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Abstract— In this paper, we study the problem of joint
model selection and parameter estimation under the Bayesian
framework. We propose to use the Population Monte Carlo
(PMC) methodology in carrying out Bayesian computations. The
PMC methodology has recently been proposed as an efficient
sampling technique and an alternative to Markov Chain Monte
Carlo (MCMC) sampling. Its flexibility in constructing tran sition
kernels allows for joint sampling of parameter spaces that belong
to different models. The proposed method is able to estimate
the desired a posteriori distributions accurately. In comparison
to the Reversible Jump MCMC (RJMCMC) algorithm, which is
popular in solving the same problem, the PMC algorithm does not
require burn-in period, it produces approximately uncorrelated
samples, and it can be implemented in a parallel fashion. We
demonstrate our approach on two examples: sinusoids in white
Gaussian noise and direction of arrival (DOA) estimation in
colored Gaussian noise, where in both cases the number of signals
in the data is a priori unknown. Both simulations show the
effectiveness of our proposed algorithm.

I. I NTRODUCTION

Model selection is an important topic in signal processing.
It has found application in various areas including array
signal processing, communications, and speech signal pro-
cessing and therefore has been studied extensively. A recent
review provides some common approaches and criteria for
model selection [1]. The model selection problem is often
presented as a problem of joint model selection and parameter
estimation. Many researchers have addressed it within the
Bayesian framework. The main difficulty of this approach lies
in solving multi-dimensional integrals. Some early works on
model selection are based on the use of large sample theory
and approximating the final posterior by Taylor expansion
around the maximum likelihood (ML) estimates of the un-
known parameters [2], [3], [4]. In [5], the authors developed
an efficient iterative algorithm for carrying out the maxi-
mization needed for obtaining maximum a posterior (MAP)
estimates. More recently, Reversible Jump Markov Chain
Monte Carlo (RJMCMC) sampling [6] has been introduced
for approximating joint posteriors and computing estimates of
model order and parameters of interest [7], [8], [9]. Although
computationally intensive, this algorithm was shown to have
very good performance, especially when the sizes of available
data are small. However, algorithms based on RJMCMC have
several drawbacks. First, a burn-in period, whose samples are
discarded, is required. Second, typical MCMC implementation
may have poor mixing, i.e., the chain may converge to a
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final distribution which depends on the starting point of the
chain. Third, one may argue that it is hard to implement the
algorithm in a parallel fashion because at each time stept, the
algorithm produces only one sample, which depends on the
sample produced in the previous time step.

PMC has recently been introduced in [10] and [11]. It
is essentially an iterative sampling method which at each
iteration employs importance sampling (IS) to produce a
set of approximately uncorrelated samples from the target
distribution. It also uses resampling [12] to prevent sample
degeneration when needed. However, it is well known that for
importance sampling, the importance function (IF) needs tobe
carefully chosen to ensure that the “region of importance” is
reached quickly [13]. It is the ability of PMC to accommodate
multiple importance functions (or rather, transition kernels),
and to adaptively improve their sampling efficiency that makes
it superior to pure importance sampling. Between different
iterations, the algorithm can, based on certain criteria, change
the structure of the transition kernels to ensure that the
subsequent sampling procedure is carried out more efficiently.

In [11], a fixed number of pre-selected transition kernels
have been used and each of them has been assigned different
weights at different iterations. The efficiency of the algorithm
has been demonstrated by an example with the posterior being
a mixture Gaussian distribution. It has been shown that the pro-
duced samples by the algorithm accurately approximates the
distribution. In [14], the authors have proposed an algorithm
to adaptively choose transition kernels so that the asymptotic
variance of the estimates decreases. In [15], it has been demon-
strated that the PMC algorithm could progressively sample
from distributions that had diminishing Kullback distance
from the target distribution. Comparisons between MCMC and
PMC have been made in [11] and [16]. In both cases, PMC
has outperformed MCMC, mainly because of the slow mixing
property of the MCMC. Improved performance of PMC in
parameter estimation by the use of Rao-Blackwellization has
been shown in [17].

In this paper, we propose to apply the PMC methodology
to joint model selection and parameter estimation. We use
a two-stage sampling procedure: we first sample the model
order from a set of discrete transition kernels, and then we
sample the parameters from a set of transition kernels that
correspond to the sampled model. This two-stage sampling
procedure allows us to sample from parameter spaces with
different dimensions. When the samples are properly weighted,
the samples and the weights produce approximations of the
desired posteriors.

The paper is organized as follows. In Section II we pro-
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vide the formulation of the problem, and in Section III, we
describe the steps of the algorithm. There we also give a
proof of convergence of the algorithm. In Section IV, we
demonstrate the performance of the proposed algorithm with
two experiments: (a) detection of sinusoids in white Gaussian
noise and estimation of their frequencies and (b) detection
of number of sources whose signals impinge on an array
of sensors. In the latter case the signals are corrupted by
additive colored Gaussian noise and the objective, too, is to
estimate the Direction of Arrival (DOA) of the signals. In
both examples we compare our algorithm with the RJMCMC
algorithm. Our main objective is to demonstrate that PMC is
a valuable alternative to RJMCMC.

II. FORMULATION OF THE PROBLEM

In this section, we formulate the problem of joint model se-
lection and parameter estimation in a Bayesian framework. As-
sume we have an observation vectory which containsdy data
samples. We also haveK competing modelsM0, ...,MK−1,
and one of them generates the observations. Associated with
each model, there is a vector of parametersθk ∈ Sk, where
Sk denotes the parameter space ofMk. The objective is to
identify the true model as well as to estimate the parameters
θk associated with the model.

We can view the model order as a realization of a discrete
random variable, so that the total parameter spaceΘ could be
expressed as follows:Θ = ∪K−1

k=0 {k} × Sk, which is a union
of disjoint subspaces. Note that eachSk may have different
dimension and may include different parameters. The objective
of Bayesian inference is to obtain the posteriorp(k, θ|y),
which can then be used (if needed) to compute point estimates.

In the Bayesian context, one typically employs the MAP
model selection rule, which can be expressed as

k∗ = argk max
{
p(k|y)

}

= argk max
{∫

θ∈Sk

p(k, θ|y)dθ
}

= argk max
{∫

θ∈∪K−1
ek=0

Sek

Πk(k̃)p(k̃, θ|y)dθ
}

(1)

whereΠk(k̃) is an indicator function that takes the value 1
when k̃ = k and is 0 otherwise. The difficulty of using (1)
for model selection is that the posterior is usually highly non-
linear in θ, and the integration does not have a close form
expression. In that case, one can resort to a Monte Carlo
technique to approximate the integral

∫
Θ f(θ)p(θ)dθ by first

drawing a sampleθ(i) of sizeN directly from the distribution
p(θ), and then performing Monte Carlo integration by

∫

Θ
f(θ)p(θ)dθ ≃ 1

N

N∑

i=1

f(θ(i)). (2)

From the strong law of large numbers, the above approxima-
tion converges to the true value of the integration with proba-
bility one. Thus, if one can draw the samples{(k(i), θ(i))}N

i=1

directly from the posteriorp(k, θ|y), then (1) becomes

k∗ ≃ argk max
{ 1

N

N∑

i=1

Πk(k(i))
}

. (3)

As stated above,Πk(k(i)) is an indicator function, and∑N
i=1 Πk(k(i)) essentially calculates the total number of

drawn samples{(k(i), θ(i))}N
i=1 with k(i) = k. Thus, one

can calculatek∗ by first drawing samples{(k(i), θ(i))}N
i=1

from p(k, θ|y), then selecting the model orderk that is most
frequently sampled.

It is well known that one can directly generate samples
from the posterior distribution only in a very few cases. When
such generation is impossible, one may resort to the use of
importance sampling. In the following, we first briefly review
this technique and then apply it to solve the model selection
problem.

Importance sampling has been used mainly for numerical
integration [13] and has many applications in signal processing
and communications [18], [19]. For example, in signal pro-
cessing, in order to obtain the minimum mean square (MMSE)
estimate of a parameterx from the observationy, we have to
solve the following integration:

x̂ =

∫
xp(x|y)dx

wherep(x|y) is the posterior distribution ofx, and x̂ is the
MMSE estimate ofx. The above integration is usually hard
to solve directly. It may also be hard to draw samplesx(i)

directly from the distributionp(x|y) in order to perform the
classical Monte Carlo numerical integration. Alternatively, we
can draw samplesx(i) from an importance function(IF) q(x),
and perform numerical integration as follows:

x̂ =

∫
xp(x|y)dx

=

∫
x

p(x|y)

q(x)
q(x)dx

≃ 1

N

N∑

i=1

x(i)p(x(i)|y)

q(x(i))
.

It has been shown that when the sample sizeN is large,
the estimatex̂ obtained by the above importance sampling
algorithm converges to the mean of the posterior. If we define
w̃(i) = p(x(i)|y)

q(x(i))
1
N , the above estimate can be interpreted as

the weighted mean of the drawn samplesx(i). If p(x|y) is
only known up to its proportionality constants (in other words,
p(x|y) is unscaled), then we calculatew(i) by

w̄(i) =
p(x(i)|y)

q(x(i))

and normalize the weights according to

w(i) =
w̄(i)

∑N
j=1 w̄(j)

.

One interesting interpretation of the sample weight pairs
{x(i), w(i)} is that they form a discrete random measureχ =
{x(i), w(i)}, where the samplesx(i) constitute the support of
this measure, andw(i) are weights associated to these samples.
When the sample size is large, the measureχ “approximates”
the posterior distribution ofx.
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In light of the above importance sampling algorithm, we
can draw samples{(k(i), θ(i))}N

i=1 (where,θ(i) ∈ Sk(i) ) from
an IFg(k, θ), and assign each sample a proper weightw(i), so
that the random measure{(k(i), θ(i)), w(i)}N

i=1 approximates
the posterior distribution. We can then approximate the inte-
gration in (1) according to

k∗ = argk max

{∫

θ∈∪K−1
ek=0

Sek

Πk(k̃)p(k̃, θ|y)dθ

}

= argk max

{∫

θ∈∪K−1
ek=0

Sek

Πk(k̃)
p(k̃, θ|y)

g(k̃, θ)
g(k̃, θ)dθ

}

≃ argk max

{
1

N

N∑

i=1

Πk(k(i))
p(k(i), θ(i)|y)

g(k(i), θ(i))

}

= argk max

{
1

N

N∑

i=1

Πk(k(i))w(i)

}
(4)

where

w(i) ,
p(k(i), θ(i)|y)

g(k(i), θ(i))
. (5)

The above expression indicates that one can approximate the
a posteriori probability of the model with indexk, p(k|y) by
summing up all the weights of the samples{(k(i), θ(i))}N

i=1,
wherek(i) = k. With the MAP criterion, we choose the model
whose sum of weights is maximum. Moreover, one can use the
weights to estimate the unknown parameters of each modelk
by

θ̂
k

=

∑N
i=1 w(i) θ(i) Πk(k(i))
∑N

i=1 w(i) Πk(k(i))
. (6)

The above importance sampling procedure may suffer from
poor choices of IF which can, for example, make most of the
sample weights negligible and cause the subsequent estimation
inaccurate. This situation may arise when the IF generates
samples that concentrate on regions with low probability mass
under the target posterior. The choice of the IF is both art and
science, and many criteria for selecting good IFs have been
developed [13]. One can, for example, choose an IF with heavy
tails that dominate the tails of the target distribution, orwork
with an IF that mimics the behavior of the target distribution.
However, both of these strategies require certain information
about the target distribution, which is usually not available.
In the following section, we propose to use a PMC algorithm
which obtains samples from an IF that is adaptively modified
so that the “quality” of the samples improves with iterations
and one can evaluate the integral in (1) with greater accuracy.

III. PROPOSEDALGORITHM

PMC has the ability to progressively learn about the target
distribution and to adaptively modify the IF based on the
gathered information so that the sampling procedure becomes
more efficient. We first introduce various elements of the PMC
algorithm in Section III-A, and then present the algorithm used
to solve our model selection problem in Section III-B. We
present the convergence result for the proposed algorithm in
Section III-C.

A. Generic PMC Methodology

One way to overcome the main difficulty encountered by IS
– the poor choice of IFs – is to introduce into the sampling
procedure multiple IFs with different properties, and iteratively
and adaptively select them according to their performance.
This iterative procedure is a learning process, during which
we gain knowledge about the target distribution. For example,
in the initial stages of the sampling, it is preferred to have
IFs with heavy tails so that the parameter space could be
explored fully, while in the later stages, the IFs with good
local exploring property may be preferred to stabilize the
samples. This process could be implemented in the following
way. Before the start of the algorithm,D IFs g1, · · · , gD are
selected. Define the vector of random variablesx , [k θ] and
the vector of samplesx(i,t) , [k(i,t) θ

(i,t)], where t stands
for iteration. Then the overall IFg(t)(x) can be constructed at
each iterationt as follows

g(t)(x) =

D∑

d=1

α
(t)
d gd(x)

D∑

d=1

α
(t)
d = 1. (7)

It is clear thatg(t)(x) is a mixture ofD functions and that
α

(t)
d could be interpreted as frequency of using the IFgd(x)

for sampling. The following procedure is used to sample from
g(t)(x). Let d(i,t) ∈ {1, · · · , D} denote the index of the IF
that is used for samplingx(i,t). Thend(i,t) is determined by
drawing it from a multinomial distributionM(α

(t)
1 , · · · , α

(t)
D )

followed by generatingx(i,t) from gd(i,t)(x).
The significance of the above construction ofg(t)(x) is

that, one can modifyg(t)(x) at each iteration by changing
the weightsα(t)

d , according to the performance of eachgd in
the past. One criterion to evaluate the performance of thegd

is the sum of the weights of the samples they generate [11].
This criterion favors the IFs that focus on exploring the so
called “region of importance” of the target distribution, and
thus generate samples with large total weights. According to
this criterion,α(t)

d is updated by the following equation:

α
(t)
d =

∑N
i=1 w(i,t−1)Πgd

(x(i,t−1))
∑N

i=1 w(i,t−1)
(8)

whereΠgd
(x(i,t−1)) is an indicator function that takes a value

1 if the samplex(i,t−1) is generated by the IFgd, and 0
otherwise.

These time-varying IFsg(t)(x) generateN samples at
each iteration, and with the weights{w(i,t)}N

i=1, they form a
random measureµ(t) , {x(i,t), w(i,t)}N

i=1 that approximates
the distribution of the random variablex(t). The objective of
the algorithm is to ensure that this distribution convergesto
the target distribution whent is large.

For monitoring the sampling efficiency, we can use the
entropy relative to uniformity [20], i.e.,

H(t) = −
N∑

i=1

w(i,t) log w(i,t)

log N
(9)
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whereH(t) is a measure of uniformity of the weightsw(i,t)

at time t. If the IF converges to the target distribution, then
the weight of each samplex(i,t) converges to1

N , and H(t)

converges to 1, and every sample can be seen as drawn
approximately from the target distribution.

For the presented iterative IS algorithm, it is beneficial to
relate the samples in a current stage with the samples from
the previous stage. PMC introduces dependence of the current
samples{x(i,t)}N

i=1 on the samples in the previous iteration
{x(i,t−1)}N

i=1 by replacing the IFsgd(x) (which do not depend
on the past) with transition kernels. This idea is closely related
to smoothly approximating the posterior distribution using the
kernel technique [20], except that PMC uses multiple kernels
at each stage. Recall thatx(t), t ∈ {1, 2, ...T} is the set of
random variables approximated by the iterative importance
sampling algorithm at each iterationt. A transition kernel
Q(x(i,t−1),x) is defined as follows:

Q(x(i,t−1),x) =
∂ P (x(t) ≤ x|x(t−1) = x(i,t−1))

∂ x
. (10)

The transition kernel is a generalization of a transition matrix
of discrete state Markov chains, whereQ(x(i,t−1),x) is the
probability density of the state of the chain at iterationt
conditional on the chain being in statex(i,t−1) at iteration
t− 1. We can replace our previous IF with a transition kernel
Q(x(i,t−1),x), where Q(x(i,t−1),x) can take the form, for
example, of a Gaussian kernel (in the case whenx is one-
dimensional):Q(x(i,t−1), x) = 1√

2πσ2
exp{− (x−x(i,t−1))2

2 σ2 }. It

is clear that the new samplesx(i,t) drawn from this kernel will
be aroundx(i,t−1), and the shape of the kernel is determined
by σ2. In this case, the kernelQ(x(i,t−1), x) is a family of
normal distributions withx(i,t−1) as location parameter.

PMC uses a mixture of multiple kernels{Qd(.,x)}D
d=1 in

each iteration to improve the sampling efficiency, and the
sampling is performed as in (7), i.e.,

x(i,t) ∼
D∑

d=1

α
(t)
d Qd(x

(i,t−1),x) (11)

D∑

d=1

α
(t)
d = 1 (12)

whereα
(t)
d is determined as in (8).

We summarize the procedure by explaining how we gen-
erate one particular sample at iterationt. First, we select
the index d of the transition kernel from the multinomial
distribution M(α

(t)
1 , · · · , α

(t)
D ); then we generate a sample

x
(t)
i by the kernel with indexd. Because the samplex(t)

i

is actually generated by the kernelQd(x
(i,t−1),x(i,t)), the

weight of this sample can be obtained by

w(i,t) ∝ p(x(i,t)|y)

Qd(x(i,t−1),x(i,t))
(13)

which follows from (5). We use the proportionality operator
∝ here to include the case when the posterior distribution is
not scaled. Equation (13) represents the weight in the original
PMC algorithm, and it has been used in many applications of
the PMC, for example, [16], [17], [21].

The samples produced by so called iterated particle systems
[18] like PMC and particle filters [22] may be degenerated,
i.e., the weights of a few samples dominate the remaining
samples. Resampling [23] is thus introduced to prevent the
samples from degeneration. We use{x∗(i,t)}N

i=1 to denote the
samples after resampling.

We summarize a generic PMC implementation as follows.
For each iterationt,
1. Generate samples from the mixture of transition kernels.
2. Compute the weights of the samplesw(i,t).
3. Perform estimation based on the weights.
4. Resample.
5. Compute the weightsα(t+1)

d for each kernelQd(·, ·).

B. PMC for Model Selection

In a parameter estimation problem only, as demonstrated in
[11], [17], the above steps are sufficient to produce approx-
imation of the target distribution. Under model uncertainty,
a direct extension of the above method would be to runK
parallel PMC algorithms, one for each model, and compare
their performance to determine the model. Of course, this naive
approach is very computationally expensive when the number
of competing modelsK is large, because the computational
load is “equally” distributed upon the different models. Similar
observation, which serves as inspiration for using RJMCMC
instead of multiple MCMC under model uncertainty, has been
made in [8].

Observe that there is a natural hierarchy in our full param-
eter spaceΘ: the space for the parameterθ is determined
only by the choice ofk. After the determination ofk, it
is sufficient to sample only from the parameter spaceSk to
produce samples that approximate the distributionp(θ|k,y).
It is thus natural to decompose our sampling kernels into two
components: one for sampling of the model orderk from
the index set{k}K−1

k=0 , and the other for sampling from the
parameter spaceSk. Let Q(·, ·) denote the kernel we use for
sampling the model order, and letQθk

(·, ·) denote the kernel
we use for samplingθk. We propose the following two-stage
sampling scheme:

At iteration t,

1) draw a model order samplek(i,t) from Q(k(i,t−1), k)
and

2) draw a parameter sampleθ(i,t) from Qθ
k(i,t)

(θ̂
(t−1)

k(i,t) , θ)

where θ̂
(t−1)

k(i,t) is the estimate of the parameter of the
specific model at iterationt − 1.

It is worth mentioning that the model order is a discrete
random variable, so that the kernelQ(·, ·) is represented by
a K ×K matrix with transition probabilities. For example, if
Q(·, ·) = IK×K , which is aK by K identity matrix, we will
always havek(i,t−1) = k(i,t).

In the following we useD predetermined kernelsQd(., .) for
generating model order, whered = 1, 2, · · · , D, and for each
modelk, we have a single kernelQθk

(·, ·) for generating the
parameters that belong to the parameter spaceSk. One reason
of using multiple model kernels is to improve the sampling
efficiency, as stated in Section III-A. An extension can be
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easily made to generate parameters using multiple kernels
under each model. However, the rationale is the same, and we
keep our choice of single kernel for the parameters in order
to maintain the presentation clear.

Based on the above decomposition of transition kernels, the
sampling of(k(i,t), θ

(i,t)

k(i,t) ) can be expressed by

(k(i,t), θ
(i,t)

k(i,t) ) ∼
D∑

d=1

α
(t)
d Qd(k

(i,t−1), k)Qθk
(θ̂k, θ)

and the weight for each sample can be expressed according to
(13) as follows:

w(i,t) ∝
p(k(i,t), θ

(i,t)

k(i,t) |y)

Q
d
(t)
i

(k(i,t−1), k(i,t))Qθ
k(i,t)

(θ̂
(t−1)

k(i,t) , θ
(i,t)

k(i,t) )
(14)

where
∑N

i=1 w(i,t) = 1. The estimate of the marginal posterior
for the model order can be obtained by summing up the
normalized weights for each model

P (k|y) ≃
N∑

i=1

w(i,t)Πk(k(i,t)).

The resampling procedure equalizes the weight of the
samples, and is commonly carried out by duplicating samples
proportional to their weights [24]. Namely, fori = 1, · · · , N ,
we first sample the indexji ∼ M(w(1,t), · · · , w(N,t)) and then
we let x∗(i,t) = x(ji,t). After resampling, the models with
large total weights (thus large estimated marginal posterior)
occupy greater portion of the sample.

Now, we can provide another justification for using multiple
kernelsQd(·, ·) for sampling the model order. LetU denote
a matrix with entries all ones. By choosing eitherQd(·, ·) =
1
K U or Qd(·, ·) = I, and assigningα(1)

d = 1
D for all d in

the initial stage of the algorithm, there will always be equal
number of samples for each model at every iteration, which
corresponds to the naive approach mentioned in the beginning
of this section. Consequently, it is desirable to find a transition
kernel that distributes the right amount of computational time
to each competing model, preferably according to their true
posterior, i.e., the models with high posteriors should get
more “attention”. Since the true posterior is not known, one
can use multiple transition kernels and let the algorithm
choose the most efficient distribution of computational time. In
Section IV, we demonstrate that, indeed, by usingD different
transition kernels, we get better performance than when we
use only one kernel.

We also provide some heuristic guidelines for designing
the set of predetermined kernelsQd(·, ·) for model order.
First, we would like to build our current computation based
on the distribution obtained from the previous iteration. As
a result, we would expect that the majority of the model
order samples{k(i,t)}N

i=1 generated at iterationt correspond
to the model orders with the largest total weights in iteration
t − 1. Second, we would also like to improve upon the
previous distribution by exploring the parameter spaces more
thoroughly. One way to achieve this is to allow portions of the
majority samples in iterationt−1 to “move” to the other model
orders, and this behavior is determined by the off-diagonal

At t = 0
For i = 1, · · · , N

Draw k(i,0) from the priorp(k)

Draw θ(i,0) from the priorp(θk(i,0))

Compute the normalized weightsw(i,0) ∝ p(y|k(i,0), θ
(i,0)

k(i,0))

Obtain estimateŝk(0), θ̂
(0)

using{w(i,0)}N
i=1 and the samples

Assignα
(1)
d = 1/D, d = 1, · · · , D

Resample and getk∗(i,0), θ
∗(i,0)

For t = 1, · · · , T
For i = 1, · · · , N

Determined(i,t) by sampling fromM(α
(t)
1 , · · · , α

(t)
D )

Draw k(i,t) from Qd(i,t)(k∗(i,t−1), k)

Draw θ
(i,t)

k(i,t) from Qθ
k(i,t)

(θ̂
(t−1)

k(i,t) , θ)

Compute the normalized weights

w(i,t) ∝ p(y|k(i,t),θ
(i,t)

k(i,t)
)

Q
d(i,t) (k∗(i,t−1),k(i,t))Qθ

k(i,t)
(

bθ
(t−1)

k(i,t) ,θ(i,t)

k(i,t) )

Obtain estimateŝk(t), θ̂(t)

Assignα
(t+1)
d =

∑N
i=1 w(i,t)Πd(d

(i,t))

Resample to obtaink∗(i,t) andθ∗(i,t).

TABLE I

THE PROPOSED ALGORITHM

entries ofQd(·, ·). Specifically, if Qd(2, 3) = 0.5, then 50
percent of the samples that have model orderk(i,t−1) = 2
at iteration t − 1 will be moved tok(i,t) = 3 in the next
iteration. Now it is clear that the above requirements are
somewhat conflicting with each other: the first requirement
translates to the strategy of selectingQd(·, ·) that have large
diagonal entries, while the second requirement dictates how
to chooseQd(·, ·) with off-diagonal entries not too small. As
a result, we suggest to design multiple kernels that achievea
trade-off between these requirements: some kernels may have
negligible off-diagonal entries, while some may have relatively
large off-diagonal entries. Our choice of transition kernels in
the following simulation section is an example of the above
suggested design. We will also show in the simulations that
strategies that do not obey the above suggestions may lead to
poor performance of the PMC algorithm.

In Table I, we summarize the proposed algorithm and in
Fig. 1, we present a graphical illustration of it.

C. Convergence

A natural question is whether the above stated algorithm
can approximate the target distribution, or specifically, if for
each iterationt, when the number of samples goes to infinity,
we have

lim
N→∞

N∑

i=1

w(i,t)f(x(i,t)) =

∫
f(x)p(x|y)dx (15)

for all function f(·) that satisfy certain regularity conditions.
If (15) is true, then when the functionf(·) is Πk(k(i,t)), the
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Fig. 1. Graphical illustration of the proposed algorithm.

above equation becomes

lim
N→∞

N∑

i=1

w(i,t)Πk(k(i,t))

=

K∑

j=1

Πk(j)

∫
p(j, θ|y)dθ (16)

= p(k|y). (17)

We prove the following theorem regarding the convergence
of the PMC algorithm for model selection.

Theorem 1:For the PMC algorithm detailed in Table I, we
have the following convergence result:

lim
N→∞

N∑

i=1

w(i,t)Πk(k(i,t)) = p(k|y). (18)

Proof: The proof is given in the Appendix.

D. Discussion

It is easy to extend the above algorithm to support multiple
kernels for exploring the parameter spaceSk(i) instead of
using a single kernel. Alternatively, we can adaptively change
the single kernelQθ

k(i)
(·, ·) to achieve improved sampling

efficiency. Assume thatQθ
k(i,t)

(θ(t), θ(t+1)) is a Gaussian

kernel N (θ(t), σ2
ki,t

I). We propose to use a time-varying

kernelQθ
k(i,t)

(·, ·) = N (θ(t), σ2
k(i,t)I) as follows. If k(i,t) is

the MAP estimate of the model order at iterationt, let

σ2
k(i,t+1) =

t

t + c
σ2

k(i,t) (19)

and else, let

σ2
k(i,t+1) =

t

t + c
σ2

k(i,t) +
c

t + c
σ2

k(i,1) (20)

wherec is a constant. It is clear that ift is large enough and the
estimates fork(i,t) stabilize, thenσ2

k(i,t) stabilizes for allk(i,t).
By settingσ2

k(i,1) relatively large, the above scheme allows us
to have kernels with heavy tails at the initial stages of the
algorithm so that we can explore the whole parameter space,
and have lighter tails to focus on local sampling in the later
stages of the algorithm, Once the order estimates stabilize,
σ2

k(i,t) shrinks and allows the kernel to explore the local
parameter space instead. We will demonstrate the improvement
of the sampling efficiency for this choice ofQθ

k(i,t)
(·, ·).

It is also worth mentioning that our proposed algorithm is
capable of sampling nuisance parameters if their conditional
distributions are known. Specifically, denote withz the vector
of nuisance parameters. Then we can samplez at iterationt
according toz(i,t) ∼ p(z(i,t)|k∗(i,t), θ∗(i,t),y), whereθ

∗(i,t)

and k∗(i,t) are the resampled parameters of interest and the
model order, respectively.

IV. SIMULATIONS

In this section, we present extensive Monte Carlo simulation
results of the proposed algorithm. Two simulation experiments
are considered. The first simulation experiment is the joint
detection and estimation of sinusoids in white Gaussian noise
[5]. The second simulation experiment is the joint detection
of number of sources and estimation of direction-of-arrival
(DOA) of signals emitted by the sources [25]. The signals
impinge on an array of sensors and are corrupted by colored
Gaussian noise. In subsections IV-A and IV-B, we briefly
present the mathematical model for these problems. For their
detailed description, we refer the readers to [8] and [9]. In
subsections IV-C and IV-D, we present simulation setups and
results for each problem, respectively.

A. Detection and Estimation of Sinusoids in White Noise

We have an observation vectory with dy data samples. The
observations are generated by one of the followingK models:

M0 : y[n] = ǫ[n]

Mk : y[n] =
k∑

j=1

ac,j cos(2πfj n) + as,j sin(2πfj n) + ǫ[n]

wheren = 0, 1, · · · , dy−1, k = 1, ..., K−1, ǫ[n] are iid noise
samples, andǫ[n] ∼ N (0, σ2). In matrix form, the observation
vector can be expressed as follows:

y = H(fk)ak + ǫ (21)

wherey is thedy×1 observation vector,ǫ is ady×1 Gaussian
noise vector, i.e.,ǫ ∼ N (0, σ2I), fk is ak×1 frequency vector
defined asfk , [f1 f2 · · · fk]⊤, ak is a 2k × 1 amplitude
vector, andH(fk) is ady × 2k matrix whose elements can be
expressed according to

H(fk)n,2j−1 = cos(2πfj n)

H(fk)n,2j = sin(2πfj n).
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The unknown parameter vector isθk , [σ2 a⊤
k f⊤k ]⊤. Our

objective is to jointly determine which model generated the
observationsy and estimate the parametersfk. Note thatσ2

and ak are treated as nuisance parameters. Therefore, we
use the Bayesian methodology: we integrate out the nuisance
parameters and determine the model order and frequency from
the joint posterior distributionp(k, fk|y).

We first assign prior distributions to the parameters. We
assume the models have equal prior probability, thus,

p(k) =
1

K
. (22)

Note, that in the RJMCMC setting, the prior for model order
is usually set to be a truncated Poisson distributionp(k) ∝
Λkexp(−Λ)/k!×Π{0 ≤ k ≤ K − 1} with hyperparameterΛ
in order to facilitate the ‘Birth’ and ‘Death’ moves. We use
the Jeffreys’ prior for the noise variance [26],

p(σ2) ∝ 1

σ2
. (23)

Then we can write the joint posterior distributionp(k, θk|y)
as follows.

p(k, θk|y) ∝ p(y, k, θk)

= p(y|k, θk)p(θk, k)

∝ p(y|k,ak, fk, σ2) p(k,ak, fk|σ2)p(σ2).(24)

Assuming, thatfk has a uniform prior on[0, 1
2 ]k andak has

a zero mean normal prior, we have

p(k,ak, fk|σ2) ∝ 1

|2πσ2Σk|1/2
exp

{
−a⊤

k Σ−1
k ak

2σ2

}
2k (25)

whereΣ−1
k = δ−2H⊤(fk)H(fk), with δ2 being a hyperpa-

rameter that can be integrated out numerically if we choose
for it an inverse gamma prior of the formIG(αδ, βδ). (See
section V-C of [8] for detailed discussion.)

After integrating outak andσ2 in (24), we obtain

p(k, fk|y) ∝ (y⊤P⊥
k y)−dy/2 2k

(δ2 + 1)k
(26)

where

P⊥
k = I − H(fk)M−1

k H⊤(fk)

and

Mk = H⊤(fk)H(fk) + Σ−1
k .

In the simulations in subsection IV-C, we show that our
PMC algorithm is capable of approximating the marginalized
distribution (26).

B. Detection of number of sources and estimation of DOA

We have anM × dy complex observation matrixY. Each
column ofY, y[n], is anM × 1 vector representing the data
received by a linear array ofM sensors that can be expressed
as

y[n] = H(φk)a[n] + ǫ[n] (27)

where ǫ[n] is an M × 1 zero mean Gaussian noise with
covariance matrixΣ, a[n] is a k × 1 amplitude vector, and

H(φk) is anM × k matrix whose elements can be expressed
by

H(φk)m,l = exp{j(m − 1)φl} (28)

wherej =
√
−1, m = 0, 1, · · · , M −1 andl = 1, · · · , k. The

vectorφk is defined byφk , [φ1, ..., φk]⊤, whereφl is given
by φl = ω0λ0 sin(ϕl) with ϕl being the angle between thelth

incident signal and the sensor array,ω0 the carrier frequency
of the received signal,λ0 the distance between the sensors,
andv the propagation speed of the signal. In summary, each
elementym[n] of y[n] could be expressed as

ym[n] =

k∑

l=1

al[n] exp{j(m − 1)φl} + ǫm[n]. (29)

We need to determine which one of the followingK models
generatesy:

M0 : y[n] = ǫ[n]

Mk : y[n] = H(φk)a[n] + ǫ[n] k = 1, · · · , K − 1.

Besides determining the model order, we need to estimate
φk. Again we integrate out the nuisance parametersA ,

[a[1] a[2] ...a[dy ]] andΣ, and estimate the model orderk and
φk using the marginalized posterior distributionp(k, φk|y).

Define the projector on the signal subspace by [5]

Pk = H(φk)
(
H(φk)HH(φk)

)−1
H(φk)H

= Us(φk)UH

s (φk) (30)

and let the projector on the noise subspace be

P⊥
k = I − Pk

= Uǫ(φk)UH

ǫ (φk) (31)

where Us(φk) and Uǫ(φk) are orthogonal matrices whose
columns span the signal subspace and the noise subspace,
respectively. Define

zs[n] = UH

s (φk)y[n] (32)

zǫ[i] = UH

ǫ (φk)y[n]. (33)

Let Zs , [zs[1], · · · , zs[dy]], and defineZǫ similarly. We can
show that

p(Zs,Zǫ|Ã, φ, k,W−1) ≃ π−dyk|C−1|dy

× exp




−
dy∑

n=1

(zs[n] − ã[n])
H
C−1 (zs[n] − ã[n])






π−dy(M−k)|W−1|dy exp

{
−

N∑

n=1

zH

ǫ [n]W−1zǫ[n]

}

(34)

where Ã = [ã[1] ã[2] · · · ã[dy]], ã[n] , UH
s Ha[n], C ,

UH

s ΣUs, andW , UH

ǫ ΣUǫ. We will then assign the priors to
the different sets of parameters and integrate out the nuisance
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parameters. Let [25]

p(k) =
1

K
(35)

p(φk|k) = U [0, 2π]k (36)

p
(
W−1|φk, k

)
∝ |W−1|−(M−k) (37)

p
(
Ã|φk, k,W−1

)
=

dy∏

n=1

N (0, ρ2Ik) (38)

where ρ2 is a hyperparameter that can be determined nu-
merically (see Section V of [9] for discussion). Finally, after
integrating outW−1 andÃ, we get

p(k, φ|Zǫ) ∝ π1/2(M−k)(M−k−1)
∏M−k

n=1 Γ(Ny − n + 1)

(2π)k(ρ2)kNy

× |R̂|−dy (39)

whereR̂ ,
∑dy

i=1 zǫ[n]zǫ[n]H, andΓ(dy−n+1) is the gamma
function with argumentdy−n+1. In the simulation in section
IV-D, we show that our PMC algorithm can approximate (39).

C. Simulation Results for Sinusoids in White Noise

We used the following setup for the experiment. We set
dy = 64, k = 2, and f1 = 0.2, f2 = 0.2 + 1/(le ×
dy), where le = 1, 2, 3, 4, − arctan(as1/ac1) = 0 and
− arctan(as2/ac2) = π/4. We tested the detection perfor-
mance for SNR=3dB and SNR=10dB. The SNR was defined

as10 log10

{
a2

s1
+a2

c1

2σ2

}
, and both sinusoids had the same SNR.

In our simulations we assumedK = 5. For the PMC
algorithm we generated 3,000 samples in each iteration, and
we ran the algorithm for a total of 10 iterations. As a prior
for the hyperparameterδ2, we usedIG(2, 10). We employed
three 5 × 5 matrices as transition kernels for model order:
Q1(i, i) = 0.4, Q1(i, j) = 0.15, for i 6= j; Q2(i, i) = 0.80,
Q2(i, j) = 0.05, for i 6= j; Q3(i, i) = 0.92, Q3(i, j) =
0.02, for i 6= j. As discussed in the end of section III-B,
by using these transition matrices, at each iterationt of the
algorithm, a majority of the model order samples{ki,j}N

j=1

represented the models with large total weights in the previous
iteration t − 1, while we still allocated a small portion of
the samples to represent those models that have small, even
negligible, total weights. The rationale for the above choice
of transition kernel is as follows. Even if after resampling
at iteration t − 1 all the samples represented modelk, the
other models would not become extinct att. At iteration
t = 0, instead of sampling uniformly on[0, 0.5]k, which
is the prior for frequency, we chose to sample from an IF
g(0)(fk) to make sure that the samples reach the region of
interest quickly. The functiong(0)(fk) is defined byg(0)(fk) =

N (f̂k,C
(0)
k ), wheref̂k is a k × 1 vector whose values are the

frequencies of the largestk peaks of the periodogram of the
data, andC(0)

k is a k × k diagonal matrix whose diagonal
elements, sayC(0)

k [i, i] represent a quarter of the width of
the peak of the periodogram located at frequencyf̂i. We
chose the following form of time-varying transition kernel
Qθ

k(i,t)
(·, θ) = N

(
θ̂k(i,t−1) ,C

(t)
k

)
, and let C(1)

k = C
(0)
k .

When t > 1, if k = arg max
∑N

i=1 w(i,t−1)Πk(k(i,t−1)), we
haveC

(t)
k = t−1

t C
(t−1)
k ; if not, then C

(t)
k = t−1

t C
(t−1)
k +

1
t C

(1)
k . Of course, other choices of the transition kernels

are possible, but we found that our choice resulted in good
performance.

The averaged estimates of marginal distribution of model
order k = 1, 2, 3 when SNR= 3dB and le = 3 is shown in
Fig. 2, from which we observe that the estimates stabilized
fairly quickly. Note, that the estimates of other models were
all zeros and we did not show them in this figure. We also
show in Fig. 3 the averaged estimates of the frequencies along
with the true values of the frequencies. It is also clear thatthe
estimates converge fast.
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Fig. 3. Estimatedf1, f2 vs number of iterations.

We also compared the sampling efficiencies of different
choices of kernels. We first proposed a set of alternative
kernels for model order thatdoes notsatisfy the requirements
we suggested in III-B. The alternative kernels were defined
as follows: Q̄1(i, 4) = 0.4, Q̄1(i, j) = 0.15, for j 6= 4;
Q̄2(i, 4) = 0.80, Q̄2(i, j) = 0.05, for j 6= 4; Q̄3(i, 4) =
0.92, Q̄3(i, j) = 0.02, for j 6= 4. It is clear that none
of these kernels obey our first requirement, i.e., dominant
diagonal entries. In Fig. 4, we calculated the averaged (over
100 realizations) entropy with respect to uniformityH(t)

defined in (9) of three PMC implementations: 1) usingQd(·, ·)
for model orderk and time-varying kernel for parameters
θ; 2) using Qd(·, ·) for model orderk and time-invariant
kernel for parametersθ; 3) using the alternative kernel̄Qd(·, ·)
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for model orderk and time-varying kernel for parameters
θ. We can see that by employing the time-varying kernel,
the sampling efficiency increased steadily with each iteration.
We can also see that the implementation with the alternative
kernelsQ̄d(·, ·) has lower efficiency than the use of the kernels
Qd(·, ·).
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Fig. 4. Efficiency vs Iteration.

We implemented the RJMCMC algorithm in the following
way. The algorithm was run for 30,000 iterations with 5,000
samples as burn-in period. We also used two different propos-
als for updating the frequency, one for local exploration and
one for exploration of the “region of importance”, see Section
IV-A of [8]. Note that we chose the total number of samples
generated by RJMCMC (30,000) to be large enough so that
the estimated posterior can be stabilized. Also note, that this
number was the same as the total number of samples used by
the PMC (3,000× 10) [16].

We compared these two algorithms under scenarios where
the SNR= 3dB, 10dB and the spacing parameterle = 1, 2, 4.
For each of the different scenarios, both algorithms were
run for 100 realizations, and the comparison of the detection
performance is shown in Table II. The entries in the table are
the number of times a particular modelk was chosen out of
100 realizations. It can be seen that the performance of the
two algorithms was comparable. Note that we also present the
performance of the PMC algorithm that employed only one
transition kernel, and the algorithm with alternative kernels
Q̄d(·, ·) defined above. We observed that for these two choices
of kernels, the performance degraded when the sinusoids
were closely spaced and the SNR was low. The last result
supports our claim that using multiple kernels for model order
is beneficial, it also supports our heuristics of intelligently
choosing these predetermined kernels (as discussed in the end
of section III-B).

We also observe that when the total number of samples was
relatively small, the estimation performance of the RJMCMC
deteriorated. For example, when the total number of samples
was set to 10,000 and 2,000 samples were used for the burn-
in period, and we used 2000 samples per iteration with 5
iterations for PMC, the PMC outperformed the RJMCMC for
low SNRs. Fig. 5 shows the estimation performance of the
two algorithms under the above settings and whenle = 3. It
is clear that when the SNR is below 6dB, the PMC performs

TABLE II

COMPARISON OF DETECTION PERFORMANCE.

Algorithm SNR l k ≤ 1 k = 2 k ≥ 3

1 0 100 0
PMC 3 dB 2 1 99 0

(multiple kernel) 4 77 23 0
1 2 98 0

PMC 3 dB 2 9 90 1
(single kernel) 4 89 9 2

1 0 98 2
PMC 3 dB 2 1 92 7

(alternativeQ̄d) 4 89 11 0
1 0 100 0

PMC 10 dB 2 0 100 0
(multiple kernel) 4 0 100 0

1 1 99 0
PMC 10 dB 2 2 98 0

(single kernel) 4 5 95 0
1 0 99 1

PMC 10 dB 2 0 96 4
(alternativeQ̄d) 4 0 96 4

1 0 99 1
3dB 2 1 95 4

RJMCMC 4 81 19 0
1 0 100 0

10dB 2 0 98 2
RJMCMC 4 1 99 0
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Fig. 5. MSE vs SNR.

better than the RJMCMC. In this figure we also plotted the
CRLB [27].

D. Simulation Results for DOA

We used the following setup for the model:dy = 30, k = 2,
φ1 = 20o, φ1 = 45o, the number of sensors wasM = 5
and the amplitudes of the signals were fixed ata1 = 10,
a2 = 10. In order to generate a spatially colored noise, we
used a second order AR process with poles0.9 exp{−j1.05π}
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TABLE III

COMPARISON OF PERFORMANCE OF DETECTION

Algorithm SNR k ≤ 1 k = 2 k ≥ 3

-1 dB 44 56 0
0 dB 45 55 0

PMC 1 dB 37 63 0
4,000 samples 2 dB 35 65 0

3 dB 14 82 4

-1 dB 66 34 0
0 dB 60 40 0

RJMCMC 1 dB 48 52 0
4,000 samples 2 dB 37 63 0

3 dB 27 83 0
-1 dB 48 52 0
0 dB 49 51 0

RJMCMC 1 dB 40 60 0
15,000 samples 2 dB 30 69 1

3 dB 15 85 0

and0.9 exp {−j0.90π} whose driving noise was a circularly
complex white Gaussian process with identicalσ2. The SNR
was defined by10 log 10(

a2
1

2σ2 ). The hyperparameterρ2 was
determined according to the criteria developed in Section V
of [9] for different SNRs. As mentioned in [9], this setup
was very difficult because the two sources were within a
beamwidth of the receiver array, and the data size was very
small.

For the PMC algorithm we used 1,000 samples in each
iteration, and we ran the algorithm for a total of four iterations.
We used three5 × 5 matrices as transition kernels for the
model order, which were identical to those used in the previous
experiment. At iterationt = 0, we sampled the model order
and the DOAs uniformly. Note that in this situation, we did not
have a natural candidate for the initial IF, as in the previous
example, so we sampled the parameters from their priors
(which were U [0, 2π]k). In the subsequent iterations, we
chose to use the exact time-varying transition kernel as in
the previous experiment, except thatC

(1)
k = (0.1π)2 × Ik×k.

Note, thatC(1)
k was preselected, as suggested in [11], when

no obvious candidate was available.
We ran the RJMCMC algorithm for two settings: 4,000

iterations with 1,000 samples used for the burn-in period,
and 15,000 iterations with 5,000 samples for burn-in. In the
first setting, the total number of samples generated by the
RJMCMC (4,000) was the same as the total number of samples
used by the PMC (1,000× 4). Notice that in this setting,
our choice of total number of samples is significantly smaller
than that used in [9], which corresponds to our second setting.
The purpose here was to demonstrate the instability of the
RJMCMC algorithm when the sample size was small. In both
settings, we used two proposals for updating the DOA, one for
local exploration and one for exploring the whole parameter
space. See Section IV.A of [9] for details.

Both algorithms were run for 100 realizations, and the
detection performance of the algorithms is compared in Table
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Fig. 6. Estimatedp(k|y) vs number of iterations obtained by the RJMCMC
algorithm.
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Fig. 7. Estimatedp(k|y) vs number of iterations obtained by the PMC
algorithm.

III. Again, each entry of the table represents the number of
times a particular model is selected in 100 realizations. Itcan
be seen that when the total number of samples was small and
the SNR was low, the performance of the RJMCMC algorithm
was worse than that of the PMC algorithm. In Fig. 6 we
see a typical realization of the estimates ofp(k = 1|y) and
p(k = 2|y) produced by the RJMCMC algorithm with 4,000
samples and for SNR= −1dB. It is clear that the estimated
marginalized posterior was not stabilized within the window
of 4,000 samples, and the estimates based on these samples
are not satisfactory. In Fig. 7 we see the averaged estimatesof
p(k = 1|y) andp(k = 2|y) for the PMC algorithm. Since the
estimates of the other models were all zeros, we did not show
them in the figure. It is clear that although there are only four
iterations of the algorithm, the estimates improved with each
iteration and they stabilized quickly.

E. Discussion

In the previous simulations we demonstrated the perfor-
mance of the PMC by comparing it with that of the RJMCMC.
We showed that the PMC had comparable performance with
RJMCMC when the simulated sample size was large, and
that the PMC outperformed the RJMCMC when the sample
size was small. In both [8] and [9], the burn-in periods
were determined in a heuristic fashion. We speculate that the
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choice of the updating proposals and the starting point of the
algorithm heavily influenced the length of the burn-in period.

Another advantage of the PMC over the RJMCMC, as
mentioned in Section I, is the potential for its parallel im-
plementation. Although a thorough investigation of this topic
is beyond the scope of this paper, we could easily identify
several similarities between PMC and particle filtering, whose
parallel implementation has been studied (see [28] for a
recent development of this topic). We argue that RJMCMC is
not suitable for parallel implementation mainly because each
iteration of the algorithm produces a single sample and this
sample is dependent on the sample produced in the previous
iteration.

V. CONCLUSION

We have proposed a general algorithm to carry out the
Bayesian computation required for selecting the MAP model
order. We have studied the convergence result of the proposed
algorithm and demonstrated its performance on two typical
signal processing problems. Indeed the proposed algorithmis
flexible enough to approximate the posterior distribution for
both problems, and it is computationally more efficient than
the popular RJMCMC algorithm.

One future direction of research is to investigate theoreti-
cally the convergence rate of the proposed algorithm, which
could shed new light to its behavior. It would also facilitate
researchers in proposing new structures for the transition
kernels for improving its rate of convergence. We also believe
that a thorough study of the parallel implementation of the
PMC algorithm would be of great practical interest.

APPENDIX I
PROOF OF THEOREM 1

The proof is an adaptation of the proofs for PMC algorithm
in [15]. First note that we have the following equations for
importance sampling.

E(f(x)) =

∫
f(x)w(x)q(x)dx∫

w(x)q(x)dx

≈
1
N

∑N
i=1 w̃(i)f(x(i))

1
N

∑N
i=1 w̃(i)

(40)

=

N∑

i=1

w(i)f(x(i))

whereq(x) is the sampling distribution and̃w(i) is unnormal-
ized weight. In the following, we will set out to prove that

lim
N→∞

1

N

N∑

i=1

w̃(i,t)f(x(i,t)) =

∫
f(x)p(x|y)dx (41)

which is the numerator of (40), and the convergence of the
normalization constant will be automatically establishedwhen
we plug inf(x) = 1 (limN→∞

1
N

∑N
i=1 w̃(i,t) = 1) [15], and

(15) would follow.
We then state a Lemma. Let ‘→p’ denote convergence in

probability.

Lemma 1:Let (Ω, A) be a measurable space. Assume that
the following conditions hold:

i) A sequence{ξ(i)}N
i=1 is independent givenGN ,

whereGN is a σ algebra inA.
ii)

{∑N
i=1 E[ξ(i)|GN ]

}
is bounded in probability, e.g.,

lim
a→∞

sup
N>1

p

(
N∑

i=1

E[ξ(i)|GN ] ≥ a

)
= 0 (42)

.
iii) ∀ b > 0,

∑N
i=1 E

[
ξ(i)Π{|ξ(i)| > b}|GN

]
→p 0.

Then,

N∑

i=1

(ξ(i) − E(ξ(i)|GN )) →p 0. (43)

Proof: The proof of the lemma involves the use of Doob
Maximal Inequality. We refer the interested readers to [29]for
the details of the proof.

We verify the conditions on Lemma 1 to prove the conver-
gence of the PMC algorithm.

We first state our assumptions. We assume that the function
f(x) is absolutely integrable underp(x|y), which is to say

∫
|f(x)|p(x|y)dx < ∞. (44)

Notice, that under this assumption,f(x) need not be bounded
and that if for a setM = {x: |f(x)| = ∞}, we must have for
all x ∈ M

|f(x)|p(M) = C < ∞, and |f(x)|p(x|y) = C < ∞ (45)

whereC is a constant. Otherwise the absolute integrability of
f is contradicted. We also assume that the kernelsQd(·, ·) and
Qθk

(·, ·) do not take value of0 (or that 1
Qd(·,·) and 1

Qθk
(·,·)

are both finite).
Let

ξ(i) =
1

N
w̃(i,t)f(x(i,t))

=
1

N

p(x(i,t)|y)f(x(i,t))

Qd(i,t)(k∗(i,t−1), k(i,t))Qθ
k(i,t)

(θ̂
(t−1)

k(i,t) , θ
(i,t)

k(i,t))

(46)

where x(i,t) is the vector[k(i,t) θ
(i,t)⊤

k(i,t) ]. We let GN =

σ{{x∗(i,t−1)}N
i=1, {α

(t)
d }D

d=1}, which is, essentially, aσ alge-
bra generated by the sequence{x∗(i,t−1)}N

i=1 and{α(t)
d }D

d=1.
Notice that in the proposed algorithm the stept = 0, is

just conventional importance sampling, so the proof for this
case comes from the law of large numbers of importance
sampling. Based on this observation, we check all the three
conditions in Lemma 1, fort ≥ 1. We use induction and that
the convergence in (15) is established fort − 1.

1) At iteration t, the k(i,t)’s are iid and drawn from
Qd(i,t)(k∗(i,t−1), k(i,t)), and the d(i,t)’s are iid and
generated fromM(α

(t)
1 , ..., α

(t)
D ). Thus, we have that

{k(i,t)}N
i=1 are independent from each other condition-

ally on k∗(i,t−1) and α
(t)
d . We also have that each

θ
(i,t)

k(i,t) is drawn fromQθ
k(i,t)

(θ̂
(t−1)

k(i,t) , θ
(i,t)

k(i,t) ). Then, the
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independence ofθ(i,t)

k(i,t) conditional on{x∗(i,t−1)}N
i=1

comes from the independence ofk(i,t) (notice, that

θ̂
(t−1)

k(i,t) is the estimate ofθ for the model orderk(i,t)

and is obtained from{x(i,t−1)}N
i=1 at iterationt − 1).

2) Since

E
[
ξ(i)|GN

]

= E

[
1

N
w̃(i,t)f(x(i,t))|GN

]

=
1

N

∫
p(x(i,t)|y)f(x(i,t))

Qd(i,t)(k∗(i,t−1), k(i,t))Qθ
k(i,t)

(θ̂
(t−1)

k(i,t) , θ
(i,t)

k(i,t) )
×

Qd(i,t)(k∗(i,t−1), k(i,t))Qθ
k(i,t)

(θ̂
(t−1)

k(i,t) , θ
(i,t)

k(i,t) )dx
(i,t)

=
1

N

∫
p(x(i,t)|y)f(x(i,t))dx(i,t). (47)

The integral in the above result is bounded for alli and
we have

N∑

i=1

E[ξ(i)|GN ] =
1

N

N∑

i=1

∫
p(x(i,t)|y)f(x(i,t))dx(i,t) < ∞.

The last inequality comes from the assumption thatf(·)
is absolutely integrable w.r.t.p(x|y).

3) From the condition (iii) of the lemma, we have the
following:

N∑

i=1

E[ξ(i)Π{|ξ(i)| > δ}|GN ]

=
1

N

N∑

i=1

E(w̃(i,t)f(x(i,t))Π{| 1

N
w̃(i,t)f(x(i,t))| > δ}|GN )

=
1

N

N∑

i=1

E
( p(x(i,t)|y)f(x(i,t))

Qd(i,t)(k∗(i,t−1), k(i,t))Qθ
k(i,t)

(θ̂
(t−1)

k(i,t) , θ
(i,t)

k(i,t))
×

Π





1

N

∣∣∣∣∣∣
p(x(i,t)|y)f(x(i,t))

Qd(i,t)(k∗(i,t−1), k(i,t))Qθ
k(i,t)

(θ̂
(t−1)

k(i,t) , θ
(i,t)

k(i,t) )

∣∣∣∣∣∣
> δ



 |GN

)
.

Notice, that the expectation is taken on the random variable
d(i,t) andx(i,t), respectively. Since

Ex,d(f(x, d)) = Ed(Ex|d(f(x, d)) (48)

the above long equation becomes, as in equation (47),

1

N

N∑

i=1

N∑

d=1

α
(t)
d

∫
p(k(i,t), θ

(i,t)

k(i,t) |y)f(x(i,t)) ×

Π






∣∣∣∣∣∣
1

N

p(k(i,t), θ
(i,t)

k(i,t) |y)f(x(i,t))

Qd(k∗(i,t−1), k(i,t))Qθ
k(i,t)

(θ̂
(t−1)

k(i,t) , θ
(i,t)

k(i,t))

∣∣∣∣∣∣
> δ




 dx(i,t).

We simplify the equation by denotingp(x(i,t)|y)f(x(i,t))

asF (·) and 1
N

p(k(i,t) ,θ
(i,t)

k(i,t)
|y)f(x(i,t))

Qd(k∗(i,t−1) ,k(i,t))Qθ
k(i,t)

(
bθ

(t−1)

k(i,t) ,θ(i,t)

k(i,t) )
asM(·).

Notice thatF (·) is a function ofx(i,t), andM(·) is a function

of x(i,t), d, k∗(i,t−1) andθ̂
(t−1)

k(i,t) , respectively. Then the above
equation becomes

1

N

N∑

i=1

N∑

d=1

α
(t)
d

∫
F (·)Π{|M(·)| > δ}dx(i,t). (49)

Notice that
∫

F (·)Π{|M(·)| > δ}dx(i,t) is a function of

k∗(i,t−1), d, and{θ̂(t−1)

k }K
k=1. Evidently, we have the follow-

ing inequality:

∫
F (·) Π{|M(·)| > δ}dx(i,t)

≤
∫

|F (·)| Π{|M(·)| > δ}dx(i,t)

≤
∫

|F (·)|dx(i,t) =

∫
|p(x(i,t)|y)f(x(i,t))|dx(i,t)(50)

< ∞.

Consequently, we have that
∫

F (·)Π{|M(·)| > δ}dx(i,t)

is a function ofk∗(i−1,t), and it takes a finite value (it is

also, as mentioned above, a function ofd and{θ̂(t−1)

k }K
k=1).

Evidently, the above function is integrable underp(k|y).
Let us denote the integral

∫
F (·)Π{|M(·)| > δ}dx(i,t) by

h(k∗(i−1,t)). Recall thatk∗(i,t−1) is a resampled particle, so
the weights are normalized. By induction on equation (15),
we have

lim
N→∞

1

N

N∑

i=1

∫
F (·) Π{|M(·)| > δ}dx(i,t)

= lim
N→∞

1

N

N∑

i=1

h(k̃(i−1,t))

→ p lim
N→∞

∫
h(k)p(k|y)dk

= lim
N→∞

K∑

k=1

h(k)p(k|y)

= lim
N→∞

K∑

k=1

∫
F (·) Π{|M(·)| > δ}dx(i,t)p(k|y)

≤ lim
N→∞

∫
|F (·)|

K∑

k=1

Π{|M(·)| > δ}p(k|y)dx(i,t)

= lim
N→∞

∫

E1

|F (·)|
K∑

k=1

Π{|M(·)| > δ}p(k|y)dx(i,t)

+

∫

E2

|F (·)|
K∑

k=1

Π{|M(·)| > δ}p(k|y)dx(i,t) (51)

whereE1 , {x(i,t) : |f(x(i,t))| < ∞}, and E2 , {x(i,t) :
|f(x(i,t))| = ∞} and we haveE1 ∩ E2 = ∅. As N goes to



13

infinity, it is clear that the first integral goes to 0, as follows:

lim
N→∞

∫

E1

F (·)
K∑

k=1

Π{|M(·)| > δ}p(k|y)dx(i,t)

= lim
N→∞

∫

E1

p(k(i,t), θ
(i,t)

k(i,t) |y)f(x(i,t)) ×

Pk




∣∣∣
1

N

p(k(i,t), θ
(i,t)

k(i,t) |y)f(x(i,t))

Qd(k, k(i,t))Qθ
k(i,t)

(θ̂
(t−1)

k(i,t) , θ
(i,t)

k(i,t))

∣∣∣ > δ



 dx(i,t).

We have that bothQd(k, k(i,t)) and Qθ
k(i,t)

(θ̂
(t−1)

k(i,t) , θ
(i,t)

k(i,t) )
are different from 0 and thatf(·) is finite. Thus,∣∣∣

p(k(i,t) ,θ
(i,t)

k(i,t)
|y)f(x(i,t))

Qd(k,k(i,t))Qθ
k(i,t)

(θ̂
(t−1)

k(i,t)
,θ

(i,t)

k(i,t)
)

∣∣∣ is finite, and asN goes to

infinity, Pk

(∣∣∣ 1
N

p(k(i,t),θ
(i,t)

k(i,t) |y)f(x(i,t))

Qd(k∗,k(i,t))Qθ
k(i,t)

(
bθ

(t−1)

k(i,t) ,θ(i,t)

k(i,t) )

∣∣∣ > δ

)
goes

to zero, for allδ.
We now examine the second integral. We use the equation

(45).

0 ≤ lim
N→∞

∫

E2

|F (·)|
K∑

k=1

Π{|M(·)| > δ}p(k|y)dx(i,t)

= lim
N→∞

∫

E2

|p(k(i,t), θ
(i,t)

k(i,t) |y)f(x(i,t))| ×

Pk




∣∣∣
1

N

p(k(i,t), θ
(i,t)

k(i,t) |y)f(x(i,t))

Qd(k, k(i,t))Qθ
k(i,t)

(θ̂
(t−1)

k(i,t) , θ
(i,t)

k(i,t) )
| > δ



 dx(i,t)

≤ lim
N→∞

∫

E2

|p(k(i,t), θ
(i,t)

k(i,t) |y)f(x(i,t))| ×

Pk



∣∣∣
1

N

C

Qd(k, k(i,t))Qθ
k(i,t)

(θ̂
(t−1)

k(i,t) , θ
(i,t)

k(i,t) )

∣∣∣ > δ


 dx(i,t)

= 0.

The last equation is true because, again,Qd(k, k(i,t)) and

Qθ
k(i,t)

(θ̂
(t−1)

k(i,t) , θ
(i,t)

k(i,t) ) both do not equal to 0. The second
to the last inequality is valid because of the following fact. If
f(x) ≥ g(x) pointwise, then we have

p({x : f(x) > δ}) ≥ p({x : g(x) > δ}), (52)

or, equivalently

Eδ1 , {x : f(x) > δ} ⊇ Eδ2 , {x : g(x) > δ}. (53)

Finally, we have the following convergence:

1

N

N∑

i=1

F (·) Π{|M(·)| > δ}dx(i,t) →p 0 (54)

and, we have

1

N

N∑

i=1

D∑

d=1

α
(t)
d

∫
F (·) Π{|M(·)| > δ}dx(i,t) →p 0 (55)

becauseα(t)
d <= 1 and

∑D
d=1 α

(t)
d = 1.

Thus, we verified the third condition, and the conclusion
follows, namely,

lim
N→∞

1

N

N∑

i=1

w̃(i,t)f(x(i,t)) =

∫
f(x)p(x|y)dx �
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