

have a natural candidate for the initial IF, as in the presiol"® SNR was low, the performance of the RIMCMC algorithm

example, so we sampled the parameters from their prigf@s worse than that of the PMC algorithm. In Fig. 6 we

(which were U[0, 2x]%). In the subsequent iterations, we>e€ @ typical realization of the estimatesy¢k = 1[y) and

chose to use the exact time-varying transition kernel as #f* = 2|y) produced by the RIMCMC algorithm with 4,000

the previous experiment, except tk@f@l) = (0.1m)% x Tjxk. samplles.and for SN.& —1dB. Itis Cl.e.ar thaF the esnmgted

Note, thatC\") was preselected, as suggested in [11], Whemargmahzed posterior was not stabilized within the wiwdo

6 obvious gandidate was available of 4,000 samples, and Fhe estimates based on thesg samples
, ' , are not satisfactory. In Fig. 7 we see the averaged estirétes

. We_ ran the RIMCMC algorithm for two settings: 4'0_00 (k = 1]y) andp(k = 2|y) for the PMC algorithm. Since the

lterations W'Fh 1’900 sa_lmples used for the burn-|_n PEMOstimates of the other models were all zeros, we did not show

and 15,000 iterations with 5,000 samples for burn-in. In t fiem in the figure. It is clear that although there are only fou

first setting, the total number of samples generated by t Erations of the algorithm, the estimates improved witbhea
RJIJMCMC (4,000) was the same as the total number of samp ation and they stabilized quickly

used by the PMC (1,00 4). Notice that in this setting,
our choice of total number of samples is significantly snralle _ _
than that used in [9], which corresponds to our second settifF- Discussion
The purpose here was to demonstrate the instability of thein the previous simulations we demonstrated the perfor-
RIMCMC algorithm when the sample size was small. In bothance of the PMC by comparing it with that of the RIMCMC.
settings, we used two proposals for updating the DOA, one fgfe showed that the PMC had comparable performance with
local exploration and one for exploring the whole paramet®@IMCMC when the simulated sample size was large, and
space. See Section IV.A of [9] for details. that the PMC outperformed the RIMCMC when the sample
Both algorithms were run for 100 realizations, and thsize was small. In both [8] and [9], the burn-in periods
detection performance of the algorithms is compared in€fablere determined in a heuristic fashion. We speculate theat th
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choice of the updating proposals and the starting point ef th Lemma 1:Let (2, A) be a measurable space. Assume that
algorithm heavily influenced the length of the burn-in pdrio the following conditions hold:
Another advantage of the PMC over the RIMCMC, as j) A sequence{¢}N s independent giverGy,
mentioned in Section I, is the potential for its parallel im- whereG y is ao algebra inA.
plementatlon. Although a thorough investigation of.th|p|®o . {ZZ{VZI E[g(i)|GN]} is bounded in probability, e.g.,
is beyond the scope of this paper, we could easily identify
several similarities between PMC and particle filtering osd N
(Z E¢V|Gy] > ) =0 (42
i=1

i)

parallel implementation has been studied (see [28] for a
recent development of this topic). We argue that RIMCMC is

not suitable for parallel implementation mainly becausehea
iteration of the algorithm produces a single sample and thisiil)
sample is dependent on the sample produced in the previoushen,
iteration.

lim sup p
a—00 N>1

V>0, 10, E[EOT{ED] > b}GN] —p 0.

N
> (€D = BEW|GN)) =y 0.

i=1
_ Proof: The proof of the lemma involves the use of Doob
We have proposed a general algorithm to carry out th@aximal Inequality. We refer the interested readers to [29]
Bayesian computation required for selecting the MAP modgie details of the proof. u

order. We have studied the convergence result of the prdposewe verify the conditions on Lemma 1 to prove the conver-
algorithm and demonstrated its performance on two typicgénce of the PMC algorithm.
signal processing problems. Indeed the proposed algoighm e first state our assumptions. We assume that the function

flexible enough to approximate the posterior distribution ff(x) is absolutely integrable unde(z|y), which is to say
both problems, and it is computationally more efficient than
[1s@lpteis < o

the popular RIMCMC algorithm.
One future direction of research is to investigate theoreti

cally the convergence rate of the proposed algorithm, whiglotice, that under this assumptiofy,z) need not be bounded

could shed new light to its behavior. It would also faciatand that if for a sef\/ = {z: |f(x)| = o}, we must have for

researchers in proposing new structures for the transitiah » ¢ M

kernels for improving its rate of convergence. We also belie

that a thorough study of the parallel implementation of the/ (2)[P(M) = C < oo, and [f(z)|p(z|y) = C < oo (45)

PMC algorithm would be of great practical interest.

(43)
V. CONCLUSION

(44)

whereC' is a constant. Otherwise the absolute integrability of
f is contradicted. We also assume that the ker@els, -) and

APPENDIX | Qo, (+,-) do not take value of) (or that Qd% 3 and ap 1(, 3
PROOF OF THEOREM 1 are both finite). "
The proof is an adaptation of the proofs for PMC algorithm Let
in [15]. First note that we have the following equations for ¢ = iﬁ;“-rt)f(x(ivt))
importance sampling. ’ N

(i) (i)
E(f(z) = [ f@)w(z)g(x)dx f% — iti(x i_JY)f(X Z(t,l) —
Jw(x)g(z)dz Qa0 (k* =D kED)Qp ) (Opiny ,0,0%))
CATROE 9
- & i o where x(i0) is the vector[k() ()], We let Gy =
& @) £rn(i) o{{x*@t=D}N (oD 3 which is, essentially, a alge-
= > wf@E") bra generated by the sequerfoe "*~D}Y | and {a("}D_,.

Notice that in the proposed algorithm the step= 0, is
wheregq(z) is the sampling distribution an@® is unnormal- just conventional importance sampling, so the proof fos thi
ized weight. In the following, we will set out to prove that case comes from the law of large numbers of importance
sampling. Based on this observation, we check all the three
conditions in Lemma 1, fot > 1. We use induction and that
the convergence in (15) is established for 1.

1) At iteration t, the k(:*)s are iid and drawn from

AN _
i,y D206 = [ omivix ()

1=

which is the numerator of (40), and the convergence of the

normalization constant will be automatically establiskéten
we plug in f(z) = 1 (limy—o & S0, @) =1) [15], and
(15) would follow.

We then state a Lemma. Let+,” denote convergence in
probability.

Qi (k*=1D 61 and the d“’s are iid and
generated frorrv\/l(ozgt),...,a%)). Thus, we have that
{k6DYN | are independent from each other condition-
ally on k*(:t=1) and o!f). We also have that each

it) - ~(t=1) _(,
6" t)) is drawn fromQy , ,, (6.0 ,Oi(f)t)). Then, the

LGt



(i,t) t—1)Y N
independence 09,€<1 ), conditional on {x*({=11N

comes from the independence &f"*) (notice, that

0,(6@,@) is the estimate o for the model ordetk (")

and is obtained fron{x(**~V}N  at iterationt — 1).
2) Since
E [¢9|Gx]

B | ) G|

_ / p(x"Dy) f(x)
- N ~(t—1)

Qui (K610, K60)Qy, (B, 001
Qd(?ﬂ,t) (k*(z,t—l)7 k(z,t))Qek(

~(t—1) )
1 , .
-~ / (x40 |y £ (x0) )gci)

(01@(% t) ael(cl(lt)r)
The integral in the above result is bounded foriadind
we have

ZE Z)|GN Z/ (”)Iy

The last inequality comes from the assumption th@aj
is absolutely integrable w.r.p(x|y).

(47)

3) From the condition (iii) of the lemma, we have th%wdently

following:

N
> EEDTI{|ED] > 6}Gw]
=1

<CO)II|

IR

N
i=

= |

p(x"Vy) f(x"1)

L) > 61G)

12

. . ~(t—1) .
of xt:t) | d, k*@*=1) and@,..., , respectively. Then the above
equation becomes

(49)

1 N N )
- ;Z:: / (I{|M ()] > 64dxD.

Notice that [ F()II{|M(-)] > d}dx) is a function of

E*t=1 q, and{@g_1 & . Evidently, we have the follow-

% ing inequality:

[ PO 0] > spaxto

IN

/ F()| TH|M ()| > 5}dxD

/ |F()]dx0 = / Ip(x0|y) £ (x(

Consequently, we have thaf F(:)II{|M(:)] > &}dx(®?
is a function of k*('—1.Y) and it takes a f|n|te value (it is

also, as mentioned above, a functiondénd {Ok }k -

the above function is integrable undefk|y).

Let us denote the integraf F'(-)II{|M(-)| > §}dx) by
h(k*@=11), Recall thatk**~1) is a resampled particle, so
the weights are normalized. By induction on equation (15),
we have

z,t))|dx(z,t{50)

zt)dxzt) < 0.

) TH{|M ()] > §}dx®)

lenm—Z/

i £(

=1

~(t—1)

2 |

N p(xy) Fx0)
, DINT
Qi (k*t=1), k(Z)t))Qek(i,t) (019(1 Q) 70;&))

Notice, that the expectation is taken on the random variable =

d®t andx(Y), respectively. Since

Eya(f(x,d)) = Eq(Eyq(f(x,d))

the above long equation becomes, as in equation (47),

(48)

N N

1 . i,
¥ o Yal [ ol 60 v x0) x
i=1 d=1
1 p(k(1, 000 |y <x<i t>>

(0;@« D gt )

N *(1,t— [
Qd(k (st 1)7 kG ’t))Qek( k(i,t)

We simplify the equation by denoting(x (% |y) f(x(:1))

asF(-) and 1 (k“ " 0(1(:)' ly)f(x e t)) asM(-).
Qul(k*(1 D EGD) Qo o (i) (0k(7 t) ’0(1(:)t))

Notice thatF(-) is a function ofx i+t , andM (-) is a function

Q6.0 (k*(l t=1) k(l 25>)Q(~) (i) (0k<7 t) 70](;(2)

dx (1t !

X
) = lim —th“l”

N—oco N

|QN)p hmoo/h(k)p(k|y)dk

h( )p(kly)

- J&znmz/

J\}iinoo/m('” ZH{IM(-)I > §}p(kly)dx (0
k=1

lim
— 00

I{|M ()| > 6}dx“Yp(k|y)

IN

= lim
N—oo

K
(IS T{M ()] > 8)p(kly)dx )

k=1

K
FO)Y _T{|M ()] > 8}p(kly)dx™D  (51)

k=1

2 (x(0 : [f(x)] < oo}, and By £ {x(0 -
= oo} and we havel’; N B> = (). As N goes to

where E;

[f(x)]



infinity, it is clear that the first integral goes to 0, as falkm

) S I{M()| > Shpkly)dx D

lim
N—o0 E Pt
. t) ;
= Jm ) (k0,050 [y) f(x1))
1

p(KD, 0,00 19) S (<)
A1)

oy
Qu(k,kE0)Qy ., (Briir ,017))

>0

We have that bottQa(k, k") and Qo . ., (05:(1 D glit )

kGint)
are different from 0 and thatf() is finite. Thus,

it)

Qa(k* kD) Qo 0,0 050)

Pk 000 1¥)F (D) e
’ 5 ey | is finite, and asN goes to
Qd k(e )Qek(i,t) (ek(l t)’ek(‘b t))
i (i,t) (o (i5t)
infini p(KD.0, 50 19)f (<
infinity, Py ‘N ( gty I ) > § | goes

to zero, for allé.
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Thus, we verified the third condition, and the conclusion
follows, namely,

(i,t) (125) /f
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