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Abstract of the Dissertation

Three-Dimensional Modeling and Autofocusing
Technology for
New Generation Digital Cameras
by
Tao Xian
Doctor of Philosophy
in
Electrical Engineering
Stony Brook University

2006

This dissertation considers three new image-based technologies for
modern digital cameras — 3D modeling with zoom calibration, autofo-
cusing, and continuous tracking autofocusing of moving objects

In 3D Modeling, a new technique is introduced to extend current 3D
modeling technology for variable zoom settings so that objects of very
different sizes and at many different distances can be modeled by the sys-
tem. A new calibration technique that includes translation and rotation
parameters is developed for perspective projection matrices. For each new

zoom setting, a new Perspective Projection Matrix (PPM) is dynamically
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estimated from the original zoom parameters. Stereo images are rectified
based on the generated PPM to simplify stereo matching. A new Vertical
Sum of Squared Difference (V-SSD) refinement method is presented to
improve the rectification result. To register and integrate partial shapes
from eight different views, the rotation axis of multiple views under dif-
ferent zoom settings is needed; a new turntable matrix is dynamically
estimated from the initial multi-view calibration without further multi-
view calibration. Experimental results are presented to demonstrate the
effectiveness of the new dynamic zoom calibration technique.

In autofocusing, several binary mask based Depth-from-Defocus (DFD)
algorithms are proposed to improve autofocusing performance and ro-
bustness. A binary mask is defined by thresholding image Laplacian to
remove unreliable points with low Signal-to-Noise Ratio (SNR). Three dif-
ferent DFD schemes— with/without spatial integration and with/without
squaring— are investigated and evaluated, both through simulation and
actual experiments. The actual experiments use a large variety of objects
including very low contrast Ogata test charts.

A new spatial-domain DFD technique named Blur Equalization Tech-
nique (BET) is presented. The theoretical basis of BET relies on equal-
izing the blur or defocus of two different images recorded with different
camera parameters. In contrast, comparable spatial-domain techniques
rely on equalizing the deblur or focus of the two images. Also, BET
facilitates modeling of images locally by higher order polynomials with
lower series truncation errors. The accuracy of BET is further enhanced
by discarding pixels with low Signal-to-Noise ratio by thresholding im-
age Laplacians, and relying more on sharper of the two blurred images

in estimating the blur parameters. These steps make BET a very accu-
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rate and robust technique useful in practical applications such as depth
recovery and autofocusing. Its performance is compared with three highly
effective and significantly improved versions of STM1. BET is found to
be superior to some of the best comparable DFD techniques in a large
number of both simulation and actual experiments. Also as a counter-
part, BM_HIGHORD is implemented for comparison. The only difference
between BET and BM_HIGHORD is the blur equalization and the image
equalization. Experimental results show the effectiveness of the new blur
equalization technique.

Different factors that affect the performance of DFD algorithms are
studied. In particular, nonlinear sensor response, lens vignetting, and
magnification variation affect the accuracy of DFD. In order to implement
DFD on off-the-shelf commercial digital cameras, these factors need to be
calibrated and corrected. We present new calibration methods for these
three factors. Their correctness and effects on performance of DFD have
been evaluated with experiments.

DFD performance on draft mode readout is investigated. Seven differ-
ent sets of draft readout modes are considered for camera autofocusing.
DFD algorithms are implemented for these draft modes without the com-
plex demosaic operation. Experimental results show that an error of about
12 steps (BET), and 14 steps (BM-OSOI), out of 1500 steps is achieved.

Continuous tracking focusing of moving object is realized by combina-
tion of 2D tracking and Z tracking. A multiple resolution pyramid SSD
matching is proposed for 2D tracking in the first stage. A new multiple
base point beta calibration is introduced for Z direction tracking. A di-
rect calibration from lens design data is also studied. The initial results

demonstrate that the camera calibration can be completed using the lens



design data only. The trial and error calibration can be replaced, this
makes it possible for large scale manufacturing. Also experiments also

indicated a novel autofocusing concept - Dynamic Autofocusing.
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Chapter 1

Introduction

With the development of high-quality and inexpensive digital cameras in the last
few decades, image-based sensing techniques have become increasingly important
in many applications. Some of the important application areas are 3D Modeling,
autofocusing, and machine vision. Scene 3D information can be extracted by many
image-based techniques. In this dissertation, we first describe our research results so
far on image-based techniques for 3D model sensing and rapid autofocusing. Then
we outline some related open research problems as future research topics for this
dissertation. In this chapter, 3D sensing and modeling techniques are briefly reviewed
in Section 1.1; autofocusing techniques are summarized in Section 1.2; and Section 1.3

provides an overview of this dissertation.

1.1 Review of 3D Sensing Techniques

3D sensing techniques can be classified into two groups: contact methods and non-
contact methods. A typical contact method uses a Coordinate Measuring Machine
(CMM), which is widely used for dimension control in manufacturing. Because of

the point-by-point contact measurement, the CMM takes a long time to complete a



measurement.

Optical methods play an important role among the non-contact methods [1, 2,
3,4, 5,6, 7, 8. Optical methods are divided into two groups: active sensing and
passive sensing. Active sensing can be understood as a modulation and demodulation
procedure. A carrier signal is projected onto the object surface, and the modulated
feedback signal is detected by the sensor. The measurement result is obtained from
demodulation calculation. Some active sensing methods are Laser Triangulation,
Moiré Interferometry, Fringe Projection, and Laser Radar. Laser Triangulation uses
a laser point or structured light; Moiré Interferometry maps moiré pattern; Fringe
Projection projects a fringe pattern onto the object to be measured; and Laser Radar
is based on the measurement of the travel time or phase change of the modulated laser
beam. Active methods usually need a complicated hardware system, and normally
work in a controlled environment.

Passive sensing methods include Stereopsis, Motion Parallax, Shape from Shad-
ing, Shape From Focus and Shape From Defocus. Motion Parallax utilizes local
correspondence and/or relative movement between two or more images to find the
shape of objects in the scene; Shape from Shading uses different lighting setups to
recover the orientation and the depth map of objects; Shape From Focus and Shape
From Defocus both acquire images with different parameters of the imaging system.
Shape From Focus methods acquire many images with different parameter settings.
Then it searches for the best focusing parameter using a focus measure. Shape From
Defocus methods compute the degree of blur of acquired two or three images, and
recover the depth information in a scene. Stereoposis is a widely used technique for
3D shape reconstruction without active illumination. It recovers a partial shape by
finding the corresponding points between two stereo images. The stereo correspon-
dence problem is critical to the partial shape reconstruction. A simple and accurate

technique is a correlation-based algorithm [9]. We used SSD (Sum of Squared Differ-



ence) based matching technique on multi-resolution stereo images generated from a
Gaussian Pyramid.

Calibrating parameters of a stereo camera system gives position information about
corresponding points in 3D space. Based on the relative geometry of the two cam-
eras, there are two types of configuration for a stereovision system - parallel stereo
and converged stereo. Parallel stereo configuration has only translation between two
camera coordinates, while converged stereo configuration has both the translation
and rotation. A perspective projection based calibration is used for the converged
stereovision system in our research [10].

To obtain the full model of an object, either the object or the camera has to be
moved. A simple way is to rotate the object using a turntable and take pictures at
uniform intervals [11]. Since the partial shapes which are constructed from different
rotated image pairs are referenced to different camera coordinate systems, it is nec-
essary to register the partial shapes. This requires determining the relative position
and orientation between the stereo camera coordinate system and the rotation stage
coordinate system using a calibration technique.

After the registration step, multiple partial shapes have to be integrated into a
complete 3D model. By assuming a volumetric cube that is visible from all view
directions, integration of shapes is done based on voxel grids. Volumetric integration
approach uses image space information to remove erroneous points. Implicit surface
representation with Shape from Silhouettes technique is used to remove the errors
effectively. By labeling 3D voxels based on the visibility from each view direction,
partial shapes are integrated in 3D volume and converted to a surface model using
the Marching Cubes (MC) algorithm [12].

Conventional 3D modeling uses a fixed zoom setting in reconstruction. For a
fixed zoom setting, the relative position of lens components are static. Therefore

the camera parameters are constants. When the zoom setting changes, the camera



parameters also vary. There is a great need for extending this technology to variable
zoom camera settings so that objects of very different sizes and at many different
distances can be modeled by the system.

There are two main problems in employing variable/dynamic zoom in 3D model-
ing. First, when the zoom changes, many internal camera parameters change. Their
change is too complex to be expressed analytically, even for a simple lens system. Sec-
ond, the relation between the camera coordinate system and the turntable rotation
axis changes. Another difficulty arises from the inaccurate and non-linear mechanical
control mechanism of a consumer camera. The residual error in positioning the zoom
lens by the driving motor cannot be ignored.

Wilson and Shafer [13, 14, 15] introduced a "hold” calibration algorithm in which
four camera parameters are selected by an iterative trial procedure. Then up to
a bth degree polynomial is used to estimate the parameters from fixed sampling
points. Atienza [16] extended this calibration technique for gaze detection under the
assumption that the orientation of the camera coordinate system is unchanged during
the zoom change. When there is a noticeable change in zoom setting, the nodal point
moves not only changed along the optical axis, but also perpendicular to the optical

axis. Therefore the orientation of the camera coordinate is not constant anymore.

1.2 Review of Autofocusing Techniques

There are, again, two types of autofocusing techniques: active and passive. Ac-
tive autofocusing systems emit beams of energy, such as ultrasonic, infrared or even
structured light, to detect the distance of an object. The reflected beam is received
by the detection sensor, and processed by the vision system. Then the system ad-
justs the lens position accordingly for autofocusing. The typical principles used are

triangulation, signal time difference, and signal intensity difference. The disadvan-



tage of an active system is the additional requirement of special hardware. For an
active autofocusing system based on ultrasonic or infrared, there also exist some
distance-to-object limitations such as transparent materials (ultrasonic) and an open
heat resource (infrared). A laser based system needs a controlled environment and
is suitable for industrial purposes [17, 18]. The advantage of an active autofocusing
system is that it works in dark illumination.

Passive autofocusing determines the distance to the object by computer analysis
of the image itself. The camera actually “looks” at the scene and drives the lens back
and forth searching for the best focus. Some examples are Phase Detection (PD),
Depth from Focus (DFF), and Depth from Defocus (DFD). There is no distance-
to-object limitation with passive autofocusing like there is with active autofocusing
methods.

Phase Detection (PD) is widely used in high-end Single-Lens Reflex (SLR) cam-
eras. This technology was first patented by Honeywell in 1970s [19, 20]. The autofocus
sampling area of an image is split into two areas by a small lens and each is projected
onto its own half of the camera’s AF light sensor. The two halves then compare
results. In a way passive autofocus is simply an electronic and computerized version
of a rangefinder’s focusing system. Fig. 1.1 shows autofocusing modules in a SLR
camera. Light from the scene passes through the lens onto the reflex mirror. Since
the reflex mirror is semi-transparent, the reflected light from the reflex mirror goes
up to the view finder through a pentaprism, while the transmitted light is directed
onto the autofocusing (AF) module by a submirror. The autofocusing modules are
typically made of several pairs of linear CCDs and corresponding separate lenses. The
principle of phase detection is shown in Fig. 1.2. The autofocusing sampling area of
an image is split into two areas by a small lens and each is projected onto its own half
of the camera’s AF light sensor. The two halves then compare results. When these

points of light are a set distance apart, the subject is in focus. When the separation



is too small (middle panel), the focus is in front of the object and when it is too large
the focus is behind the object. Separator lenses create two identical images, each of
which falls on half a pair of CCD sensor arrays. Phase Detection can be implemented
through the logic circuit comparator and can achieve high speed focusing. However,
one AF module can only respond to a certain area in the scene. Many AF modules
are needed in the camera to provide a flexible focusing ability in the whole field of
view (FOV). Multiple AF modules add to the complexity of the camera optical design

and manufacturing cost of alignment.

VIEWFINDER
PENTAFRISM EYEPIECE

SHUTTER-RELEASE
BUTTON

_ REFLEX
~ MIRROR

SECONDARY

= MIRROR

APERTURE
SENSORS

Figure 1.1: Optical configuration of an SLR camera

Depth From Focus (DFF) and Depth From Defocus (DFD) are image based auto-
focusing technologies. Depth From Focus (DFF) acquires many images with different
parameters. Then it searches for the best focusing parameters using a focus measure.
Many research efforts are concentrated on the development and evaluation of different
focus measures [21, 22, 23, 24]. Subbarao et al. [22] presented a theory for evaluating
various focus measures based on the optical transfer function instead of experimen-
tal evaluation that may be limited by the selection of specific type of scenes. Two

metrics such as Autofocusing Uncertainty Measure (AUM) and Autofocusing Root-
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Figure 1.2: Principle of phase detection autofocusing

Mean-Square Error (ARMS) were defined to estimate the noise-sensitivity of focus
measures in [24]. The ideal focus measure should be unimodal, monotonic, and should
reach a maximum when the image is focused. However, due to lens configuration, the
residual error of focus motor and device noise, there exist many local maxima. The
simple Fibonacci search method would be trapped in a local maxima. A more com-
plicated searching strategy combined with quadratic curve fitting was demonstrated
to find the global maximum from theory and experiment [24, 25]. Normally, DFF
algorithm is slow because of the multiple image acquisition. It limits its application
in real-time autofocusing of a camera system.

Depth From Defocus (DFD) only needs acquiring two or three images, and recovers
the depth information in a scene by computing the degree of blur. This makes it
suitable for real-time autofocusing and distance measurement. Early DFD algorithms
extracted depth information from the blur measurement of an edge [26, 27]. DFD
methods for arbitrary objects have been proposed by some researchers. They can
be classified as frequency domain approaches [26, 28, 29, 25, 30, 31], spatial domain
approaches [32, 33, 34, 35, 36, 37] and statistical approaches [38, 39, 40].



Pentland [26] compared two images, one formed with a pinhole aperture and the
other image formed by normal aperture. The depth was recovered from inverse filter-
ing in Fourier domain. Subbarao [28] removed the constraint of the pinhole aperture
limitation and allowed several camera parameters to be varied simultaneously. In
order to avoid the sensitivity to the frequency spectra of local scene textures, Xiong
and Shafer [25] used moment filters to compensate for the frequency spectrum of the
texture within the passband of each of the narrowband filters. A large filter bank that
densely samples the frequency space is used to achieve better depth accuracy at the
cost of computational efficiency. Watanabe and Nayar [31] proposed a class of broad-
band filters instead of a series of narrow-band filters. They claimed that it is sufficient
for depth estimation of scenes with a small number of broadband filters even with
complex textural properties. The inverting filter method processes the information
in the Fourier domain. It also involves several filtering operations to avoid the filter-
ing sensitivity. It needs more computation compared to the spatial domain method.
Statistical approaches normally involve optimization operation which requires more
images and computing. Statistical approaches generally need more computation and
yield lower depth-map density than spatial domain methods.

The spatial domain approach has inherent advantages since it preserves the spatial
correspondence information, which is helpful in various applications such as contin-
uous focusing and object tracking. Moreover it requires less computation and re-
sources. A Spatial-domain Convolution/Deconvolution Transform (S Transform) for
n-dimensional signals for the case of arbitrary order polynomials was proposed in [41].
Subbarao and Surya have proposed a spatial domain approach that uses S trans-
form [32, 33, 42, 34]. The S transform is a spatial domain convolution/deconvolution
transform developed for images and n-dimensional signals for the case of arbitrary
order polynomials. Using an appropriate smoothing filter, the images taken at dif-

ferent parameters could be fitted to a cubic polynomial, and the blur estimation can



be solved in the spatial domain. There are two basic variations: STM1 changes the
focus step or lens position and STM2 varies the aperture diameter. This technique
is explained in detail in Chapter 3. Ziou [43, 35, 44] fitted the images to a Hermite
polynomial basis. They show that any coefficient of the Hermite polynomial com-
puted using the more blurred image is a function of the partial derivatives of the
other image and the blur difference. Thus the blur difference can be computed by re-
solving a system of equations. This work is seen as a continuation of the S transform
method. Favaro et al. [36] use a singular value decomposition technique to estimate

the operator that spans a left null space from a number of deblurred images.

1.3 Dissertation Organization

The goal of this dissertation is to develop novel image-based techniques for 3D
modeling and autofocusing.

In Chapter 2, a new calibration technique is introduced to extend current 3D
modeling technology for variable zoom settings so that objects of very different sizes
and at many different distances can be modeled by the system. This novel calibration
technique that includes translation and rotation parameters is developed for projec-
tive matrices. For each new zoom setting, a new projection matrix is dynamically
estimated from the original zoom parameters. Stereo images are rectified based on
the generated projection matrix to simplify stereo matching. A new Vertical SSD (V-
SSD) refinement method is presented to improve the rectification result. To register
and integrate partial shapes from eight different views, the rotation axis of multiple
views under different zoom settings is needed; a new turntable matrix is dynamically
estimated from the initial multi-view calibration without further multi-view calibra-
tion. Experimental results are presented to demonstrate the effectiveness of the new

dynamic zoom calibration technique.



In Chapter 3, several binary mask based Depth From Defocus (DFD) algorithms
are proposed to improve autofocusing performance and robustness. A binary mask is
defined by thresholding image Laplacian to remove unreliable points with low Signal-
to-Noise Ratio (SNR). Three different DFD schemes— with/without spatial integration
and with/without squaring— are investigated and evaluated, both through simulation
and actual experiments. The actual experiments use a large variety of objects includ-
ing very low contrast Ogata test charts.

In Chapter 4, a new spatial-domain Depth-from-Defocus (DFD) technique named
Blur Equalization Technique (BET) is presented. The theoretical basis of BET relies
on equalizing the blur or defocus of two different images recorded with different camera
parameters. In contrast, comparable spatial-domain techniques rely on equalizing
the deblur or focus of the two images. Also, BET facilitates modeling of images
locally by higher order polynomials with lower series truncation errors. The accuracy
of BET is further enhanced by discarding pixels with low Signal-to-Noise ratio by
thresholding image Laplacians, and relying more on sharper of the two blurred images
in estimating the blur parameters. These steps makes BET a very accurate and robust
technique useful in practical applications such as depth recovery and autofocusing.
Its performance is compared with three highly effective and significantly improved
versions of STM1. BET is found to be superior to some of the best comparable DFD
techniques in a large number of both simulation and actual experiments. Also as
a counterpart, BM_HIGHORD is implemented for comparison. The only difference
between BET and BM_HIGHORD is the blur equalization and the image equalization.
Experimental results show the effectiveness of the new blur equalization technique.

In Chapter 5, different factors that affect the performance of DFD algorithms are
studied. In particular, nonlinear sensor response, lens vignetting, and magnification
variation affect the accuracy of DFD. In order to implement DFD on off-the-shelf

commercial digital cameras, these factors need to be calibrated and corrected. In this

10



chapter, we present new calibration methods for these three factors. Their correctness
and effects on performance of DFD have been evaluated with experiments.

In Chapter 6, DFD performance on draft mode readout is investigated. Seven
different sets of draft readout modes are investigated for camera autofocusing. DFD
algorithm is directly tested on these draft modes without using demosaic operation.
Demosaic operation normally requires large computation. Experimental results show
that an error of about 12 steps (BET), and 14 steps (BM-OSOI), out of 1500 steps
is achieved in actual camera systems.

In Chapter 7, a multiple resolution pyramid SSD matching is proposed for 2D
tracking in the first stage. A new multiple base point beta calibration is introduced
for Z direction tracking. 3D DFD tracking focusing is realized by combining of 2D
tracking and Z tracking. A direct calibration from lens design data is also studied.
Initial results demonstrate that the camera calibration can be completed using the
lens design data only. The trial and error calibration can be replaced.

Future research topics are outlined in Chapter 8.
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Chapter 2

3D Sensing with Dynamic Zoom

Recent advances in consumer digital cameras have made low-cost 3D modeling
systems feasible. Conventional 3D modeling techniques use a fixed zoom setting in
3D reconstruction. For objects at different distances and/or of different sizes, a vision
system with variable zoom is critical for 3D modeling.

In the case of fixed zoom setting, the relative positions of lens components are
static. When the zoom setting changes, the camera parameters also vary. To extend
the fixed zoom setting camera model to adjustable zoom settings, several algorithms
have been presented. Wilson and Shafer [13, 14, 15] introduced an iterative trial and
error procedure in which four camera parameters are selected. These camera param-
eters are — the effective focal length f, the image center (ug,vg), and the translation
along the optical axis 73. Up to a bth degree polynomial is used to estimate the cam-
era parameters from fixed sampled points. Atienza and Zelinsky [16] extended this
calibration technique to gaze detection under the assumption that the orientation of
the camera coordinate remains unchanged during zoom change. However when the
optical configuration of a vision system changes, this assumption is not valid, and a

trial and error procedure will be needed to determine the critical parameters.
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There are several main problems in employing variable/dynamic zoom in 3D mod-
eling. First, many internal camera parameters vary nonlinearly with different zoom
settings. Their variations are too complex to be expressed analytically, even for a
simple lens system. Second, the relation between the camera coordinate system and
the turntable rotation axis changes as it wobbles. Another difficulty arises from the
inaccurate and non-linear mechanical control mechanism of a consumer camera. The
residual error in positioning the zoom lens by the driving motor cannot be ignored.

The partial shape of a single view can be reconstructed from stereo images using
a stereo matching technique. Stereo image rectification utilizes the epipolar geometry
to reduce the search dimension of stereo matching from 2D to 1D, and also decreases
the possibility of mismatches. In our research, we adopted a compact rectification
algorithm for stereo pairs proposed by Fusiello et al. [45]. The rectification is based
on the camera’s intrinsic parameters, mutual position, and orientation. However,
rectification imposes a higher accuracy requirement on camera parameters. Due to
the non-linearity of lenses and the inaccuracy of mechanical parts, parameters from
dynamic estimation are not accurate enough for a perfect rectification. A refinement
based on vertical profile SSD is presented to reconstruct the partial shape from esti-
mated projection matrix. For registering and integrating partial shapes, the rotation
axis is estimated without further multi-view calibration.

In this chapter, a full zoom calibration is presented to avoid the empiric trial
procedure. The error of estimated camera parameters from dynamic zoom is ana-
lyzed. A new rectification refinement technique is proposed to obtain a better partial
shape. And the rotation axis of multi-view at different zoom setting is also estimated
without further calibration. Full 3D models using the estimated rotation axis are

demonstrated.
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2.1 Camera Calibration Through Perspective Pro-

jection

Figure 2.1: Camera calibration

Camera calibration is to find a mapping from 3D world frame to 2D image plane.
It can be divided into two parts: first a rotation and translation between world frame
and camera frame, then a perspective projection from camera frame to image plane,
as shown in Fig. 2.1. Some of the calibration algorithms are direct calibration, Tsai’s
calibration [46], and Zhang’s calibration [47]. In this research, the calibration based
on perspective projection matrix is adopted [10]. However the dynamic zoom cali-
bration method should be of general value, and can be extended to other algorithms.

A 3D point (X;,Y;, Z;) in world coordinate is projected to a point (u;,v;) in the
image plane; the corresponding perspective projection matrix (PPM) P can be ex-

pressed as:

o 1| =r [xov oz qt 1)
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with
Ti _ p11X; + p12Yi + p13Zi + p1a

Z; P31Xi + p32Yi + D33 Zi + paa (22)
i X Y; Z;
v = f$_ _ P2 + P22Yi + P23t + Paa (2.3)
Z P31Xi + p32Yi + P332 + Paa

where (x;,y;, z;) is the corresponding 3D point in the camera frame.
In the case that the calibration pattern contains more than 6 corresponding point
pairs, Py can be estimated through least squares techniques. If we assume we are

given N matches for the homogeneous linear system, we have:

Ap=0 (2.4)
with
X1 Yi Z1 1 0 0 0 0 —l'le —.1171}/1 —33'1Z1 —I
0 0 0 0 X4y Vi 241 1 —yuXy - Y1 —nZ1  —n
X2 ng )/2 1 0 0 0 0 —ZEQXQ —1'23/2 —ZEQZQ —XT9
0 0 0 0 Xy Yo Zy 1 —1X5 —12Ys —Yo Lo —Y2
A=
XN YN ZN 1 0 0 0 0 —JZ'NXN —JZ'NYN —.CENZN —IN
00 0 0 Xy Yy Zy 1 —ynXn —uUnYn —UnZn —Yn |
(2.5)
and
t
P=1 pu, D2, - - -, D33, P34 (2.6)

Since A has rank 11, the vector p can be recovered from SVD related techniques
as the column of V corresponding to the smallest singular value of A. Since Fy is

defined up to a scale factor, we can write:

p=" (2.7)
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The absolute value of the scale factor |y|can be calculated from rotation components.
Since there are 8*%6 world-point matches in our zoom calibration pattern, the

least-square minimization technique is used to reduce the estimation error.

2.2 Dynamic Zoom Calibration

The PPM can be decoupled into an intrinsic matrix that describes the projection
from camera coordinate to image plane, and an extrinsic matrix which describes the
transform from the world coordinate system to the camera coordinate system. The

factorization is expressed as:

P = I[Rlt] (2.8)

The intrinsic matrix I depends on the intrinsic parameters, and has the following

format:
fu a  Ug
I = 0 fv Vo (29)
0O 0 1

where f,, f, are focal length in effective pixel size along u and v direction of the
image plane, (ug,vg) is the coordinate of the image center, and « is the aspect ratio.
The extrinsic matrix describes the rotation and translation of the camera coordinate
system, and can be expressed by a 3*3 rotation matrix R and a translation vector
t. In the rotation matrix R, all the 9 elements are not independent. They will be
further reduced to 3 independent rotation angles (roll, yaw, pitch) using 6 orthonormal
constraints.

In dynamic zoom calibration, a series of perspective projection calibrations are
conducted at a set of base points. Then perspective projection matrices are de-
composed as intrinsic parameters, orientation angles, and translation vectors. These

parameters change with different zoom positions. They are plotted respectively in
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Fig. 2.2, Fig. 2.3 and Fig. 2.4. Camera parameters at an arbitrary intermediate zoom
setting are estimated from the nearest calibrated zoom positions by interpolation. In
the figures we observe that the changes of f,, f,, t3 are similar to the result of Wilson
and Atienza. However, for a convergent stereo vision configuration, the orientation of
the camera coordinate (roll, yaw, pitch) is not a constant anymore, as can be seen in
Fig. 2.3. Moreover, the optical center of the camera moves not only along the optical
axis, but also shifts in a plane that is perpendicular to the optical axis.

A nonlinear measure K is used as an index that indicates the relative error between

the estimated parameters and the real ones:

1 & |pi — (2, o, 1y -+ - )|
K= — i 1y L0 1, n 2.10
T 0
where p; is the calibrated parameter and 7(z;, ag, vy, - - - @,) is the parameter esti-

mated from dynamic zoom. In Table 2.1, the nonlinearity measure K is calculated by
comparing the estimated camera parameters and the parameters from real calibration
of left and right cameras at 13 different zoom positions. It demonstrates that ¢, ts,
ug, vg have relatively large estimation errors. This is caused by the non-linearity of

the lens design.

K [%] | fu fo U vg  roll yaw pitch t to t3
Left 0.58 0.58 1.34 0.81 0.04 0.70 0.23 3.22 1.45 0.25
Right | 0.50 0.50 1.13 0.78 0.02 0.84 0.16 1.53 0.90 0.18

Table 2.1: Non-linear measure K for different parameters, Zoom setting ranges from

step number 70 to 190 at intervals of 10 steps, N = 13
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2.3 Rectification

While matching stereo images, rectification is used to reduce computation and the
possibility of mismatching. Rectification based on PPM is briefly introduced here.
In order to have horizontal epipolar lines, the baseline must be parallel to the new X
axis of both cameras. In addition, corresponding points must have the same vertical
position (Y coordinate). Consequently, the position of new optical centers is the same
as that in the old ones after suitable rotations, and intrinsic parameters are the same
for both cameras. Therefore, the new projection matrices will differ only in their
optical centers.

Let us write the new PPMs in terms of their QR factorization:
Poy = I[R|—Re] (2.11)

Py = I[R|—Res) (2.12)

The intrinsic parameter matrix I is same for both new projective matrices. The
rotation matrix R is the same for both PPMs.

To rectify the left image and the right image, we need to compute a transformation
mapping of the image plane P, = [Qo1]|¢0o1] onto the image plane P,1 = [Qn1|¢n1]-
We will see that the sought transformation is the collinearity given by 3*3 matrix
T = inQ;f. The same result applies to the right image.

For any 3D point w, we can connect it to a corresponding point m on the image
plane by a PPM P. Thus for the same 3D point w, there are two points on the image

plane that correspond to before and after rectification respectively.
mer = Polw (213)
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Then the optical rays that connect image points m,;, m,;, and the optical center are

described in parametric form as:
w=c1+ NQ'Me1 Ao € R (2.15)

w=c;+A\Qimy A €ER (2.16)

From Eqn. (2.15) and (2.16), we have:
mnp1 = /\inlelmol ANER (217)

where )\ is an arbitrary scale factor.
Reconstruction of 3D points by triangulation can be performed from the rectified

image directly, using Pp1, Ppo.

2.4 Rectification Refinement

Rectification uses PPM from calibration or estimation as a starting point. In a
successful rectification, the vertical disparity between the left and the right image pair
should be zero. For this, we need an accurate PPM. However, in the case of dynamic
zoom, due to the non-linearity of the lens and mechanical mechanisms, there will
be errors in the estimated camera parameters. When the projection matrix for the
dynamic zoom case is not accurate enough for rectification, the left and right image
pair may have vertical shift of up to several pixels. This problem may be solved by
increasing the search range of stereo matching at the cost of dramatically increasing
the computation and the possibility of mismatches. Then the advantage of rectifica-
tion is diminished. A rectification refinement is needed to speed up computation and
reduce the stereo match error.

An analytical rectification refinement is very difficult due to the lack of constraints,

if not impossible. In Table 2.2, we see that the main error source of zoom calibration
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is t1, t9, ug, vy due to the rotational nature of optical zoom lens design. Based on
this observation, a refinement technique is introduced based on vertical profile Sum
of Squared Difference (SSD). The vertical direction profiles of left and right cameras

are obtained by projecting images onto the Y-axis:

Yi(i) = - 1) (2.18)
AORDIAN) (2.19)

where I(i,j) is the gray level of images. Then an SSD is computed in a window of
width W. The vertical image shift is calculated by Eqn. (2.20) and (2.21). The
refined rectification is obtained by moving one image relative to the other one in the

vertical direction by d.

w
)= > w|vit) V.G ) (2.20)
where 1 is the vertical SSD operator.

d = min lc(i)] (2.21)

Fig. 2.5 (a) and (b) show images of a toy dog recorded by the left and the right
cameras. The size of images is 960*1280 pixels. Their normalized vertical profile is
plotted in (c). The vertical line difference from Y-SSD is shown in (d). The width
of the SSD window is 180 pixels. There are three areas. Area 1 and Area 3 are
noise-dominated due to non-uniform illumination. Area 2 is object-dominated, and
the vertical line difference is a constant (5 lines). The partial shapes before and after

rectification refinement are shown in Fig. 2.6 (a) and (b) respectively.
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2.5 Multi-View Rotation Axis Estimation

For a complete 3D model, single partial shape from one view is not enough. A
rotation stage is used in our stereo vision system to rotate the object. It is equivalent
to fixing the object and rotating the stereo camera. In Fig. 2.7, the full 3D model are
integrated from 8 partial shapes, and each partial shape is obtained from different
views which range from View 1 to View 8. Since the partial shapes are referenced
to different camera coordinate systems, it is necessary to register the partial shapes.
Multi-view calibration describes the position and orientation of the rotation axis
around which the different partial shapes are measured. The rotation axis is expressed
by a turntable matrix (4*4). A multi-view calibration method that is similar to the

camera perspective projection calibration has been developed. The result from multi-
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view calibrations can be expressed as a turntable matrix:

T = (2.22)

where R, is a 3 x 3 rotation transform, and %, is the translation vector with respect
to the fixed optical center O; or Os.

As described in Section 2.2, the optical center of cameras wobbles around the
optical axis with different zoom settings. As shown in Fig. 2.7, the optical center
of the left and right camera shift from O, Oy to Oy,, O, with the change of zoom
position. That means the turntable matrix, which describes the rotation axis with
respect to the optical center, also changes. However the origin of the world coordinate
is still fixed and can be used as the connection between the epipolar geometry before
and after zoom change.

The turntable matrix of the dynamic zoom can be calculated from a calibrated
rotation matrix 7', a calibrated PPM P;, and the estimated PPM P, from dynamic

zoom. The new turntable matrix is obtained by:

R, t,
T, = (2.23)
0 1
where:
R, = (R;'R.)R., (2.24)
by = (ts —t.) + tes (2.25)

and R,, R., t,, t, are factorized from the calibrated PPM P, and estimated PPM
P, [45, 48]:
P, = I[R,ts] (2.26)
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2.6 Experimental Results

Experiments were conducted on the Stonybrook VIsion System (SVIS-3). As
shown in Fig. 2.8, SVIS-3 system is composed of a digital stereo camera, a rotation
stage, and light sources. The digital stereo camera is made up of two vertically-
mounted Olympus digital compact cameras. Two checkerboard planes are mounted
perpendicularly as a calibration pattern, as displayed in Fig. 2.9. Olympus compact
digital camera has 130 zoom levels that range from 65 to 195 steps. The full 3D
model after multi-view calibration estimation is shown in Fig. 2.10. We see that the

final full 3D models are quite good.

Figure 2.8: SVIS-3 3D modeling system

In this chapter, a new calibration method for estimating the internal camera
parameters under dynamic zoom setting is proposed. We have also investigated a

method for estimating the rotation axis of a turntable. It is used for obtaining multi-
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Figure 2.9: Calibration target
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(a) Mesh model of dog (b) Corresponding texture model

(c¢) Mesh model of potato head  (d) Corresponding texture model

Figure 2.10: 3D models by estimated rotation matrix
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view stereo images for 3D modeling. A rectification refinement technique is also
presented to improve the results of stereo rectification. Our methods are implemented
and evaluated on an actual camera system used in 3D modeling. Experimental results
show that our method is very useful for enabling stereo based 3D modeling systems

to incorporate the variable zoom feature.
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Chapter 3

Depth-from-Defocus Techniques

Passive techniques of ranging or determining the distance of objects from a camera
is an important problem in computer vision. Depth From Focus (DFF) [21, 22] is
essentially a parameter searching procedure which requires acquiring and processing
many images. The search involves many mechanical motions of camera parts, thus
limiting the speed of autofocusing. Depth From Defocus (DFD) is an elegant passive
autofocusing method. It needs only two or three images, and recovers the depth
information by computing the degree of blur.

In this chapter, new binary mask based Depth From Defocus (DFD) algorithms are
proposed to improve autofocusing performance and robustness for arbitrary scenes.
A binary mask is defined by thresholding image Laplacian to remove unreliable points
with low Signal-to-Noise Ratios (SNR). Three different schemes — with/without spa-
tial integration and with/without squaring — are investigated and evaluated, through
both simulations and actual experiments. The actual experiments use a large variety
of objects including very low contrast Ogata test charts. Experimental results show
that the RMS step error for autofocusing is less than 2.6 lens steps, which is cor-

responds to 1.73%. Although our discussion in this chapter is mainly focused on a
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spatial domain method STM1, this technique should be of general value for different
approaches such as STM2 and other spatial domain based algorithms.
The basic theory of STM is briefly reviewed here to introduce relevant formulas

and to define the terms for future discussion.

3.1 S Transform

A Spatial-domain Convolution/Deconvolution Transform (S Transform) has been
developed for images and n-dimensional signals for the case of arbitrary order poly-
nomials [41].

If f(x,y) is an image that is a two-dimensional cubic polynomial defined by:

3 3—m

f(x, y) = Z AmnZ™Y" (3‘1)

m=0 n=0
where a,,, are the polynomial coefficients. The restriction on the order of f is made
to be valid by applying a polynomial fitting least square smoothing filter to the image.

Let h(z,y) be a rotationally symmetric point spread function (PSF). In a small
region of the image detector plane, the camera system acts as a linear shift invariant
system. The observed image g(z,y) is the convolution of the corresponding focused

image f(z,y)and the PSF of the optical system h(z,y):

9(x,y) = f(z,y) ® h(z,y) (3.2)

where ® denotes the convolution operation.
A spread parameter oy, is used to characterize the different forms of PSF. It can
be defined as the square root of the second central moment of the function h. For a

rotationally symmetric function, it is given by:

“+o00 400

si= [ [ @iy (33)

—00 —00
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The above deconvolution formula can be written as:
2

flx,y) = g(x,y) — %VQg(:L‘, y) (3.4)

For simplicity, the focused image f(z,y) and defocused images g;(x,y),i = 1,2 are

denoted as f and g; from now on.

3.2 STM Autofocusing

P1 Pn 1D

p: Object Point OA: Optical Axis ID: Image Detector

LF: Light Filter P1: First Principal Plane s, f, D: Camera Parameters
AS: Aperture Stop Pn: Last Principal Plane v: Dist of Image Focus

L1l: First Lens Q1: First Principal Point p": Focused Image

Ln: Last Lens Qn: Last Principal Point p”: Blurred Image

Figure 3.1: Schematic diagram of camera system

A schematic diagram of a camera system is shown in Fig. 3.1. The Aperture Stop
(AS) is the element of the imaging system which physically limits the angular size of
the cone of light accepted by the system. The field stop is the element that physically

restricts the size of the image. The entrance pupil is the image of the aperture stop
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(AS) as viewed from the object space, formed by all the optical elements preceding it.
It is the effective limiting element for the angular size of the cone of light reaching the
system. Similarly, the exit pupil is the image of aperture stop, formed by the optical
elements following it. For a system of multiple groups of lenses, the focal length will
be the effective focal length f.;f; the object distance u will be measured from the
first principal point (@), the image distance v and the detector distance s will be
calculated from the last principal point (Q,,). Imaginary planes erected perpendicular
to the optical axis at these points are known as the first principal plane (P;) and the
last principal plane (P,) respectively.

If an object point p is not focused, then a blur circle p” is detected on the image

detector plane. The radius of the blur circle can be calculated:
Ds[1 1 1
R="2" { ————— } (3.5)

where f is the effective focal length, D is the diameter of the system aperture, R is
the radius of the blur circle, u, v and s are the object distance, image distance, and
detector distance respectively. The sign of R here can be either positive or negative
depending on whether s > v or s < v.

After magnification normalization, the normalized radius of blur circle can be
expressed as a function of camera parameter setting € and object distance u as

Dsy (1 1 1
R(T,u) = @ = %( ————— ) (3.6)

Therefore from Eqn. (3.6) we have

oc=mu"+c (3.8)
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where

kD kDsy (1 1
m=—""and e=-"20(2 2 (3.9)
2 2 f s

Let ¢1 and g, be the two images recorded with different parameter settings e; =

(SlaflaDl) and 6_2) = (827f27D2)‘
oi=mu e i=1,2 (3.10)

Rewriting Eqn.(3.10) by eliminating u™:

o1 =aoy+f3 (3.11)

where

o= m and (0 =c¢ — 02@ (3.12)
meo mgy

From Eqn. (3.4), for each defocused image we can obtain:
o2
==V i=12 (3.13)
Then equating the right side of Eqn. (3.13):
2

2
o o
g1 — jVle = go — fVQQQ (3.14)

Under the third order polynomial assumption in Eqn. (3.1), for the same object,

we have:
1
g1 — go = ZGVQQ (3.15)
where V2g = V3¢, = V2g,, and
4(91 - 92)

Now substituting for oy in terms of oy from Eqn. (3.11), and using the definition

of G in Eqn. (3.16), we have:

o3(a® — 1)+ 2080y + 3 =G (3.17)
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where the definition of o and (3 are same as in Eqn. (3.12).

In STM1, lens position is changed during the acquisition of the two images g; and

g2 (STM1), but the aperture diameter remains unchanged. Therefore a = ™ = % =
2 2

1, and we obtain:
G B
- _ = 3.18
27957 2 (3.18)
In STM2, only the diameter of camera aperture is changed in the image acquisition

Dy
Dy

e

3.3 Binary Mask Based STM1 Algorithms

of two images g; and g,. In this case we have § = 0 and o = Therefore Eqn.

(3.17) reduces to:

Because of camera noise, the original STM1 algorithm of Subbarao and Surya
[32, 33] uses the steps of squaring, spatial integration, and mode selection of his-
togram. This was done as the cameras used in the past were of poor quality compared
to the modern digital still cameras. With the development of improved digital cam-
eras, the traditional scheme should be revisited, and simpler schemes can be imple-
mented for DFD autofocusing. These schemes improve robustness and performance
of autofocusing. In this chapter, we concentrate on STM1, but the same techniques

can be applied to STM2.

3.3.1 SNR Mask

In previous mode selection, the histogram is built by computing oy at each pixel
in a 48%48 neighborhood, and then the mode of the histogram is regarded as the best
estimation of oy. Low contrast image regions yield low image Laplacian values. Due

to camera noise and quantization, Laplacian estimates have very low SNR leading

37



to large error in the estimation of oy. Therefore, a new binary mask is introduced
to improve the robustness of the STM algorithm. The binary mask is defined by
thresholding the Laplacian values. This operation removes unreliable points with low

Signal-to-Noise Ratio (SNR). The binary mask is defined as:

1, [V =T
Mo(z,y) = , (z,y) e W (3.20)
0, 0.W.
where T is a threshold on the Laplacian which can be determined experimentally. An
averaging of o9 based on the binary mask is used instead of the mode of its histogram.

The Binary Mask based STM1 With Squaring and With Integration (BM_WSWI)

can be expressed as:

4 I lo1(z,y) — g2(x, y)dzdy
> My 21
¢= S(gl’QQ)U e () [ [V2g(z,y)]2dxdy (3:21)

where U = () EW My(z,y) is the weight of the binary mask. S(g1, ¢2) is the sign

function which is decided by the variance of two images Var(g;) and Var(gs).

—1, Var(g:) > Var(ge)
S(g1,92) = ' ’ (3.22)
+1, Var(g1) < Var(g2)

3.3.2 Spatial Integration

Spatial integration reduces random noise at the cost of sacrificing spatial resolu-
tion; moreover, without thresholding, it may take some unreliable points into account.
However, integration over an image region reduces the spatial resolution of depth-map.

To understand the effect of spatial integration, a variation of Binary Mask based
STM1 With Squaring and Without Integration (BM_WSOI), which does not integrate
over a small region is calculated by:

G = 5(91,92)% Z Mo(x,y)\/[gl(x’ y) — g2z y)l (3.23)

(x,y)EW I:v2g(‘r7 y)]2
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Figure 3.2: Binary mask formation

3.3.3 Squaring Scheme

The squaring scheme was introduced in the original STM1 algorithm to reduce the
effects of camera noise. Squaring permitted integration over an image region without
canceling positive and negative values of image Laplacians during summation. How-
ever, squaring also loses the sign information. Therefore the sign function S(g1, g2)
in Eqn. (3.22) is used.

Another variation directly uses Eqn. (3.14). It is carried out without squaring and
without integration. In the Binary Mask based STM1 of Without Squaring Without

Integration (BM_OSOI), the average of G is calculated based on the binary mask:

_ 4 » oy 1912:9) = go(, y)]

The above algorithms are evaluated on both synthetic and real data.

3.3.4 Simulation Result

In practical experiments, there are many factors that are coupled together even in
a single recorded image, such as lens aberration, vignetting, nonlinear sensor response,

automatic gain control, and automatic white balance. In order to verify the theory
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itself and evaluate the different variations under the same conditions, a computer
simulation system Image Defocus Simulator 1 (IDS1) is implemented for generating
a series of test images. Due to advances in VLSI technology, digital still cameras
have improved in imaging capabilities compared to the video camera-image grabber
architecture of the past. The original IDS of Lu [49, 50] has been simplified and
updated to model a modern digital still camera.

A database of simulated images has been built for experiments. Images for syn-
thetic database are displayed in Fig. 3.3. Fig. 3.4 shows 9 images of sample image
"Boat” arranged in 3 rows and 3 columns. The distance of the object increased from
250 mm to 950 mm row-wise. The distance s between the lens and the image de-
tector increases column-wise from left to right. The effective focal length and the
F-Number are fixed at 19.5 mm and 2.8 respectively. In Fig. 3.4, the images are
focused somewhere along the top-left to bottom-right diagonal direction. The image
focus decreases on either side of the diagonal direction. This is consistent with the
fact that image blur should increase when either the object is moved farther or closer
from its focused position, or when the image detector is moved farther or closer from
its focused position.

To compare the performance of BM_WSWI, BM_WSOI and BM_OSOI, The focal
length of the camera is 19.5 mm, and the F number is set to 2.8. For each algorithm,
a focusing window whose size is 144 x 144 is placed at the center of the test image.
The size of the Gaussian filter and LoG filter are both 15 x 15 pixels. The sigma table
corresponding BM_WSWI, BM_WSOI and BM_OSOI are shown in Fig. 3.5 (a), (b)
and (c) respectively.

The rms step errors of the three variations are compared in Fig. 3.5 (d). Compar-
ing (a) and (b), the scheme using spatial integration (BM_WSWI) has higher RMS
step error than the scheme without spatial integration (BM_WSOI) in the range from
270 mm to 2200 mm. The RMS step error of BM_WSOI increases dramatically at
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the far field and near field.

From Fig. 3.5 (b) and (c), variations BM_WSOI and BM_OSOI behave similar
in RMS step error although some large step errors happen in some situations for
BM_WSOL

Another observation from Fig. 3.5 is that the RMS step error can be limited to
be low at long range by suitably selecting the step interval for image capture or by

using a third image. These will be discussed in a later section.

3.3.5 Experimental Result

Binary Mask STM algorithms described above are implemented on a compact
digital camera. The camera is controlled by a host computer (Pentium 4 2.4GHz)
from a USB port. The lens’ focus motor of the digital camera ranges in position from
step 0 to step 150; Step 0 corresponds to focusing a nearby object at a distance of
about 250 mm from the lens and Step 150 corresponds to focusing an object at a
distance of infinity.

The lens designs in current digital cameras have several focusing modes such
as Macro mode and Standard mode to improve the autofocusing performance for
different distance range. The relative position of lens elements changes when the
focusing mode switches from one to another. The relationship between the lens step
number and the reciprocal of the best-focused distance is no longer linear, and the
practical object distance vs. focus step curve needs to be measured using Depth From
Focus (DFF) technique. A double three step DFF algorithm is used to avoid local
maxima in the best focus measure searching procedure [22]. The results are shown in
Fig. 3.6. There exist two roughly linear segments, the first for Macro mode and the
second for Standard mode. The transition area is around 787 mm (31”).

To generate the sigma-step lookup tables for different variations, the defocused
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Figure 3.3: Image database for IDS1
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(a)u=250 mm, step= 40  (b)u=250 mm, step= 80 (c) u=250 mm, step= 120

(d)u=450 mm, step= 40  (e)u=450 mm, step= 80 (f) u=450 mm, step= 120

|

(g)u=950 mm, step= 40  (h)u=950 mm, step= 80 (i) u=950 mm, step= 120

Figure 3.4: Sample output of IDS1 simulation system

43



Sigma of different objects for BM—~-WSWI ( Step 74 & 104 )

Sigma of different objects for BM—~-WSOI ( Step 74 & 104 )

12 T T T T T T T 12 T T T T T T T
—— Letter —— Letter
| —— DrawLetter || | —— DrawLetter ||
10 | =~ CDRom 10 | =~ CDRom
—*— Vacuum —*— Vacuum
8t —©- Head 8t —©- Head H
¥ Monarch ¥ Monarch
—A- Peppers —A- Peppers
6r - | —= Boat 6r - | —= Boat (1
—- Lena —- Lena
4 4
« «
£ !
) )
of of
ol ok
-4} -4+
—6} s
8 1 1 8 1 1 1 1 1 1 1
0 05 1 15 2 25 3 35 4 0 05 1 15 2 25 3 35 4
1 x10° 1 x10°
(a) BM_WSWI (b) BM_WSOI
Sigma of different objects for BM~OSOI ( Step 74 & 104 ) RMS Step error at Step 74 & 104
12 T T T T T T 8 T T T T T T T
— Letter —+— BM-WSWI RMS 3.5484
| —+ DrawlLetter || —— BM-WSOI RMS 1.7286
10 “| == CDRom L -6~ BM-0SOI RMS 15448 ||
=+ Vacuum
8l —©- Head
=%~ Monarch o d
—A— Peppers
6 -8~ Boat =
—— Lena 9
(V- tena | #sk
4 &,
o g
g 2 g 4k
) 2
)
ok
03t
=
=2+ 14
ok
_at
1k
_6}
-8 1 1 1 1 1 1 1 0 L L L L L L L
0 05 1 15 2 25 3 35 4 0 05 1 15 2 25 3 35 4
u x10° u x10°

Figure 3.5: Sigma table and RMS step error of different STM1 algorithms (synthetic

data)

(c) BM_OSOI

44

(d) RMS step error for (a), (b), (c)



images of a calibration object are acquired at 20 different distances. At each distance,
two defocused images are obtained with the focus step numbers 35, and 98. Then o,
is estimated by the algorithms - BM_WSWI, BM_WSOI and BM_OSOI. The results
are plotted in Fig. 3.7. There are common “flat” areas in the sigma-step curves that
approximately lie in the range from step 60 to step 110 for the compact digital camera.
In this area, we find that a small variation in sigma may cause a large fluctuation in
the focusing step. However the corresponding change in focusing measure or image
sharpness is not significant. This means that if we use focus step number as error
metric, large errors are expected in the step 60 to 110 interval. This is misleading
since the error in image sharpness will be small. Therefore, focus step is not the best
error metric as it overstates the error, but focus measure difference is a better measure
of performance as it corresponds to image sharpness in autofocusing. However, to be
conservative, we use the metric of lens step number with a hopeful note that the

actual defocus error will be lower.

150
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100

Step

751

50

251

1 1 1 1 | 1
400 600 800 1000 1200 1400 1600
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Figure 3.6: Step number vs. object distance

To bring out the capability of DFD algorithms, experiments are performed on
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Sigma vs Step for different variatins (Step 35 & 98)
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Figure 3.7: Sigma vs. step number

eight objects that are relatively difficult to measure, as shown in Fig. 3.8. Eight
positions are randomly selected. The distance and the corresponding steps are listed
in Table 3.1. One of the test objects at those positions are shown in Fig. 3.9. The
F-number is set to 2.8, and the focal length is set to 19.5 mm. A focusing window is
located at the center of the scene. Its window size is 96 x 96. The Gaussian smoothing
filter and LoG filter are 9 x 9 pixels. The sensor nonlinear response compensation [51]
is utilized.

Measurement results and rms error for (a) BM_WSWI (b) BM_WSOI, and (c)
BM_OSOTI are plotted in Fig. 3.10 and Fig. 3.11 respectively. Comparing the schemes,
With Spatial Integration (BM_WSWI) perform better than the schemes WithOut
Spatial Integration (BM_WSOI and BM_OSOI) at far field positions (position 8), but
sometimes they may give large errors due to unreliable points. The schemes without
squaring perform better than schemes with squaring at some positions (position 2).

This can also be observed from simulation results in the previous sections. The mean
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of RMS step error of simulation results and experimental results are summarized in
Table 3.2.

Errors at position 8 could be large as the first image processed in DFD will be
highly blurred (first image is captured at a lens position of 35 whereas the focused
step position is around 145). In this case, a third image closer to 145 should be
recorded and processed for better accuracy. Taking all factors into account such as
accuracy, computational requirements, simplicity of algorithm, resolution of depth-
map, etc., we suggest BM_OSOI for use in practical applications. Even when very
low contrast objects such as those in Fig. 3.8 (g) and (h) are present, an RMS error of
about 3 steps can be expected which gives very sharp focused images in autofocusing
applications.

In this section, a new binary mask is defined based on thresholding of image
Laplacian to remove unreliable points with low Signal-to-Noise Ratio (SNR) in DFD
applications. This mask is exploited in different DFD schemes such as with/without
spatial integration and with/without squaring, and their performances are investi-
gated and evaluated both with simulation and actual experiments. Experimental
results show that the autofocusing RMS step error is roughly similar for the different
schemes. However, taking several factors such as accuracy and computational re-
sources into account suggests that the DFD scheme of without squaring and without
spatial integration (BM_OSOI) is best suited for practical applications. While this
paper deals with STM1, the conclusions here should be applicable to other spatial
domain DFD methods such as STM2.
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Figure 3.8: Test objects for DFD evaluation
Position 1 2 3 4

Dist [mm]| | 325.2 473.5 626.1 7828
Step 19.00  55.00 96.50 120.50
Position ) 6 7 8

Dist [mm] | 913.1 1055.3 1232.6 1350.7
Step 126.00 131.25 139.00 144.75

Table 3.1: Object positions in DFD experiments
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Figure 3.9: Test object at different positions
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Figure 3.10: Measurement results for different STM1 algorithms (real data)
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RMS Step Error vs Position

T T
—— BM-WSWI RMS 3.5023

BM-WSOI RMS 2.9416
-6~ BM-0SOI RMS 2.6413

RMS Step Error

Position

Figure 3.11: RMS step error for different STM1 algorithms (real data)

Mean RMS Step Error

Algorithm | Simulation Results | Experimental Results
Step % Step %
BM_WSWI | 3.55 2.37 3.50 2.33
BM_WSOI | 1.73 1.15 2.94 1.96
BM_OSOI | 1.54 1.03 2.64 1.76

Table 3.2: DFD performance summary
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3.4 Measuring Range Extension

3.4.1 Optimal Step Interval

Direct approach to extend the measuring range, as mentioned in the previous sec-
tion, is to find the optimal defocus positions for image acquisition to minimize the
full range step error without adding a third image. From Eqn. (3.16), the essentially
STM1 based DFD is a differentiation algorithm. If the two positions of image acqui-
sition are too close, then the images will be too similar, which means the difference
signal g; — go is close to noise level. As a result, the error in lens step measurement
could be large. If the two positions are very far apart, then one of the image may be
blurred too much. This reduces the contrast too much and again the lens step error
will be large. The essence of optimal interval problem is to find the best tradeoff
under these constraints.

In this section, Binary Mask based STM1 Without Squaring Without Integration
(BM_OSOI) is selected as an example for different step interval, however the other
algorithms are also suitable for the step optimization.

Due to the complexity of theoretical analysis, a simulation for ideal imaging system
is conducted on the synthesized database obtained using the IDS1 simulation system.
In the 1/u, two positions that trisect the 1/u range can be used as an initial estimate
of optimal positions for image acquisition. These are steps 76 and 102. A series of
trials by increasing or decreasing the step interval are carried out. The results are
shown in Fig. 3.12. Sigma table for different step interval are plotted in (a). The
slope of the sigma curve decreases with increase in the step interval. The change of
RMS step error with multiple step intervals are shown in (b). An overall measure —
mean of RMS step error — is shown in (c). We see that the RMS step error tends to

decease first, after reaching the minimum RMS step error of 1.3 steps at interval 76
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and 102, and later increases, as the step interval reduces from 37 steps to 26 steps
and 26 steps to 4 steps. We can also fix one lens step at 76, then change another
lens step from 83 to 117, a similar optimization curve can be observed, as shown in
Fig. 3.13.

In actual experiments with real data, the same test objects are used. Step 35
is selected as the base defocused step, and step 45, 55, 65, 88, 98, 108 and 118
are selected as other defocused steps respectively. The RMS step error for different
objects at six positions are plotted in Fig. 3.14(a). An overall measure — mean of
RMS step error — is shown in Fig. 3.14(b). When the defocused image sensor planes
are too close, the RMS step error is relatively high. The mean RMS step error is 18.1
steps for defocused steps 35 and 45. If the step interval increases, the mean RMS step
error drops to 2.6 step for the defocused step pair 35 and 98. When the step interval

is increased further, the mean RMS step error increases to 3.3 steps.

3.4.2 Three-Image STM Scheme

In previous sections, various STM algorithms were discussed. The RMS step error
distribution is not uniform in the measurement range in both simulation and actual
experiments. Some algorithms, as shown in Fig. 3.5(d) and Fig. 3.11, suffer from the
increase of RMS step error at the near field and the far field. The distribution and
magnitude of RMS step error vary. The scheme with spatial integration BM_WSWI
results in a relatively flat RMS step error distribution at the cost of poor performance
for high-contrast objects. Thus a relatively high step error may occur when a high-
contrast object is involved. For 3D shape measurement application, the error could
be controlled by placing the object to be measured in the area with low RMS step
error. In autofocusing application, a flat step error distribution is desirable for the

whole distance range.
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Sigma Table: Different Step Interval
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