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Abstract of the Dissertation

Three-Dimensional Modeling and Autofocusing

Technology for

New Generation Digital Cameras

by

Tao Xian

Doctor of Philosophy

in

Electrical Engineering

Stony Brook University

2006

This dissertation considers three new image-based technologies for

modern digital cameras – 3D modeling with zoom calibration, autofo-

cusing, and continuous tracking autofocusing of moving objects

In 3D Modeling, a new technique is introduced to extend current 3D

modeling technology for variable zoom settings so that objects of very

different sizes and at many different distances can be modeled by the sys-

tem. A new calibration technique that includes translation and rotation

parameters is developed for perspective projection matrices. For each new

zoom setting, a new Perspective Projection Matrix (PPM) is dynamically
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estimated from the original zoom parameters. Stereo images are rectified

based on the generated PPM to simplify stereo matching. A new Vertical

Sum of Squared Difference (V-SSD) refinement method is presented to

improve the rectification result. To register and integrate partial shapes

from eight different views, the rotation axis of multiple views under dif-

ferent zoom settings is needed; a new turntable matrix is dynamically

estimated from the initial multi-view calibration without further multi-

view calibration. Experimental results are presented to demonstrate the

effectiveness of the new dynamic zoom calibration technique.

In autofocusing, several binary mask based Depth-from-Defocus (DFD)

algorithms are proposed to improve autofocusing performance and ro-

bustness. A binary mask is defined by thresholding image Laplacian to

remove unreliable points with low Signal-to-Noise Ratio (SNR). Three dif-

ferent DFD schemes– with/without spatial integration and with/without

squaring– are investigated and evaluated, both through simulation and

actual experiments. The actual experiments use a large variety of objects

including very low contrast Ogata test charts.

A new spatial-domain DFD technique named Blur Equalization Tech-

nique (BET) is presented. The theoretical basis of BET relies on equal-

izing the blur or defocus of two different images recorded with different

camera parameters. In contrast, comparable spatial-domain techniques

rely on equalizing the deblur or focus of the two images. Also, BET

facilitates modeling of images locally by higher order polynomials with

lower series truncation errors. The accuracy of BET is further enhanced

by discarding pixels with low Signal-to-Noise ratio by thresholding im-

age Laplacians, and relying more on sharper of the two blurred images

in estimating the blur parameters. These steps make BET a very accu-
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rate and robust technique useful in practical applications such as depth

recovery and autofocusing. Its performance is compared with three highly

effective and significantly improved versions of STM1. BET is found to

be superior to some of the best comparable DFD techniques in a large

number of both simulation and actual experiments. Also as a counter-

part, BM HIGHORD is implemented for comparison. The only difference

between BET and BM HIGHORD is the blur equalization and the image

equalization. Experimental results show the effectiveness of the new blur

equalization technique.

Different factors that affect the performance of DFD algorithms are

studied. In particular, nonlinear sensor response, lens vignetting, and

magnification variation affect the accuracy of DFD. In order to implement

DFD on off-the-shelf commercial digital cameras, these factors need to be

calibrated and corrected. We present new calibration methods for these

three factors. Their correctness and effects on performance of DFD have

been evaluated with experiments.

DFD performance on draft mode readout is investigated. Seven differ-

ent sets of draft readout modes are considered for camera autofocusing.

DFD algorithms are implemented for these draft modes without the com-

plex demosaic operation. Experimental results show that an error of about

12 steps (BET), and 14 steps (BM-OSOI), out of 1500 steps is achieved.

Continuous tracking focusing of moving object is realized by combina-

tion of 2D tracking and Z tracking. A multiple resolution pyramid SSD

matching is proposed for 2D tracking in the first stage. A new multiple

base point beta calibration is introduced for Z direction tracking. A di-

rect calibration from lens design data is also studied. The initial results

demonstrate that the camera calibration can be completed using the lens
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design data only. The trial and error calibration can be replaced, this

makes it possible for large scale manufacturing. Also experiments also

indicated a novel autofocusing concept - Dynamic Autofocusing.
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Chapter 1

Introduction

With the development of high-quality and inexpensive digital cameras in the last

few decades, image-based sensing techniques have become increasingly important

in many applications. Some of the important application areas are 3D Modeling,

autofocusing, and machine vision. Scene 3D information can be extracted by many

image-based techniques. In this dissertation, we first describe our research results so

far on image-based techniques for 3D model sensing and rapid autofocusing. Then

we outline some related open research problems as future research topics for this

dissertation. In this chapter, 3D sensing and modeling techniques are briefly reviewed

in Section 1.1; autofocusing techniques are summarized in Section 1.2; and Section 1.3

provides an overview of this dissertation.

1.1 Review of 3D Sensing Techniques

3D sensing techniques can be classified into two groups: contact methods and non-

contact methods. A typical contact method uses a Coordinate Measuring Machine

(CMM), which is widely used for dimension control in manufacturing. Because of

the point-by-point contact measurement, the CMM takes a long time to complete a

1



measurement.

Optical methods play an important role among the non-contact methods [1, 2,

3, 4, 5, 6, 7, 8]. Optical methods are divided into two groups: active sensing and

passive sensing. Active sensing can be understood as a modulation and demodulation

procedure. A carrier signal is projected onto the object surface, and the modulated

feedback signal is detected by the sensor. The measurement result is obtained from

demodulation calculation. Some active sensing methods are Laser Triangulation,

Moiré Interferometry, Fringe Projection, and Laser Radar. Laser Triangulation uses

a laser point or structured light; Moiré Interferometry maps moiré pattern; Fringe

Projection projects a fringe pattern onto the object to be measured; and Laser Radar

is based on the measurement of the travel time or phase change of the modulated laser

beam. Active methods usually need a complicated hardware system, and normally

work in a controlled environment.

Passive sensing methods include Stereopsis, Motion Parallax, Shape from Shad-

ing, Shape From Focus and Shape From Defocus. Motion Parallax utilizes local

correspondence and/or relative movement between two or more images to find the

shape of objects in the scene; Shape from Shading uses different lighting setups to

recover the orientation and the depth map of objects; Shape From Focus and Shape

From Defocus both acquire images with different parameters of the imaging system.

Shape From Focus methods acquire many images with different parameter settings.

Then it searches for the best focusing parameter using a focus measure. Shape From

Defocus methods compute the degree of blur of acquired two or three images, and

recover the depth information in a scene. Stereoposis is a widely used technique for

3D shape reconstruction without active illumination. It recovers a partial shape by

finding the corresponding points between two stereo images. The stereo correspon-

dence problem is critical to the partial shape reconstruction. A simple and accurate

technique is a correlation-based algorithm [9]. We used SSD (Sum of Squared Differ-

2



ence) based matching technique on multi-resolution stereo images generated from a

Gaussian Pyramid.

Calibrating parameters of a stereo camera system gives position information about

corresponding points in 3D space. Based on the relative geometry of the two cam-

eras, there are two types of configuration for a stereovision system - parallel stereo

and converged stereo. Parallel stereo configuration has only translation between two

camera coordinates, while converged stereo configuration has both the translation

and rotation. A perspective projection based calibration is used for the converged

stereovision system in our research [10].

To obtain the full model of an object, either the object or the camera has to be

moved. A simple way is to rotate the object using a turntable and take pictures at

uniform intervals [11]. Since the partial shapes which are constructed from different

rotated image pairs are referenced to different camera coordinate systems, it is nec-

essary to register the partial shapes. This requires determining the relative position

and orientation between the stereo camera coordinate system and the rotation stage

coordinate system using a calibration technique.

After the registration step, multiple partial shapes have to be integrated into a

complete 3D model. By assuming a volumetric cube that is visible from all view

directions, integration of shapes is done based on voxel grids. Volumetric integration

approach uses image space information to remove erroneous points. Implicit surface

representation with Shape from Silhouettes technique is used to remove the errors

effectively. By labeling 3D voxels based on the visibility from each view direction,

partial shapes are integrated in 3D volume and converted to a surface model using

the Marching Cubes (MC) algorithm [12].

Conventional 3D modeling uses a fixed zoom setting in reconstruction. For a

fixed zoom setting, the relative position of lens components are static. Therefore

the camera parameters are constants. When the zoom setting changes, the camera

3



parameters also vary. There is a great need for extending this technology to variable

zoom camera settings so that objects of very different sizes and at many different

distances can be modeled by the system.

There are two main problems in employing variable/dynamic zoom in 3D model-

ing. First, when the zoom changes, many internal camera parameters change. Their

change is too complex to be expressed analytically, even for a simple lens system. Sec-

ond, the relation between the camera coordinate system and the turntable rotation

axis changes. Another difficulty arises from the inaccurate and non-linear mechanical

control mechanism of a consumer camera. The residual error in positioning the zoom

lens by the driving motor cannot be ignored.

Wilson and Shafer [13, 14, 15] introduced a ”hold” calibration algorithm in which

four camera parameters are selected by an iterative trial procedure. Then up to

a 5th degree polynomial is used to estimate the parameters from fixed sampling

points. Atienza [16] extended this calibration technique for gaze detection under the

assumption that the orientation of the camera coordinate system is unchanged during

the zoom change. When there is a noticeable change in zoom setting, the nodal point

moves not only changed along the optical axis, but also perpendicular to the optical

axis. Therefore the orientation of the camera coordinate is not constant anymore.

1.2 Review of Autofocusing Techniques

There are, again, two types of autofocusing techniques: active and passive. Ac-

tive autofocusing systems emit beams of energy, such as ultrasonic, infrared or even

structured light, to detect the distance of an object. The reflected beam is received

by the detection sensor, and processed by the vision system. Then the system ad-

justs the lens position accordingly for autofocusing. The typical principles used are

triangulation, signal time difference, and signal intensity difference. The disadvan-
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tage of an active system is the additional requirement of special hardware. For an

active autofocusing system based on ultrasonic or infrared, there also exist some

distance-to-object limitations such as transparent materials (ultrasonic) and an open

heat resource (infrared). A laser based system needs a controlled environment and

is suitable for industrial purposes [17, 18]. The advantage of an active autofocusing

system is that it works in dark illumination.

Passive autofocusing determines the distance to the object by computer analysis

of the image itself. The camera actually “looks” at the scene and drives the lens back

and forth searching for the best focus. Some examples are Phase Detection (PD),

Depth from Focus (DFF), and Depth from Defocus (DFD). There is no distance-

to-object limitation with passive autofocusing like there is with active autofocusing

methods.

Phase Detection (PD) is widely used in high-end Single-Lens Reflex (SLR) cam-

eras. This technology was first patented by Honeywell in 1970s [19, 20]. The autofocus

sampling area of an image is split into two areas by a small lens and each is projected

onto its own half of the camera’s AF light sensor. The two halves then compare

results. In a way passive autofocus is simply an electronic and computerized version

of a rangefinder’s focusing system. Fig. 1.1 shows autofocusing modules in a SLR

camera. Light from the scene passes through the lens onto the reflex mirror. Since

the reflex mirror is semi-transparent, the reflected light from the reflex mirror goes

up to the view finder through a pentaprism, while the transmitted light is directed

onto the autofocusing (AF) module by a submirror. The autofocusing modules are

typically made of several pairs of linear CCDs and corresponding separate lenses. The

principle of phase detection is shown in Fig. 1.2. The autofocusing sampling area of

an image is split into two areas by a small lens and each is projected onto its own half

of the camera’s AF light sensor. The two halves then compare results. When these

points of light are a set distance apart, the subject is in focus. When the separation
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is too small (middle panel), the focus is in front of the object and when it is too large

the focus is behind the object. Separator lenses create two identical images, each of

which falls on half a pair of CCD sensor arrays. Phase Detection can be implemented

through the logic circuit comparator and can achieve high speed focusing. However,

one AF module can only respond to a certain area in the scene. Many AF modules

are needed in the camera to provide a flexible focusing ability in the whole field of

view (FOV). Multiple AF modules add to the complexity of the camera optical design

and manufacturing cost of alignment.

Figure 1.1: Optical configuration of an SLR camera

Depth From Focus (DFF) and Depth From Defocus (DFD) are image based auto-

focusing technologies. Depth From Focus (DFF) acquires many images with different

parameters. Then it searches for the best focusing parameters using a focus measure.

Many research efforts are concentrated on the development and evaluation of different

focus measures [21, 22, 23, 24]. Subbarao et al. [22] presented a theory for evaluating

various focus measures based on the optical transfer function instead of experimen-

tal evaluation that may be limited by the selection of specific type of scenes. Two

metrics such as Autofocusing Uncertainty Measure (AUM) and Autofocusing Root-
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Figure 1.2: Principle of phase detection autofocusing

Mean-Square Error (ARMS) were defined to estimate the noise-sensitivity of focus

measures in [24]. The ideal focus measure should be unimodal, monotonic, and should

reach a maximum when the image is focused. However, due to lens configuration, the

residual error of focus motor and device noise, there exist many local maxima. The

simple Fibonacci search method would be trapped in a local maxima. A more com-

plicated searching strategy combined with quadratic curve fitting was demonstrated

to find the global maximum from theory and experiment [24, 25]. Normally, DFF

algorithm is slow because of the multiple image acquisition. It limits its application

in real-time autofocusing of a camera system.

Depth FromDefocus (DFD) only needs acquiring two or three images, and recovers

the depth information in a scene by computing the degree of blur. This makes it

suitable for real-time autofocusing and distance measurement. Early DFD algorithms

extracted depth information from the blur measurement of an edge [26, 27]. DFD

methods for arbitrary objects have been proposed by some researchers. They can

be classified as frequency domain approaches [26, 28, 29, 25, 30, 31], spatial domain

approaches [32, 33, 34, 35, 36, 37] and statistical approaches [38, 39, 40].
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Pentland [26] compared two images, one formed with a pinhole aperture and the

other image formed by normal aperture. The depth was recovered from inverse filter-

ing in Fourier domain. Subbarao [28] removed the constraint of the pinhole aperture

limitation and allowed several camera parameters to be varied simultaneously. In

order to avoid the sensitivity to the frequency spectra of local scene textures, Xiong

and Shafer [25] used moment filters to compensate for the frequency spectrum of the

texture within the passband of each of the narrowband filters. A large filter bank that

densely samples the frequency space is used to achieve better depth accuracy at the

cost of computational efficiency. Watanabe and Nayar [31] proposed a class of broad-

band filters instead of a series of narrow-band filters. They claimed that it is sufficient

for depth estimation of scenes with a small number of broadband filters even with

complex textural properties. The inverting filter method processes the information

in the Fourier domain. It also involves several filtering operations to avoid the filter-

ing sensitivity. It needs more computation compared to the spatial domain method.

Statistical approaches normally involve optimization operation which requires more

images and computing. Statistical approaches generally need more computation and

yield lower depth-map density than spatial domain methods.

The spatial domain approach has inherent advantages since it preserves the spatial

correspondence information, which is helpful in various applications such as contin-

uous focusing and object tracking. Moreover it requires less computation and re-

sources. A Spatial-domain Convolution/Deconvolution Transform (S Transform) for

n-dimensional signals for the case of arbitrary order polynomials was proposed in [41].

Subbarao and Surya have proposed a spatial domain approach that uses S trans-

form [32, 33, 42, 34]. The S transform is a spatial domain convolution/deconvolution

transform developed for images and n-dimensional signals for the case of arbitrary

order polynomials. Using an appropriate smoothing filter, the images taken at dif-

ferent parameters could be fitted to a cubic polynomial, and the blur estimation can
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be solved in the spatial domain. There are two basic variations: STM1 changes the

focus step or lens position and STM2 varies the aperture diameter. This technique

is explained in detail in Chapter 3. Ziou [43, 35, 44] fitted the images to a Hermite

polynomial basis. They show that any coefficient of the Hermite polynomial com-

puted using the more blurred image is a function of the partial derivatives of the

other image and the blur difference. Thus the blur difference can be computed by re-

solving a system of equations. This work is seen as a continuation of the S transform

method. Favaro et al. [36] use a singular value decomposition technique to estimate

the operator that spans a left null space from a number of deblurred images.

1.3 Dissertation Organization

The goal of this dissertation is to develop novel image-based techniques for 3D

modeling and autofocusing.

In Chapter 2, a new calibration technique is introduced to extend current 3D

modeling technology for variable zoom settings so that objects of very different sizes

and at many different distances can be modeled by the system. This novel calibration

technique that includes translation and rotation parameters is developed for projec-

tive matrices. For each new zoom setting, a new projection matrix is dynamically

estimated from the original zoom parameters. Stereo images are rectified based on

the generated projection matrix to simplify stereo matching. A new Vertical SSD (V-

SSD) refinement method is presented to improve the rectification result. To register

and integrate partial shapes from eight different views, the rotation axis of multiple

views under different zoom settings is needed; a new turntable matrix is dynamically

estimated from the initial multi-view calibration without further multi-view calibra-

tion. Experimental results are presented to demonstrate the effectiveness of the new

dynamic zoom calibration technique.
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In Chapter 3, several binary mask based Depth From Defocus (DFD) algorithms

are proposed to improve autofocusing performance and robustness. A binary mask is

defined by thresholding image Laplacian to remove unreliable points with low Signal-

to-Noise Ratio (SNR). Three different DFD schemes– with/without spatial integration

and with/without squaring– are investigated and evaluated, both through simulation

and actual experiments. The actual experiments use a large variety of objects includ-

ing very low contrast Ogata test charts.

In Chapter 4, a new spatial-domain Depth-from-Defocus (DFD) technique named

Blur Equalization Technique (BET) is presented. The theoretical basis of BET relies

on equalizing the blur or defocus of two different images recorded with different camera

parameters. In contrast, comparable spatial-domain techniques rely on equalizing

the deblur or focus of the two images. Also, BET facilitates modeling of images

locally by higher order polynomials with lower series truncation errors. The accuracy

of BET is further enhanced by discarding pixels with low Signal-to-Noise ratio by

thresholding image Laplacians, and relying more on sharper of the two blurred images

in estimating the blur parameters. These steps makes BET a very accurate and robust

technique useful in practical applications such as depth recovery and autofocusing.

Its performance is compared with three highly effective and significantly improved

versions of STM1. BET is found to be superior to some of the best comparable DFD

techniques in a large number of both simulation and actual experiments. Also as

a counterpart, BM HIGHORD is implemented for comparison. The only difference

between BET and BM HIGHORD is the blur equalization and the image equalization.

Experimental results show the effectiveness of the new blur equalization technique.

In Chapter 5, different factors that affect the performance of DFD algorithms are

studied. In particular, nonlinear sensor response, lens vignetting, and magnification

variation affect the accuracy of DFD. In order to implement DFD on off-the-shelf

commercial digital cameras, these factors need to be calibrated and corrected. In this
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chapter, we present new calibration methods for these three factors. Their correctness

and effects on performance of DFD have been evaluated with experiments.

In Chapter 6, DFD performance on draft mode readout is investigated. Seven

different sets of draft readout modes are investigated for camera autofocusing. DFD

algorithm is directly tested on these draft modes without using demosaic operation.

Demosaic operation normally requires large computation. Experimental results show

that an error of about 12 steps (BET), and 14 steps (BM-OSOI), out of 1500 steps

is achieved in actual camera systems.

In Chapter 7, a multiple resolution pyramid SSD matching is proposed for 2D

tracking in the first stage. A new multiple base point beta calibration is introduced

for Z direction tracking. 3D DFD tracking focusing is realized by combining of 2D

tracking and Z tracking. A direct calibration from lens design data is also studied.

Initial results demonstrate that the camera calibration can be completed using the

lens design data only. The trial and error calibration can be replaced.

Future research topics are outlined in Chapter 8.
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Chapter 2

3D Sensing with Dynamic Zoom

Recent advances in consumer digital cameras have made low-cost 3D modeling

systems feasible. Conventional 3D modeling techniques use a fixed zoom setting in

3D reconstruction. For objects at different distances and/or of different sizes, a vision

system with variable zoom is critical for 3D modeling.

In the case of fixed zoom setting, the relative positions of lens components are

static. When the zoom setting changes, the camera parameters also vary. To extend

the fixed zoom setting camera model to adjustable zoom settings, several algorithms

have been presented. Wilson and Shafer [13, 14, 15] introduced an iterative trial and

error procedure in which four camera parameters are selected. These camera param-

eters are – the effective focal length f , the image center (u0, v0), and the translation

along the optical axis T3. Up to a 5th degree polynomial is used to estimate the cam-

era parameters from fixed sampled points. Atienza and Zelinsky [16] extended this

calibration technique to gaze detection under the assumption that the orientation of

the camera coordinate remains unchanged during zoom change. However when the

optical configuration of a vision system changes, this assumption is not valid, and a

trial and error procedure will be needed to determine the critical parameters.
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There are several main problems in employing variable/dynamic zoom in 3D mod-

eling. First, many internal camera parameters vary nonlinearly with different zoom

settings. Their variations are too complex to be expressed analytically, even for a

simple lens system. Second, the relation between the camera coordinate system and

the turntable rotation axis changes as it wobbles. Another difficulty arises from the

inaccurate and non-linear mechanical control mechanism of a consumer camera. The

residual error in positioning the zoom lens by the driving motor cannot be ignored.

The partial shape of a single view can be reconstructed from stereo images using

a stereo matching technique. Stereo image rectification utilizes the epipolar geometry

to reduce the search dimension of stereo matching from 2D to 1D, and also decreases

the possibility of mismatches. In our research, we adopted a compact rectification

algorithm for stereo pairs proposed by Fusiello et al. [45]. The rectification is based

on the camera’s intrinsic parameters, mutual position, and orientation. However,

rectification imposes a higher accuracy requirement on camera parameters. Due to

the non-linearity of lenses and the inaccuracy of mechanical parts, parameters from

dynamic estimation are not accurate enough for a perfect rectification. A refinement

based on vertical profile SSD is presented to reconstruct the partial shape from esti-

mated projection matrix. For registering and integrating partial shapes, the rotation

axis is estimated without further multi-view calibration.

In this chapter, a full zoom calibration is presented to avoid the empiric trial

procedure. The error of estimated camera parameters from dynamic zoom is ana-

lyzed. A new rectification refinement technique is proposed to obtain a better partial

shape. And the rotation axis of multi-view at different zoom setting is also estimated

without further calibration. Full 3D models using the estimated rotation axis are

demonstrated.
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2.1 Camera Calibration Through Perspective Pro-

jection

Figure 2.1: Camera calibration

Camera calibration is to find a mapping from 3D world frame to 2D image plane.

It can be divided into two parts: first a rotation and translation between world frame

and camera frame, then a perspective projection from camera frame to image plane,

as shown in Fig. 2.1. Some of the calibration algorithms are direct calibration, Tsai’s

calibration [46], and Zhang’s calibration [47]. In this research, the calibration based

on perspective projection matrix is adopted [10]. However the dynamic zoom cali-

bration method should be of general value, and can be extended to other algorithms.

A 3D point (Xi, Yi, Zi) in world coordinate is projected to a point (ui, vi) in the

image plane; the corresponding perspective projection matrix (PPM) P can be ex-

pressed as: [
ui vi 1

]
= P

[
Xi Yi Zi 1

]t

(2.1)
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with

ui = f
xi

zi

= f
p11Xi + p12Yi + p13Zi + p14

p31Xi + p32Yi + p33Zi + p34

(2.2)

vi = f
xi

zi
= f

p21Xi + p22Yi + p23Zi + p24

p31Xi + p32Yi + p33Zi + p34
(2.3)

where (xi, yi, zi) is the corresponding 3D point in the camera frame.

In the case that the calibration pattern contains more than 6 corresponding point

pairs, P0 can be estimated through least squares techniques. If we assume we are

given N matches for the homogeneous linear system, we have:

Ap = 0 (2.4)

with

A =




X1 Y1 Z1 1 0 0 0 0 −x1X1 −x1Y1 −x1Z1 −x1

0 0 0 0 X1 Y1 Z1 1 −y1X1 −y1Y1 −y1Z1 −y1

X2 Y2 Y2 1 0 0 0 0 −x2X2 −x2Y2 −x2Z2 −x2

0 0 0 0 X2 Y2 Z2 1 −y2X2 −y2Y2 −y2Z2 −y2

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

XN YN ZN 1 0 0 0 0 −xNXN −xNYN −xNZN −xN

0 0 0 0 XN YN ZN 1 −yNXN −yNYN −yNZN −yN



(2.5)

and

p =
[

p11, p12, . . ., p33, p34

]t

(2.6)

Since A has rank 11, the vector p can be recovered from SVD related techniques

as the column of V corresponding to the smallest singular value of A. Since P0 is

defined up to a scale factor, we can write:

P =
P0

γ
(2.7)
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The absolute value of the scale factor |γ|can be calculated from rotation components.

Since there are 8*6 world-point matches in our zoom calibration pattern, the

least-square minimization technique is used to reduce the estimation error.

2.2 Dynamic Zoom Calibration

The PPM can be decoupled into an intrinsic matrix that describes the projection

from camera coordinate to image plane, and an extrinsic matrix which describes the

transform from the world coordinate system to the camera coordinate system. The

factorization is expressed as:

P = I[R|t] (2.8)

The intrinsic matrix I depends on the intrinsic parameters, and has the following

format:

I =




fu α u0

0 fv v0

0 0 1


 (2.9)

where fu, fv are focal length in effective pixel size along u and v direction of the

image plane, (u0, v0) is the coordinate of the image center, and α is the aspect ratio.

The extrinsic matrix describes the rotation and translation of the camera coordinate

system, and can be expressed by a 3*3 rotation matrix R and a translation vector

t. In the rotation matrix R, all the 9 elements are not independent. They will be

further reduced to 3 independent rotation angles (roll, yaw, pitch) using 6 orthonormal

constraints.

In dynamic zoom calibration, a series of perspective projection calibrations are

conducted at a set of base points. Then perspective projection matrices are de-

composed as intrinsic parameters, orientation angles, and translation vectors. These

parameters change with different zoom positions. They are plotted respectively in
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Fig. 2.2, Fig. 2.3 and Fig. 2.4. Camera parameters at an arbitrary intermediate zoom

setting are estimated from the nearest calibrated zoom positions by interpolation. In

the figures we observe that the changes of fu, fv, t3 are similar to the result of Wilson

and Atienza. However, for a convergent stereo vision configuration, the orientation of

the camera coordinate (roll, yaw, pitch) is not a constant anymore, as can be seen in

Fig. 2.3. Moreover, the optical center of the camera moves not only along the optical

axis, but also shifts in a plane that is perpendicular to the optical axis.

A nonlinear measureK is used as an index that indicates the relative error between

the estimated parameters and the real ones:

K =
1

N

T∑
i=1

|pi − π(zi, α0, α1, · · ·αn)|
pi

(2.10)

where pi is the calibrated parameter and π(zi, α0, α1, · · ·αn) is the parameter esti-

mated from dynamic zoom. In Table 2.1, the nonlinearity measure K is calculated by

comparing the estimated camera parameters and the parameters from real calibration

of left and right cameras at 13 different zoom positions. It demonstrates that t1, t2,

u0, v0 have relatively large estimation errors. This is caused by the non-linearity of

the lens design.

K [%] fu fv u0 v0 roll yaw pitch t1 t2 t3

Left 0.58 0.58 1.34 0.81 0.04 0.70 0.23 3.22 1.45 0.25

Right 0.50 0.50 1.13 0.78 0.02 0.84 0.16 1.53 0.90 0.18

Table 2.1: Non-linear measure K for different parameters, Zoom setting ranges from

step number 70 to 190 at intervals of 10 steps, N = 13
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Figure 2.2: Intrinsic parameters change with different zoom positions
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Figure 2.3: Orientation parameters change with different zoom positions
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2.3 Rectification

While matching stereo images, rectification is used to reduce computation and the

possibility of mismatching. Rectification based on PPM is briefly introduced here.

In order to have horizontal epipolar lines, the baseline must be parallel to the new X

axis of both cameras. In addition, corresponding points must have the same vertical

position (Y coordinate). Consequently, the position of new optical centers is the same

as that in the old ones after suitable rotations, and intrinsic parameters are the same

for both cameras. Therefore, the new projection matrices will differ only in their

optical centers.

Let us write the new PPMs in terms of their QR factorization:

Pn1 = I[R|−Rc1] (2.11)

Pn2 = I[R|−Rc2] (2.12)

The intrinsic parameter matrix I is same for both new projective matrices. The

rotation matrix R is the same for both PPMs.

To rectify the left image and the right image, we need to compute a transformation

mapping of the image plane Po1 = [Qo1|qo1] onto the image plane Pn1 = [Qn1|qn1].

We will see that the sought transformation is the collinearity given by 3*3 matrix

T1 = Qn1Q
−1
o1 . The same result applies to the right image.

For any 3D point w, we can connect it to a corresponding point m on the image

plane by a PPM P . Thus for the same 3D point w, there are two points on the image

plane that correspond to before and after rectification respectively.

mo1 = Po1w (2.13)

mn1 = Pn1w (2.14)
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Then the optical rays that connect image points mo1, mn1, and the optical center are

described in parametric form as:

w = c1 + λoQ
−1
o1 mo1 λ0 ∈ R (2.15)

w = c1 + λnQ
−1
n1 mn1 λn ∈ R (2.16)

From Eqn. (2.15) and (2.16), we have:

mn1 = λQn1Q
−1
o1 mo1 λ ∈ R (2.17)

where λ is an arbitrary scale factor.

Reconstruction of 3D points by triangulation can be performed from the rectified

image directly, using Pn1, Pn2.

2.4 Rectification Refinement

Rectification uses PPM from calibration or estimation as a starting point. In a

successful rectification, the vertical disparity between the left and the right image pair

should be zero. For this, we need an accurate PPM. However, in the case of dynamic

zoom, due to the non-linearity of the lens and mechanical mechanisms, there will

be errors in the estimated camera parameters. When the projection matrix for the

dynamic zoom case is not accurate enough for rectification, the left and right image

pair may have vertical shift of up to several pixels. This problem may be solved by

increasing the search range of stereo matching at the cost of dramatically increasing

the computation and the possibility of mismatches. Then the advantage of rectifica-

tion is diminished. A rectification refinement is needed to speed up computation and

reduce the stereo match error.

An analytical rectification refinement is very difficult due to the lack of constraints,

if not impossible. In Table 2.2, we see that the main error source of zoom calibration
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is t1, t2, u0, v0 due to the rotational nature of optical zoom lens design. Based on

this observation, a refinement technique is introduced based on vertical profile Sum

of Squared Difference (SSD). The vertical direction profiles of left and right cameras

are obtained by projecting images onto the Y-axis:

Yl(i) =

N∑
j=1

Il(i, j) (2.18)

Yr(i) =

N∑
j=1

Ir(i, j) (2.19)

where I(i, j) is the gray level of images. Then an SSD is computed in a window of

width W . The vertical image shift is calculated by Eqn. (2.20) and (2.21). The

refined rectification is obtained by moving one image relative to the other one in the

vertical direction by d.

c(i) =

W∑
k=−W

ψ

[
Yl(i), Yr(i+ k)

]
(2.20)

where ψ is the vertical SSD operator.

d = min

[
c(i)

]
(2.21)

Fig. 2.5 (a) and (b) show images of a toy dog recorded by the left and the right

cameras. The size of images is 960*1280 pixels. Their normalized vertical profile is

plotted in (c). The vertical line difference from Y-SSD is shown in (d). The width

of the SSD window is 180 pixels. There are three areas. Area 1 and Area 3 are

noise-dominated due to non-uniform illumination. Area 2 is object-dominated, and

the vertical line difference is a constant (5 lines). The partial shapes before and after

rectification refinement are shown in Fig. 2.6 (a) and (b) respectively.
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(a) Left image (b) Right image

(c) Vertical profile of left and right image (d) SSD result

Figure 2.5: Rectification refinement
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Figure 2.6: Partial shapes before/after rectification refinement

2.5 Multi-View Rotation Axis Estimation

For a complete 3D model, single partial shape from one view is not enough. A

rotation stage is used in our stereo vision system to rotate the object. It is equivalent

to fixing the object and rotating the stereo camera. In Fig. 2.7, the full 3D model are

integrated from 8 partial shapes, and each partial shape is obtained from different

views which range from View 1 to View 8. Since the partial shapes are referenced

to different camera coordinate systems, it is necessary to register the partial shapes.

Multi-view calibration describes the position and orientation of the rotation axis

around which the different partial shapes are measured. The rotation axis is expressed

by a turntable matrix (4*4). A multi-view calibration method that is similar to the

camera perspective projection calibration has been developed. The result from multi-
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view calibrations can be expressed as a turntable matrix:

T =


 Rcs tcs

0 1


 (2.22)

where Rcs is a 3× 3 rotation transform, and tcs is the translation vector with respect

to the fixed optical center O1 or O2.

As described in Section 2.2, the optical center of cameras wobbles around the

optical axis with different zoom settings. As shown in Fig. 2.7, the optical center

of the left and right camera shift from O1, O2 to O1n, O2n with the change of zoom

position. That means the turntable matrix, which describes the rotation axis with

respect to the optical center, also changes. However the origin of the world coordinate

is still fixed and can be used as the connection between the epipolar geometry before

and after zoom change.

The turntable matrix of the dynamic zoom can be calculated from a calibrated

rotation matrix T , a calibrated PPM Ps, and the estimated PPM Pz from dynamic

zoom. The new turntable matrix is obtained by:

Tn =


 Rn tn

0 1


 (2.23)

where:

Rn = (R−1
s Rz)Rcs (2.24)

tn = (ts − tz) + tcs (2.25)

and Rs, Rz, ts, tz are factorized from the calibrated PPM Ps and estimated PPM

Pz [45, 48]:

Ps = I[Rs|ts] (2.26)

Pz = I[Rz|tz] (2.27)

26



Figure 2.7: Multi-view integration and rotation axis estimation
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2.6 Experimental Results

Experiments were conducted on the Stonybrook VIsion System (SVIS-3). As

shown in Fig. 2.8, SVIS-3 system is composed of a digital stereo camera, a rotation

stage, and light sources. The digital stereo camera is made up of two vertically-

mounted Olympus digital compact cameras. Two checkerboard planes are mounted

perpendicularly as a calibration pattern, as displayed in Fig. 2.9. Olympus compact

digital camera has 130 zoom levels that range from 65 to 195 steps. The full 3D

model after multi-view calibration estimation is shown in Fig. 2.10. We see that the

final full 3D models are quite good.

Figure 2.8: SVIS-3 3D modeling system

In this chapter, a new calibration method for estimating the internal camera

parameters under dynamic zoom setting is proposed. We have also investigated a

method for estimating the rotation axis of a turntable. It is used for obtaining multi-
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Figure 2.9: Calibration target
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(a) Mesh model of dog (b) Corresponding texture model

(c) Mesh model of potato head (d) Corresponding texture model

Figure 2.10: 3D models by estimated rotation matrix
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view stereo images for 3D modeling. A rectification refinement technique is also

presented to improve the results of stereo rectification. Our methods are implemented

and evaluated on an actual camera system used in 3D modeling. Experimental results

show that our method is very useful for enabling stereo based 3D modeling systems

to incorporate the variable zoom feature.
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Chapter 3

Depth-from-Defocus Techniques

Passive techniques of ranging or determining the distance of objects from a camera

is an important problem in computer vision. Depth From Focus (DFF) [21, 22] is

essentially a parameter searching procedure which requires acquiring and processing

many images. The search involves many mechanical motions of camera parts, thus

limiting the speed of autofocusing. Depth From Defocus (DFD) is an elegant passive

autofocusing method. It needs only two or three images, and recovers the depth

information by computing the degree of blur.

In this chapter, new binary mask based Depth From Defocus (DFD) algorithms are

proposed to improve autofocusing performance and robustness for arbitrary scenes.

A binary mask is defined by thresholding image Laplacian to remove unreliable points

with low Signal-to-Noise Ratios (SNR). Three different schemes – with/without spa-

tial integration and with/without squaring – are investigated and evaluated, through

both simulations and actual experiments. The actual experiments use a large variety

of objects including very low contrast Ogata test charts. Experimental results show

that the RMS step error for autofocusing is less than 2.6 lens steps, which is cor-

responds to 1.73%. Although our discussion in this chapter is mainly focused on a
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spatial domain method STM1, this technique should be of general value for different

approaches such as STM2 and other spatial domain based algorithms.

The basic theory of STM is briefly reviewed here to introduce relevant formulas

and to define the terms for future discussion.

3.1 S Transform

A Spatial-domain Convolution/Deconvolution Transform (S Transform) has been

developed for images and n-dimensional signals for the case of arbitrary order poly-

nomials [41].

If f(x, y) is an image that is a two-dimensional cubic polynomial defined by:

f(x, y) =
3∑

m=0

3−m∑
n=0

amnx
myn (3.1)

where amn are the polynomial coefficients. The restriction on the order of f is made

to be valid by applying a polynomial fitting least square smoothing filter to the image.

Let h(x, y) be a rotationally symmetric point spread function (PSF). In a small

region of the image detector plane, the camera system acts as a linear shift invariant

system. The observed image g(x, y) is the convolution of the corresponding focused

image f(x, y)and the PSF of the optical system h(x, y):

g(x, y) = f(x, y)⊗ h(x, y) (3.2)

where ⊗ denotes the convolution operation.

A spread parameter σh is used to characterize the different forms of PSF. It can

be defined as the square root of the second central moment of the function h. For a

rotationally symmetric function, it is given by:

σ2
h =

+∞∫
−∞

+∞∫
−∞

(x2 + y2)h(x, y)dxdy (3.3)
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The above deconvolution formula can be written as:

f(x, y) = g(x, y)− σ2
h

4
∇2g(x, y) (3.4)

For simplicity, the focused image f(x, y) and defocused images gi(x, y), i = 1, 2 are

denoted as f and gi from now on.

3.2 STM Autofocusing

Figure 3.1: Schematic diagram of camera system

A schematic diagram of a camera system is shown in Fig. 3.1. The Aperture Stop

(AS) is the element of the imaging system which physically limits the angular size of

the cone of light accepted by the system. The field stop is the element that physically

restricts the size of the image. The entrance pupil is the image of the aperture stop
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(AS) as viewed from the object space, formed by all the optical elements preceding it.

It is the effective limiting element for the angular size of the cone of light reaching the

system. Similarly, the exit pupil is the image of aperture stop, formed by the optical

elements following it. For a system of multiple groups of lenses, the focal length will

be the effective focal length feff ; the object distance u will be measured from the

first principal point (Q1), the image distance v and the detector distance s will be

calculated from the last principal point (Qn). Imaginary planes erected perpendicular

to the optical axis at these points are known as the first principal plane (P1) and the

last principal plane (Pn) respectively.

If an object point p is not focused, then a blur circle p” is detected on the image

detector plane. The radius of the blur circle can be calculated:

R =
Ds

2

[
1

f
− 1

u
− 1

s

]
(3.5)

where f is the effective focal length, D is the diameter of the system aperture, R is

the radius of the blur circle, u, v and s are the object distance, image distance, and

detector distance respectively. The sign of R here can be either positive or negative

depending on whether s ≥ v or s < v.

After magnification normalization, the normalized radius of blur circle can be

expressed as a function of camera parameter setting −→e and object distance u as

R′(−→e , u) =
Rs0

s
=

Ds0

2

(
1

f
− 1

u
− 1

s

)
(3.6)

σ is proportional to R′, and can be expressed by:

σ = k′R(−→e , u) (3.7)

Therefore from Eqn. (3.6) we have

σ = mu−1 + c (3.8)
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where

m = −kDs0

2
and c = −kDs0

2

(
1

f
− 1

s

)
(3.9)

Let g1 and g2 be the two images recorded with different parameter settings
−→e1 =

(s1, f1, D1) and
−→e2 = (s2, f2, D2).

σi = miu
−1 + ci i = 1, 2 (3.10)

Rewriting Eqn.(3.10) by eliminating u−1:

σ1 = ασ2 + β (3.11)

where

α =
m1

m2
and β = c1 − c2

m1

m2
(3.12)

From Eqn. (3.4), for each defocused image we can obtain:

f = gi − σ2
i

4
∇2gi i = 1, 2 (3.13)

Then equating the right side of Eqn. (3.13):

g1 − σ2
1

4
∇2g1 = g2 − σ2

2

4
∇2g2 (3.14)

Under the third order polynomial assumption in Eqn. (3.1), for the same object,

we have:

g1 − g2 =
1

4
G∇2g (3.15)

where ∇2g = ∇2g1 = ∇2g2, and

G = σ2
1 − σ2

2 =
4(g1 − g2)

∇2g
(3.16)

Now substituting for σ1 in terms of σ2 from Eqn. (3.11), and using the definition

of G in Eqn. (3.16), we have:

σ2
2(α

2 − 1) + 2αβσ2 + β2 = G (3.17)
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where the definition of α and β are same as in Eqn. (3.12).

In STM1, lens position is changed during the acquisition of the two images g1 and

g2 (STM1), but the aperture diameter remains unchanged. Therefore α = m1

m2
= D1

D2
=

1, and we obtain:

σ2 =
G

2β
− β

2
(3.18)

In STM2, only the diameter of camera aperture is changed in the image acquisition

of two images g1 and g2. In this case we have β = 0 and α = D1

D2
. Therefore Eqn.

(3.17) reduces to:

σ2 = ±
√

G

α2 − 1
(3.19)

3.3 Binary Mask Based STM1 Algorithms

Because of camera noise, the original STM1 algorithm of Subbarao and Surya

[32, 33] uses the steps of squaring, spatial integration, and mode selection of his-

togram. This was done as the cameras used in the past were of poor quality compared

to the modern digital still cameras. With the development of improved digital cam-

eras, the traditional scheme should be revisited, and simpler schemes can be imple-

mented for DFD autofocusing. These schemes improve robustness and performance

of autofocusing. In this chapter, we concentrate on STM1, but the same techniques

can be applied to STM2.

3.3.1 SNR Mask

In previous mode selection, the histogram is built by computing σ2 at each pixel

in a 48*48 neighborhood, and then the mode of the histogram is regarded as the best

estimation of σ2. Low contrast image regions yield low image Laplacian values. Due

to camera noise and quantization, Laplacian estimates have very low SNR leading
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to large error in the estimation of σ2. Therefore, a new binary mask is introduced

to improve the robustness of the STM algorithm. The binary mask is defined by

thresholding the Laplacian values. This operation removes unreliable points with low

Signal-to-Noise Ratio (SNR). The binary mask is defined as:

M0(x, y) =


 1, |∇2g| ≥ T

0, o.w.
, (x, y) ∈ W (3.20)

where T is a threshold on the Laplacian which can be determined experimentally. An

averaging of σ2 based on the binary mask is used instead of the mode of its histogram.

The Binary Mask based STM1 With Squaring and With Integration (BM WSWI)

can be expressed as:

G = S(g1, g2)
4

U

∑
(x,y)∈W

M0(x, y)

√∫∫
[g1(x, y)− g2(x, y)]2dxdy∫∫

[∇2g(x, y)]2dxdy
(3.21)

where U =
∑∑

(x,y)∈W M0(x, y) is the weight of the binary mask. S(g1, g2) is the sign

function which is decided by the variance of two images V ar(g1) and V ar(g2).

S(g1, g2) =


 −1, V ar(g1) ≥ V ar(g2)

+1, V ar(g1) < V ar(g2)
(3.22)

3.3.2 Spatial Integration

Spatial integration reduces random noise at the cost of sacrificing spatial resolu-

tion; moreover, without thresholding, it may take some unreliable points into account.

However, integration over an image region reduces the spatial resolution of depth-map.

To understand the effect of spatial integration, a variation of Binary Mask based

STM1 With Squaring and Without Integration (BM WSOI), which does not integrate

over a small region is calculated by:

G = S(g1, g2)
4

U

∑
(x,y)∈W

M0(x, y)

√
[g1(x, y)− g2(x, y)]2

[∇2g(x, y)]2
(3.23)
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(a)Window at step 35 (b)Window at step 98 (c) Binary mask

Figure 3.2: Binary mask formation

3.3.3 Squaring Scheme

The squaring scheme was introduced in the original STM1 algorithm to reduce the

effects of camera noise. Squaring permitted integration over an image region without

canceling positive and negative values of image Laplacians during summation. How-

ever, squaring also loses the sign information. Therefore the sign function S(g1, g2)

in Eqn. (3.22) is used.

Another variation directly uses Eqn. (3.14). It is carried out without squaring and

without integration. In the Binary Mask based STM1 of Without Squaring Without

Integration (BM OSOI), the average of G is calculated based on the binary mask:

G =
4

U

∑
(x,y)∈W

M0(x, y)
[g1(x, y)− g2(x, y)]

∇2g(x, y)
(3.24)

The above algorithms are evaluated on both synthetic and real data.

3.3.4 Simulation Result

In practical experiments, there are many factors that are coupled together even in

a single recorded image, such as lens aberration, vignetting, nonlinear sensor response,

automatic gain control, and automatic white balance. In order to verify the theory
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itself and evaluate the different variations under the same conditions, a computer

simulation system Image Defocus Simulator 1 (IDS1) is implemented for generating

a series of test images. Due to advances in VLSI technology, digital still cameras

have improved in imaging capabilities compared to the video camera-image grabber

architecture of the past. The original IDS of Lu [49, 50] has been simplified and

updated to model a modern digital still camera.

A database of simulated images has been built for experiments. Images for syn-

thetic database are displayed in Fig. 3.3. Fig. 3.4 shows 9 images of sample image

”Boat” arranged in 3 rows and 3 columns. The distance of the object increased from

250 mm to 950 mm row-wise. The distance s between the lens and the image de-

tector increases column-wise from left to right. The effective focal length and the

F-Number are fixed at 19.5 mm and 2.8 respectively. In Fig. 3.4, the images are

focused somewhere along the top-left to bottom-right diagonal direction. The image

focus decreases on either side of the diagonal direction. This is consistent with the

fact that image blur should increase when either the object is moved farther or closer

from its focused position, or when the image detector is moved farther or closer from

its focused position.

To compare the performance of BM WSWI, BM WSOI and BM OSOI, The focal

length of the camera is 19.5 mm, and the F number is set to 2.8. For each algorithm,

a focusing window whose size is 144× 144 is placed at the center of the test image.

The size of the Gaussian filter and LoG filter are both 15×15 pixels. The sigma table
corresponding BM WSWI, BM WSOI and BM OSOI are shown in Fig. 3.5 (a), (b)

and (c) respectively.

The rms step errors of the three variations are compared in Fig. 3.5 (d). Compar-

ing (a) and (b), the scheme using spatial integration (BM WSWI) has higher RMS

step error than the scheme without spatial integration (BM WSOI) in the range from

270 mm to 2200 mm. The RMS step error of BM WSOI increases dramatically at
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the far field and near field.

From Fig. 3.5 (b) and (c), variations BM WSOI and BM OSOI behave similar

in RMS step error although some large step errors happen in some situations for

BM WSOI.

Another observation from Fig. 3.5 is that the RMS step error can be limited to

be low at long range by suitably selecting the step interval for image capture or by

using a third image. These will be discussed in a later section.

3.3.5 Experimental Result

Binary Mask STM algorithms described above are implemented on a compact

digital camera. The camera is controlled by a host computer (Pentium 4 2.4GHz)

from a USB port. The lens’ focus motor of the digital camera ranges in position from

step 0 to step 150; Step 0 corresponds to focusing a nearby object at a distance of

about 250 mm from the lens and Step 150 corresponds to focusing an object at a

distance of infinity.

The lens designs in current digital cameras have several focusing modes such

as Macro mode and Standard mode to improve the autofocusing performance for

different distance range. The relative position of lens elements changes when the

focusing mode switches from one to another. The relationship between the lens step

number and the reciprocal of the best-focused distance is no longer linear, and the

practical object distance vs. focus step curve needs to be measured using Depth From

Focus (DFF) technique. A double three step DFF algorithm is used to avoid local

maxima in the best focus measure searching procedure [22]. The results are shown in

Fig. 3.6. There exist two roughly linear segments, the first for Macro mode and the

second for Standard mode. The transition area is around 787 mm (31”).

To generate the sigma-step lookup tables for different variations, the defocused

41



(a) Letter (b) DrawLetter (c) CD rom

(d) Vacuum (e) Head (f) Monarch

(g) Peppers (h) Boat (i) Lena

Figure 3.3: Image database for IDS1
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(a)u=250 mm, step= 40 (b)u=250 mm, step= 80 (c) u=250 mm, step= 120

(d)u=450 mm, step= 40 (e)u=450 mm, step= 80 (f) u=450 mm, step= 120

(g)u=950 mm, step= 40 (h)u=950 mm, step= 80 (i) u=950 mm, step= 120

Figure 3.4: Sample output of IDS1 simulation system
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RMS Step error at Step 74 & 104

BM−WSWI RMS 3.5484
BM−WSOI RMS 1.7286
BM−OSOI RMS  1.5448

(c) BM OSOI (d) RMS step error for (a), (b), (c)

Figure 3.5: Sigma table and RMS step error of different STM1 algorithms (synthetic

data)
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images of a calibration object are acquired at 20 different distances. At each distance,

two defocused images are obtained with the focus step numbers 35, and 98. Then σ2

is estimated by the algorithms - BM WSWI, BM WSOI and BM OSOI. The results

are plotted in Fig. 3.7. There are common “flat” areas in the sigma-step curves that

approximately lie in the range from step 60 to step 110 for the compact digital camera.

In this area, we find that a small variation in sigma may cause a large fluctuation in

the focusing step. However the corresponding change in focusing measure or image

sharpness is not significant. This means that if we use focus step number as error

metric, large errors are expected in the step 60 to 110 interval. This is misleading

since the error in image sharpness will be small. Therefore, focus step is not the best

error metric as it overstates the error, but focus measure difference is a better measure

of performance as it corresponds to image sharpness in autofocusing. However, to be

conservative, we use the metric of lens step number with a hopeful note that the

actual defocus error will be lower.
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Figure 3.6: Step number vs. object distance

To bring out the capability of DFD algorithms, experiments are performed on
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Figure 3.7: Sigma vs. step number

eight objects that are relatively difficult to measure, as shown in Fig. 3.8. Eight

positions are randomly selected. The distance and the corresponding steps are listed

in Table 3.1. One of the test objects at those positions are shown in Fig. 3.9. The

F-number is set to 2.8, and the focal length is set to 19.5 mm. A focusing window is

located at the center of the scene. Its window size is 96×96. The Gaussian smoothing
filter and LoG filter are 9×9 pixels. The sensor nonlinear response compensation [51]
is utilized.

Measurement results and rms error for (a) BM WSWI (b) BM WSOI, and (c)

BM OSOI are plotted in Fig. 3.10 and Fig. 3.11 respectively. Comparing the schemes,

With Spatial Integration (BM WSWI) perform better than the schemes WithOut

Spatial Integration (BM WSOI and BM OSOI) at far field positions (position 8), but

sometimes they may give large errors due to unreliable points. The schemes without

squaring perform better than schemes with squaring at some positions (position 2).

This can also be observed from simulation results in the previous sections. The mean
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of RMS step error of simulation results and experimental results are summarized in

Table 3.2.

Errors at position 8 could be large as the first image processed in DFD will be

highly blurred (first image is captured at a lens position of 35 whereas the focused

step position is around 145). In this case, a third image closer to 145 should be

recorded and processed for better accuracy. Taking all factors into account such as

accuracy, computational requirements, simplicity of algorithm, resolution of depth-

map, etc., we suggest BM OSOI for use in practical applications. Even when very

low contrast objects such as those in Fig. 3.8 (g) and (h) are present, an RMS error of

about 3 steps can be expected which gives very sharp focused images in autofocusing

applications.

In this section, a new binary mask is defined based on thresholding of image

Laplacian to remove unreliable points with low Signal-to-Noise Ratio (SNR) in DFD

applications. This mask is exploited in different DFD schemes such as with/without

spatial integration and with/without squaring, and their performances are investi-

gated and evaluated both with simulation and actual experiments. Experimental

results show that the autofocusing RMS step error is roughly similar for the different

schemes. However, taking several factors such as accuracy and computational re-

sources into account suggests that the DFD scheme of without squaring and without

spatial integration (BM OSOI) is best suited for practical applications. While this

paper deals with STM1, the conclusions here should be applicable to other spatial

domain DFD methods such as STM2.
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(a) Letter (b) Head (c)DVT

(d) Resolution chart (e) Ogata chart 1 (f) Ogata chart 2

(g) Ogata chart 3 (h) Ogata chart 4

Figure 3.8: Test objects for DFD evaluation

Position 1 2 3 4

Dist [mm] 325.2 473.5 626.1 782.8

Step 19.00 55.00 96.50 120.50

Position 5 6 7 8

Dist [mm] 913.1 1055.3 1232.6 1350.7

Step 126.00 131.25 139.00 144.75

Table 3.1: Object positions in DFD experiments
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(a) Position 1 (b) Position 2

(c) Position 3 (d) Position 4

(e) Position 5 (f) Position 6

(g) Position 7 (h) Position 8

Figure 3.9: Test object at different positions
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(c) BM OSOI

Figure 3.10: Measurement results for different STM1 algorithms (real data)
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Figure 3.11: RMS step error for different STM1 algorithms (real data)

Mean RMS Step Error

Algorithm Simulation Results Experimental Results

Step % Step %

BM WSWI 3.55 2.37 3.50 2.33

BM WSOI 1.73 1.15 2.94 1.96

BM OSOI 1.54 1.03 2.64 1.76

Table 3.2: DFD performance summary
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3.4 Measuring Range Extension

3.4.1 Optimal Step Interval

Direct approach to extend the measuring range, as mentioned in the previous sec-

tion, is to find the optimal defocus positions for image acquisition to minimize the

full range step error without adding a third image. From Eqn. (3.16), the essentially

STM1 based DFD is a differentiation algorithm. If the two positions of image acqui-

sition are too close, then the images will be too similar, which means the difference

signal g1 − g2 is close to noise level. As a result, the error in lens step measurement

could be large. If the two positions are very far apart, then one of the image may be

blurred too much. This reduces the contrast too much and again the lens step error

will be large. The essence of optimal interval problem is to find the best tradeoff

under these constraints.

In this section, Binary Mask based STM1 Without Squaring Without Integration

(BM OSOI) is selected as an example for different step interval, however the other

algorithms are also suitable for the step optimization.

Due to the complexity of theoretical analysis, a simulation for ideal imaging system

is conducted on the synthesized database obtained using the IDS1 simulation system.

In the 1/u, two positions that trisect the 1/u range can be used as an initial estimate

of optimal positions for image acquisition. These are steps 76 and 102. A series of

trials by increasing or decreasing the step interval are carried out. The results are

shown in Fig. 3.12. Sigma table for different step interval are plotted in (a). The

slope of the sigma curve decreases with increase in the step interval. The change of

RMS step error with multiple step intervals are shown in (b). An overall measure –

mean of RMS step error – is shown in (c). We see that the RMS step error tends to

decease first, after reaching the minimum RMS step error of 1.3 steps at interval 76
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and 102, and later increases, as the step interval reduces from 37 steps to 26 steps

and 26 steps to 4 steps. We can also fix one lens step at 76, then change another

lens step from 83 to 117, a similar optimization curve can be observed, as shown in

Fig. 3.13.

In actual experiments with real data, the same test objects are used. Step 35

is selected as the base defocused step, and step 45, 55, 65, 88, 98, 108 and 118

are selected as other defocused steps respectively. The RMS step error for different

objects at six positions are plotted in Fig. 3.14(a). An overall measure – mean of

RMS step error – is shown in Fig. 3.14(b). When the defocused image sensor planes

are too close, the RMS step error is relatively high. The mean RMS step error is 18.1

steps for defocused steps 35 and 45. If the step interval increases, the mean RMS step

error drops to 2.6 step for the defocused step pair 35 and 98. When the step interval

is increased further, the mean RMS step error increases to 3.3 steps.

3.4.2 Three-Image STM Scheme

In previous sections, various STM algorithms were discussed. The RMS step error

distribution is not uniform in the measurement range in both simulation and actual

experiments. Some algorithms, as shown in Fig. 3.5(d) and Fig. 3.11, suffer from the

increase of RMS step error at the near field and the far field. The distribution and

magnitude of RMS step error vary. The scheme with spatial integration BM WSWI

results in a relatively flat RMS step error distribution at the cost of poor performance

for high-contrast objects. Thus a relatively high step error may occur when a high-

contrast object is involved. For 3D shape measurement application, the error could

be controlled by placing the object to be measured in the area with low RMS step

error. In autofocusing application, a flat step error distribution is desirable for the

whole distance range.
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Figure 3.12: Comparisons at different intervals (synthetic data) (1)
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Figure 3.13: Comparisons at different intervals (synthetic data) (2)

55



1 2 3 4 5 6 7 8
0

5

10

15

20

25

30

35

Position

R
M

S
 S

te
p
 E

rr
o
r 

[S
te

p
]

RMS Step Error: Different Step Interval

Step 35 118
Step 35 108
Step   35 98 
Step   35 88 
Step   35 65 
Step   35 55 
Step   35 45 

2

4

6

8

10

12

14

16

18

20

35&118 35&108 35&98 35&88 35&65 35&55 35&45

Defoucsed Steps

R
M

S
 S

te
p
 E

rr
o
r 

[s
te

p
]

RMS Step Error Mean: Different Step Interval

35&118 RMS 3.3061
35&108 RMS 3.2353
35&98   RMS 2.6413 
35&88   RMS 3.8010 
35&65   RMS 6.7242 
35&55   RMS 13.1080
35&45   RMS 18.1285

(a) RMS step error (b) Mean RMS step error

Figure 3.14: Comparisons at different intervals (real data)

In this section, a variation with three-image based STM1 is developed to extend

the measurement range without sacrificing accuracy. To evaluate the performance,

Binary Mask based STM1 without Squaring and without Integration (BM OSOI) is

extended from two image version to three image version. Other algorithms can also be

adapted. In this three-image based STM1, two images gi(x, y), i = 1, 2 are taken

by moving the sensor plane to position i. When the measured distance is far from

the camera, a third image g3(x, y) is taken after moving the lens to the step number

estimated using g1 and g2. Then the image pair g2 and g3 are used in the estimation

process.

In computer simulation, the step interval for three-image scheme is taken to be

the same as the one in two-image scheme (30 steps). The steps of image sensor plane

are 59, 89 and 119 for the three images. The RMS step error is calculated based on

the same synthesized image database shown in Fig. 3.3. Fig. 3.15 shows the step error

of three-image based STM1, the counterpart of two-image based scheme in Fig.3.5(d)
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is also plotted with it for comparison. The mean RMS step error dropped from 1.32

steps to 1.09 in the simulation.

In the real experiments, step 30, 65, 118 are selected as the steps for image ac-

quisition. The test objects are same as in Fig. 3.8. The RMS step error for real

experiment is plotted in Fig. 3.16. Compared with the previous two image based

schemes that use step numbers 35 and 98, the RMS errors are reduced at positions

3, 4 and 8, the mean RMS dropped from 2.64 to 2.19 lens step.
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Figure 3.15: RMS step error for two-image and three-image based schemes (synthetic

data)
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Figure 3.16: RMS step error for two-image and three-image based DFD (real data)

3.5 Differentiation Filters

In Eqn. (3.1), an assumption of a local cubic polynomial model is used for the

focused image. This assumption can be removed by using a smoothing and differen-

tiation filter. In this section we compare three filters that can be used for smoothing

and differentiation. They are tested on a circularly symmetric cylindrical function. In

the results, the Laplacian of the Gaussian gives the most circularly symmetric results

and therefore it is selected for use in STM. The other two filters give non-symmetric

results. Therefore, they are not selected for use. The reason for non-symmetry may

be due to the separable nature of the filters.
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3.5.1 Chebyshev Polynomial Filter

Meer and Weiss [52] have proposed a set of discrete image smoothing filters for es-

timating images and their derivatives. The polynomial fitting is implicit and it is done

by least-square error minimization. The filters are based on Chebyshev polynomials.

L0(n) = − 3 [5n2 − (3N2 + 3N − 1)]

(2N − 1)(2N + 1)(2N + 3)
(3.25)

where the support of the filter is n = −N,−(N − 1), · · · ,−1, 0, 1, · · · , N − 1, N

The filter for estimating the second order image derivatives is:

L2(n) = − 30 [3n2 − N(N + 1)]

N(N + 1)(2N − 1)(2N + 1)(2N + 3)
(3.26)

The 2D Laplacian is calculated by:

∇2f(x, y) = f(x, y)⊗ L2(x) + f(x, y)⊗ L2(y) (3.27)

where ⊗ is one dimension al convolution and L2(y) = [L2(x)]
t

3.5.2 2D Savitzky-Golay Filter

This time-domain method of smoothing is also based on least-square polynomial

fitting across a moving window within the data. The method was originally designed

to preserve the higher moments within time-domain spectral peak data.

Consider a 7× 7 patch in an image, the data can be expressed as Table 3.3. f(i)

is the pixel value, and the column vector m represents all the image data:

f = [f(0) f(1) f(2) · · · f(48)]t (3.28)

Let a third-order two-dimensional polynomial be fitted to this array:

f(i) ≈ f(xi, yj)

= a00 + a10xi + a01yj + a20x
2
i + a11xiyj + a02y

2
i

+a30x
3
i + a21x

2
i yj + a12xiy

2
j + a03y

3
i (3.29)
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xi

-3 -2 -1 0 -1 -2 -3

-3 f(0) f(1) f(2) f(3) f(4) f(5) f(6)

-2 f(7) f(8) f(9) f(10) f(11) f(12) f(13)

-1 f(14) f(15) f(16) f(17) f(18) f(19) f(20)

yi 0 f(21) f(22) f(23) f(24) f(25) f(26) f(27)

1 f(28) f(29) f(30) f(31) f(32) f(33) f(34)

2 f(35) f(36) f(37) f(38) f(39) f(40) f(41)

3 f(42) f(43) f(44) f(45) f(46) f(47) f(48)

Table 3.3: Savitzy-Golay filter

where (xi, yj) is the pixel coordinate of f(i), and the coefficient of xm
i yn

j is amn.

To compute the coefficients from the data we set up a matrix equation:

Xa = f (3.30)

where

X =




1 x0 y0 x2
0 x0y0 y2

0 x3
0 x2

0y0 x0y
2
0 y3

0

1 x1 y1 x2
1 x1y1 y2

1 x3
1 x2

1y1 x1y
2
1 y3

1

...
...

...
...

...
...

...
...

...
...

1 x48 y48 x2
48 x48y48 y2

48 x3
48 x2

48y48 x48y
2
48 y3

48




(3.31)

and a is the vector of polynomial coefficients:

a =
[

a00 a10 a01 a20 a11 a02 a30 a21 a12 a03

]t

(3.32)

Eqn. (3.30) simply reproduces the polynomial for each pixel in the image patch.

We solve for the polynomial coefficients using least-squares:

a = Cf (3.33)
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where

C =
(
X tX

)−1
X t (3.34)

C is independent of the image. Each polynomial coefficient can be calculated as the

inner product of one row of C and the column of pixel values f , then the polynomial

coefficients are computed using a linear filter on the data. Just as one can reassemble

m back into a rectangular patch of pixels, one can also assemble each row of C into

the same size rectangle to get a traditional-looking image filter.

The three filters for smoothing and differentiation are listed in Eqn. (3.34), (3.35)

and (3.36).

C00 =




−0.0476 −0.0136 0.0068 0.0136 0.0068 −0.0136 −0.0476
−0.0136 0.0204 0.0408 0.0476 0.0408 0.0204 −0.0136
0.0068 0.0408 0.0612 0.0680 0.0612 0.0408 0.0068

0.0136 0.0476 0.0680 0.0748 0.0680 0.0476 0.0136

0.0068 0.0408 0.0612 0.0680 0.0612 0.0408 0.0068

−0.0136 0.0204 0.0408 0.0476 0.0408 0.0204 −0.0136
−0.0476 −0.0136 0.0068 0.0136 0.0068 −0.0136 −0.0476




(3.35)

C20 =




0.0085 0.0085 0.0085 0.0085 0.0085 0.0085 0.0085

−0.0000 −0.0000 −0.0000 −0.0000 −0.0000 −0.0000 −0.0000
−0.0051 −0.0051 −0.0051 −0.0051 −0.0051 −0.0051 −0.0051
−0.0068 −0.0068 −0.0068 −0.0068 −0.0068 −0.0068 −0.0068
−0.0051 −0.0051 −0.0051 −0.0051 −0.0051 −0.0051 −0.0051
−0.0000 −0.0000 −0.0000 −0.0000 −0.0000 −0.0000 −0.0000
0.0085 0.0085 0.0085 0.0085 0.0085 0.0085 0.0085




(3.36)
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C02 =




0.0085 0.0000 −0.0051 −0.0068 −0.0051 0.0000 0.0085

0.0085 0.0000 −0.0051 −0.0068 −0.0051 0.0000 0.0085

0.0085 0.0000 −0.0051 −0.0068 −0.0051 0.0000 0.0085

0.0085 0.0000 −0.0051 −0.0068 −0.0051 0.0000 0.0085

0.0085 0.0000 −0.0051 −0.0068 −0.0051 0.0000 0.0085

0.0085 0.0000 −0.0051 −0.0068 −0.0051 0.0000 0.0085

0.0085 0.0000 −0.0051 −0.0068 −0.0051 0.0000 0.0085




(3.37)

Smoothing an image is carried out as follows. A two-dimensional polynomial is

conceptually fitted to the image patch surrounding each pixel, and then this polyno-

mial is evaluated at the pixel. The local coordinate system that we use for the image

patch has (x, y) = (0, 0) in the middle of the patch. Thus the smoothed value of the

pixel turns out to be merely a00, which we can compute by applying the filter C00 to

the image patch.

To compute Laplacian derivatives of the patch, the two partial derivatives of the

fitted polynomial are

∂2f(xi, yj)

∂x2
= 2a20 + 6a30xi + 2a21yj (3.38)

∂2f(xi, yj)

∂y2
= 2a02 + 2a12xi + 6a03yj (3.39)

Evaluating at (x, y) = (0, 0) the results are simply ∂2f(0,0)
∂x2 = 2a20 and

∂2f(0,0)
∂y2 =

2a02, which are computed with filters C20 and C02 above.

∇2f(x, y) = 2f(x, y)⊗ C20 + 2f(x, y)⊗ C02 (3.40)

3.5.3 2D Laplacian of Gaussian Filter

Since convolution operation is associative, we can convolve the Gaussian smooth-

ing filter with the Laplacian filter first, and then convolve this hybrid filter with the
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image to achieve the required result. Doing things this way has two advantages.

Since both the Gaussian and the Laplacian kernels are usually much smaller than the

image, this method usually requires far fewer arithmetic operations. The Laplacian

of Gaussian (LoG) kernel can be pre-calculated in advance so only one convolution

needs to be performed at run-time on the image.

The 2D LoG function centered on zero and with Gaussian standard deviation σ

has the form:

L2(x, y) =
∂2L0

∂x2
+

∂2L0

∂y2
= − 1

πσ4

[
1− x2 + y2

2σ2

]
e−

x2+y2

2σ2 (3.41)

where L0(x, y) is a Gaussian smoothing filter:

L0(x, y) =
1

2πσ2
e−

x2+y2

2σ2 (3.42)

3.5.4 Discussion of Results

In the depth estimation for arbitrary scenes, the ideal filter should be isotropic,

that is, the filter’s effect should be the same in all directions in an image context, with

no particular sensitivity or bias towards one particular set of directions. The problem

of approximating the Laplacian operator in two dimensions not only inherits the

inaccuracies of the one-dimensional finite-difference approximations, but also raises

the issue of azimuthal asymmetry. To check the performance of Chebyshev, Savitzky-

Golay, and LoG filter, a circle of radius 60 pixels is used as a test object. The

Laplacian results are computed by convolving with the above 13 × 13 filters. The

filter size is 13 × 13 pixels, as shown in Fig. 3.17. In the results, the Laplacian

of Chebyshev filter has peaks at 45˚, 135˚, 225˚ and 315˚. The symmetry of

Savitzky-Golay filter is better. However peaks are still noticeable at 0˚, 90˚, 180˚

and 270˚. In Fig. 3.17(d), the result of LoG filter is istrotropic in every direction if

the quantization noise is ignored. Therefore the LoG filter is selected as the Laplacian

filter in our STM implementation.
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(a) Original image (b) Laplacian by Chebyshev filter

(c) Laplacian by Savitzky-Golay filter (d) Laplacian by LoG filter

Figure 3.17: Laplacian filter evaluations
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3.6 Summary

In this chapter, several binary mask based Depth From Defocus (DFD) algo-

rithms are proposed to improve autofocusing performance and robustness. A binary

mask is defined by thresholding image Laplacian to remove unreliable points with low

Signal-to-Noise Ratio (SNR). Three different DFD schemes – with/without spatial in-

tegration and with/without squaring – are investigated and evaluated, both through

simulation and actual experiments. The actual experiments use a large variety of

objects including very low contrast Ogata test charts. Experimental results show

that autofocusing RMS step error is less than 2.6 lens steps, which corresponds to

1.73%. Although our discussion in this paper is mainly focused on a spatial domain

method STM1, this technique should be of general value for different approaches such

as STM2 and other spatial domain based algorithms.
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Chapter 4

Blur Equalization Technique (BET)

In this chapter, a new spatial-domain Depth-from-Defocus (DFD) technique named

Blur Equalization Technique (BET) is presented. It uses the S transform in the convo-

lution mode [41] where as it is used in the deconvolution mode in STM [32], and [33].

The theoretical basis of BET relies on equalizing the blur or defocus of two different

images recorded with different camera parameters. In contrast, comparable spatial-

domain techniques rely on equalizing the deblur or focus of the two images. Also, BET

facilitates modeling of images locally by higher order polynomials with lower series

truncation errors. These differences seem to make the new technique very stable and

accurate, even for low contrast objects with high levels of blur over a wide range of

object distances.

The accuracy of BET is further enhanced by discarding pixels with low Signal-to-

Noise ratio by thresholding image Laplacians, and relying more on the sharper one

of the two blurred images in estimating the blur parameters. These steps, combined

with careful calibration for sensor response, vignetting, and magnification correction,

makes BET a very accurate and robust technique useful in practical applications such

as depth recovery and autofocusing.
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Its performance is compared with three highly effective and significantly improved

versions of STM1 [34, 51]. BET is found to be superior to some of the best comparable

DFD techniques in a large number of both simulation and actual experiments. Actual

experiments used a large variety of objects including very low contrast digital camera

test charts located at many different distances. In autofocusing experiments, BET

gave an RMS error of just 1.2% in lens position compared to 1.8 %, 2.0 %, and to 2.3 %

respectively for three other highly effective methods. This error of 1.2 % is very close

to the best possible accuracy of about 1.0 % due to the inherent quantization errors

in lens positioning (about 0.5 %), spatial resolution (1 pixel), grey-level resolution (8

bits/pixel), and noise.

For comparison, Binary Masked High Order STM (BM HIGHORD) is presented

as a counterpart. The only difference between BET and BM HIGHORD is that BET

uses the blur equalization, and BM HIGHORD utilizes the image equalization. The

experiment result shows the effectiveness of new blur equalization technique.

4.1 Blur Equalization Technique

4.1.1 Blur Equalization

In previous research, image equalization, i.e., equalizing the focus of the two images

has been utilized in both spatial and frequency domain DFD. Ens and Lawrence [29]

find a convolution filter h3 that makes the filtered first image equal to the second

image, this is image equalization in the frequency domain. In the spatial domain,

equalizing the focus images is used in STM [32], and [33]. A commutative image

equalization can be found in [53] and [54, 55].

In STM, the spatial-domain deconvolution equation f = gi − σ2
i

4
∇2gi is used to

eliminate the focused image term to obtain the blur parameter. This is equivalent
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to deblurring the two defocused images g1 and g2 and equating the resulting focused

image f . This operation may be termed deblur or focus equalization. Since this

deconvolution amplifies high-frequency content, it may reduce the Signal-to-Noise

Ratio (SNR). This operation, when combined with the cubic-model restriction for f

as in f(x, y) =
3∑

m=0

3−m∑
n=0

amnx
myn requires that ∇2g1 = ∇2g2. However, in practical

applications, when the Laplacians are computed for the two images, they are almost

never equal, and sometimes significantly different from each other. Using higher order

terms with higher image derivatives may reduce SNR. Therefore, unnecessary errors

are introduced in depth recovery, particularly when the object contrast is too low or

too high.

BET is an alternative to STM. In BET, in contrast with STM, we use blur or

defocus equalization by convolving the two defocused images with suitable PSFs that

correspond to attenuating high-frequency content which improves SNR. Remarkably,

this removes the requirement of ∇2g1 = ∇2g2. Following the previous notation, two

defocused images gi(x, y), i = 1, 2 can be expressed as:

gi(x, y) = f(x, y)⊗ hi(x, y) i = 1, 2 (4.1)

where hi(x, y) is the PSF of corresponding defocused image at position i. We have

g1(x, y)⊗ h2(x, y) = [f(x, y)⊗ h1(x, y)]⊗ h2(x, y) (4.2)

g2(x, y)⊗ h1(x, y) = [f(x, y)⊗ h2(x, y)]⊗ h1(x, y) (4.3)

From the commutative and associative property of convolution, the right side of

Eqn. (4.2) equals the right side Eqn. (4.3), that is:

g1(x, y)⊗ h2(x, y) = g2(x, y)⊗ h1(x, y) (4.4)
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Using Forward S Transform for convolution:

g1(x, y)⊗ h2(x, y) = g1(x, y) +
σ2

2

4
∇2g1(x, y)

+
σ4

2

24
(∇2)2g1(x, y) +R(O6) (4.5)

g2(x, y)⊗ h1(x, y) = g2(x, y) +
σ2

1

4
∇2g2(x, y)

+
σ4

1

24
(∇2)2g2(x, y) +R(O6) (4.6)

Combining Eqn. (4.4), (4.5) and (4.6), and ignoring the higher order terms

R(O4, O6), we have:

g1(x, y) +
σ2

2

4
∇2g1(x, y) = g2(x, y) +

σ2
1

4
∇2g2(x, y) (4.7)

In deriving the above equation, the approximation may be much less than it

appears to be, because we are only neglecting the difference of fourth and higher order

terms between the left and the right sides of the equation. We are not neglecting the

terms on only one side, or separately on the two sides. Experimental results support

this observation.

Using σi = miu
−1 + ci, i = 1, 2 we get:

a1σ
2
1 + b1σ1 + c1 = 0 (4.8)

where the coefficients are defined as:

a1 =
∇2g2

∇2g1
− 1 (4.9)

b1 = 2β (4.10)

c1 = −
[
4(g1 − g2)

∇2g1

+ β2

]
(4.11)
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4.1.2 SNR Based Thresholding

Signal-to-Noise Ratio (SNR) of an image is affected by several factors such as

object contrast, sensor noise, sampling rate, and quantization error. We found that

image Laplacians have very low SNR leading to large errors in the estimation of

σ2. Therefore, thresholding on the Laplacian values is introduced to improve the

robustness. This operation removes unreliable points with low SNR. Laplacian Mask

M0(x, y) is formed by:

M0(x, y) =


 1 ∇2g2 ≥ T

0 otherwise
(4.12)

A Delta Mask M1(x, y) is also used here to guarantees the real property of the

solution.

M1(x, y) =


 1 
1 ≥ 0

0 otherwise
(4.13)

where 
1 = b2
1 − 4a1c1.

The final binary mask Mf1(x, y) is obtained from the BIT-AND operation:

Mf1(x, y) = M0(x, y)&M1(x, y) (4.14)

The computation of σ1 is guided by Mf1(x, y), as shown in Fig. 4.1(d). The best

estimation of σ1 is considered as the average based on Mf1(x, y).

4.1.3 Image Switching Based on Sharpness Measure

Another quadratic equation in σ2 can be derived as:

a2σ
2
2 + b2σ2 + c2 = 0 (4.15)

and the coefficients are:

a2 = 1− ∇2g1

∇2g2
(4.16)
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(a) Blurred window at step 35 (b) Laplacian mask

(c) Delta mask (d) Final mask

Figure 4.1: Binary masks
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where

b2 = 2β (4.17)

c2 = −
[
4(g1 − g2)

∇2g2

+ β2

]
(4.18)

and similarly the binary mask Mf2(x, y) can be formed.

Mathematically, Eqn. (4.8)-(4.11) and Eqn. (4.15)-(4.18) are identical. However,

computationally we find that the two equations have different noise sensitivity, per-

haps due to noisy image Laplacians appearing in the denominator in the equations.

It seems that solving for the blur parameter of the sharper or more focused image

gives more accurate results. In this case, the absolute value of the image Laplacians

appearing in the denominators will be larger than otherwise. A simple focus or sharp-

ness measure is computed for the two images. We define the Sum of Laplacian in the

Focusing Window (SLFW) Li =
∑

x

∑
y |∇2gi(x, y)|, i = 1, 2 as the sharpness mea-

sure. The sharper images will have a smaller blur parameter σ. Now the equation to

be solved is determined as follows:


a1σ
2
1 + b1σ1 + c1 = 0, L1 ≥ L2

σ2 = σ1 + β

a2σ
2
2 + b2σ2 + c2 = 0 L1 < L2

(4.19)

A computer simulation is conducted using a high contrast object “Letter”. the

reliability measure SLFW is plotted in Fig. 4.2, and the corresponding switching

scheme is displayed in Fig. 4.3. In Fig. 4.3, “+” curve is calculated from Eqn. (4.8)-

(4.11), and “*” curve is obtained by Eqn. (4.15)-(4.18).

4.1.4 Experimental Results

BET algorithm described above was implemented on a compact digital camera.

The flowchart of the algorithm is shown in Fig. 4.4.
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The performance of DFD algorithms are evaluated with real experiments using

eight different objects shown in Chapter 3. Some of them are standard camera test

charts used in evaluating the autofocusing performance of new digital camera models

by industry. The last two objects are of very low contrast that are very difficult to

autofocus. Each object was placed at eight different distances in the range of 325 mm

to 1350 mm at roughly 150 mm intervals. The distance and the corresponding steps

are listed as before. The steps were obtained using the DFF algorithm. The F-number

was set to 2.8, and the focal length was set to 19.5 mm. The focusing window size

was 96×96 located at the center of the scene. At the begining, a Gaussian smoothing
filter with a sigma parameter of 1.8 pixels and size 9× 9 was used to smooth images.
The image Laplacians were also computed using the corresponding LOG filter of size

9 × 9. The image Laplacians were thresholded to weed out low contrast pixels with

low SNR. The non-linear sensor response was calibrated and corrected as described

in [51]. One value of depth or blur parameter sigma was estimated in each pixel. The

estimates were averaged in the 96× 96 window.

Measurement results and RMS error for BET are plotted in Fig. 4.6 and Fig. 4.7

respectively. In order to compare BET’s performance with some of the best existing

DFD techniques, three substantially improved variations of STM (see [34] for details)

were tested in the same set of experiments. These variations use “deblur” equalization

as opposed to “blur” equalization as explained earlier. The results for BET and the

three variations of STM are plotted together in Fig. 4.7. The RMS step error for

BET is 1.8 lens steps, which corresponding 1.2% of step range. This error of 1.8 steps

may be close to the best achieveable as the step quantization error itself is 0.5 steps,

and addtional error is expected due to sampling, grey level quantization, and image

noise. BET is better than the other STM methods which have rms errors of 2.6, 2.9,

and 3.5 step errors. BET has a particularly better performance at far field such as

positions 6, 7 and 8 when one of the image will be highly blurred. Therefore, since
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the computational requirement of BET and other STM methods are the same, BET

is recommended for practical applications.

The maximum RMS step error of BET occurs at position 3. As Fig. 4.5 shows,

position 3 is located in ”flat” areas in the sigma-step curves that approximately lie

in the range from step 60 to step 110 for the compact digital camera. In this area,

we find that a small variation in sigma may cause a large fluctuation in the focusing

step. However the corresponding change in focus or image sharpness measure is

not significant. In this sense, BET’s performance is somewhat better than what is

indicated by the rms error in lens step position. BET was also tested and compared

in extensive camera simulation experiments. The results and conclusions were similar

to actual experiments reported here.
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4.2 Counterpart: Image Equalization

∇2g1 = ∇2g2 is valid only under the third order polynomial assumption. However,

for arbitrary scenes, the output from low pass filter may be higher than the third order

polynomial. Thus ∇2g1 �= ∇2g2 is common in real applications.

In order to relax the assumption, a new algorithm named Binary Mask based

STM1 by High Order (unequal Laplacian approximation) (BM HIGHORD) is imple-

mented.

Substituting Eqn.(3.11) into Eqn. (3.14), a quadratic equation is obtained:

a3σ
2
1 + b3σ1 + c3 = 0 (4.20)

where

a3 =
∇2g1

∇2g2

− 1 (4.21)

b3 = 2β (4.22)

c3 = −
[
4(g1 − g2)

∇2g2

+ β2

]
(4.23)

and σ1 can be calculated by solving Eqn. (4.20).

Another quadratic equation about σ2 can also be derived from Eqn. (3.11) and

(3.14), and the binary mask Mf2(x, y)is formed similarly as Eqn. (4.12)-(4.14).

a4σ
2
2 + b4σ2 + c4 = 0 (4.24)

where

a4 = 1− ∇2g2

∇2g1
(4.25)

b4 = 2β (4.26)

c4 = −
[
4(g1 − g2)

∇2g1
− β2

]
(4.27)
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The switching mechanism is formulated as:


a3σ
2
1 + b3σ1 + c3 = 0, L1 ≥ L2

σ2 = σ1 + β

a4σ
2
2 + b4σ2 + c4 = 0, L1 < L2

(4.28)

Binary Mask based STM1 by High Order Equation (BM HIGHORD) has been

tested on the same image database mentioned in Section 4.1. The same configuration

as described in previous section is adopted for experiments. The size of acquired

defocused images is 640× 480 pixels. The size of focusing window is 96× 96 pixels,

and the size of Laplacian filter and LoG filter are 9 × 9 pixels. The same series of

test objects as shown in Fig.3.8 are used. The object distance is same as listed in

Table 4.1. Fig. 4.8(a) is the sigma-step table, (b) shows the measurement result

for test objects, and the RMS step error is plotted in (c). Compared with BET

algorithm, the accuracy express of RMS step error is similar at Position 2, 3, 4 and

5; when the object to be measured is far away from camera (Position 6, 7 and 8), the

RMS step error increases dramatically; when the object is located in the near field, a

higher RMS step error is observed. The mean RMS step error of BM HIGHORD is

4.58 lens steps which corresponding to 3.05% of whole range. While the mean RMS

step error for BET is 1.83 lens steps (1.22%). The only difference between BET and

BM HIGHORD is the blur equalization and the image equalization. This comparison

experiment shows the effectiveness of the new blur equalization technique.

It should be mentioned that, a solution from fourth-order equation in Eqn. (3.13)

and (3.14) have been attempted. But the measurement result is too sensitive to noise,

and the computation is intensive.
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4.3 Summary

A new depth-from-defocus technique named Blur Equalization Technique is pre-

sented. It is a spatial-domain technique that can provide dense depth estimates using

modest local computations in small image windows (e.g. 9 × 9). The theoretical basis

of BET is different from other Depth-from-Defocus techniques. The computational

algorithm is relatively simple. In both simulation and actual experiments, BET has

been demonstrated to perform better than some of the best existing techniques, on

many objects at different distances, including some standard test objects and very low

contrast objects. The accuracy and robustness of BET seems to be close to the best

possible. As a counterpart, BM HIGHORD is also implemented for comparison.The

only difference between BET and BM HIGHORD is the blur equalization and the

image equalization. The experiment result shows the effectiveness of new blur equal-

ization technique. Therefore, it is recommended for use in practical applications.

While the BET presented here uses the Spatial domain convolution/deconvolution

transform, the basic idea of “blur equalization” can be extended to Fourier domain

and other DFD techniques found in the current literature.
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Chapter 5

DFD Compensation and Calibration

Many factors affect the performance of DFD algorithms. In particular, nonlinear

sensor response, lens vignetting, and magnification variation affect the accuracy of

DFD. In order to implement DFD on off-the-shelf commercial digital cameras, these

factors need to be calibrated and corrected. In this chapter, we present new calibration

methods for these three factors. Their correctness and effects on performance of DFD

have been evaluated with experiments.

Most digital cameras utilize the nonlinear sensor response to extend the dynamic

gray-level range through a log-like or gamma transform. DFD theory requires inverse

mapping of this non-linear response to linear response through calibration. The in-

tensity measured by the image sensor depends on illumination, exposure period, and

reflectance. A method is proposed and tested for correcting this non-linear sensor

response.

Optical vignetting is the phenomenon where the effective light energy transmitted

by the optical system decreases with increasing inclination of light rays with respect

to the optical axis. A vignetting calibration method is implemented and tested for

its effects on DFD performance.
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In DFD based autofocusing where the lens position is moved, the magnification of

an object will change when two images are recorded with different camera parameters.

A magnification calibration method is implemented and the estimation error has been

evaluated.

The calibration methods for nonlinear response and vignetting correction are di-

rect methods based on illumination measurement using a digital lux tester. They do

not need expensive and strictly controlled laboratory environment and can be used

for off-the-shelf cameras. Therefore, these calibration methods should be of general

value to other image based algorithms.

5.1 Nonlinear Sensor Response Compensation

The formation of a digital image on the image sensor of a camera can be described

by:

g(x, y) =

τ∫
0

+∞∫
0

qs(x, y, λ, t) s(λ) dλ dt (5.1)

where g(x, y) is the photo-quantity of the specific sensor element (x, y); qs(x, y, λ, t) is

the actual light energy falling on the image sensor (x, y); s(λ) is the spectral sensitivity

of an element of the sensor. τ denotes the integration period, which is controlled by

exposure time of the camera. From this equation, photo-quantity g(x, y) is neither

a radiometric nor a photometric unit, since it is also related to the sensor spectral

sensitivity s(λ). For a specific camera system, the photo-quality depends on the light

energy falling on the sensor cell per unit time, and camera exposure time.

Once the parameters of DFD (s1, s2, f , D for STM1) are fixed, the measurement

from DFD algorithms should only be related to object distance, and should not be

affected by other changes such as illumination and camera exposure. However, most

digital cameras utilize the nonlinear sensor response to extend the dynamic gray-level
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range through transforms (e.g. log(z)).

5.1.1 Error Analysis of Non-linear Sensor Response

The nonlinear sensor response is a point-wise mapping, which can be formulated

by a function K:

g′(x, y) = K [g(x, y)] (5.2)

where g′(x, y) is the distorted intensity after point-wise sensor response mapping, and

g(x, y) is the original photo-quantity formed as in Eqn. (5.1).

If digital images are quantized to n bits, the point-wise sensor mapping can be

expressed by the transform vector k without sacrificing generality:

K(i) = kiI + b (5.3)

where b is the dark offset, I is the original photo-quantity vector, and ki is the i th

coefficient to map from level i in the original photo-quantity g to distorted intensity

g′.

I = [0 1 · · · 2n − 1]t (5.4)

k = [k0 k1 · · · k2n−1] (5.5)

For a linear mapping, the components in the coefficient vector for each level should

be the same, i.e. ki = kj = k; while for a nonlinear mapping, ki �= kj is valid for some

level i, j. DFD theory is based on a linear brightness mapping when a focused image

is blurred by a convolution process.

The linearization of brightness can be obtained by inverse mapping of sensor

response K−1.

g0 = K−1 [g′] = K−1 [K(g)] = g (5.6)
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5.1.2 Direct Calibration

Sensor response calibration is needed to compensate for its non-linearity. There

are several approaches to measure the sensor response, through statistical averaging

on the whole image for arbitrary scenes, such as [56] and [57]. However averaging on

the image plane includes the effect of vignetting, which will be discussed in Section

5.2. The resulting response is a weighted average of on-axis points and off-axis points,

and the weight depends on scene content.

A direct measurement method is presented here to calibrate the nonlinear response

for off-the-shelf cameras. The setup of the nonlinear sensor response calibration is

briefly outlined in Fig. 5.1. A diffusive white screen WS is illuminated by multiple

light sources from L1 to L4. The light sources are controlled from the linear lamp

controller module LC to create variable/adjustable illumination. The intensity at the

central area of the white screen is measured by a Digital Lux Tester YF-1065. The

image of the white screen is acquired by a digital camera to be calibrated. A lookup

table is established by changing the illumination incrementally while recording the

image at each illumination step. The relationship between camera gray-levels and

normalized illumination gray-levels is shown in Fig. 5.2. Mean brightness in a 10 ×
10 image region is used for reducing noise in the central area of the white screen.

To evaluate the effect of nonlinear sensor response, a series of DFD experiments

were conducted under different photo-quantity conditions. The ambient illumination

is 253 lux measured at the center of an object plane, and the distance from the front

surface of lens to the object plane is 540 mm. According to Eqn. (5.1), the photo-

quantity can be changed by either illumination level or camera shutter speed. We

control the shutter speed to obtain a wider range on photo-quantity. The shutter

speed changes from 15.625 ms to 500 ms, which correspond to a change factor of 32

in photo-quantity, as displayed in Fig. 5.3. In Fig. 5.3, Images range from under-
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exposed as in (a), (b), to over-exposed as in (e), (f) . The photo-quantity is doubled

at each stage from (a) to (f), however the gray level of observed image does not

increase correspondingly due to camera range compression. From (a) to (f), images

are captured with exposure time of 15.625, 31.25, 62.5, 125, 250 and 500 ms. Assume

the photo-quantity in (a) as a unit measure, the photo-quantity doubles in each stage

from (a) to (f).

About 384 DFD experiments were conducted at 8 different random positions and

6 different exposure levels. The 8 randomly selected positions are 325.1, 383.1, 474.1,

538.6, 630.0, 784.2, 1058.4 and 1353.6 mm respectively, which are measured from the

front surface of the lens. The corresponding lens steps are obtained from Depth From

Focus (DFF) experiments, and they are 25, 38, 58, 74, 101, 122, 131 and 145 lens

step respectively.

As shown in Fig. 5.4, “woNL” means DFD STM1 without Non-Linear sensor re-

sponse compensation; “wNL” stands for DFD STM1 with Non-Linear sensor response

compensation; and “DFF” means result from Depth-from-Focus. STM1 without sen-

sor response compensation has a mean error of up to 14 lens steps (Distance 630.0

mm, Shutter Speed 15.625 ms), while the corresponding RMS lens step error is 0.354

step. After nonlinear sensor response compensation, at the same photo-quantity, the

mean lens step error is reduced to 1.667 step, and all 8 DFD measurements get exactly

the same step number, since RMS lens step error is 0. The mean and max of the mean

lens step errors are plotted in Fig. 5.5 (a) and (b) respectively. The detailed results

of DFD without/with nonlinear sensor response compensation are listed in Table 5.1

and 5.2. Table 5.1 shows the mean and RMS lens step error before nonlinear sensor

response compensation, while Table 5.1 shows errors after sensor response calibration.

When the photo-quantity continues to increase from (e) to (f), step shifts in far

field for both DFF and DFD can be observed. In the image (f), the sensor is already

saturated, and the observed image is no longer a correct measure of photo-quantity.
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In this extreme condition, the error of DFD with sensor compensation (−4.431±0.236
step) is still better than the one without compensation (−8.667± 0.535 step).

Figure 5.1: Setup for nonlinear sensor response calibration

5.2 Lens Vignetting Compensation

Optical vignetting is the phenomenon wherein the effective light energy trans-

mitted by the optical system decreases with increasing inclination of light rays with

respect to the optical axis.

The consequence of optical vignetting for a focused scene is merely a reduced

brightness towards the image corners. However, optical vignetting can also have a

pronounced effect on out-of-focus parts of the image. Because the shape of an Out-

Of-Focus Highlight (OOFH) mimics the shape of the clear aperture, this leads to the

so-called cat’s eye effect. With an increasing distance from the optical axis the shape
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Exposure 1 Exposure 2 Exposure 3 Exposure 4 Exposure 5 Exposure 6

Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

Pos 1 6.833 0.000 4.583 0.463 3.083 0.463 0.833 0.000 -0.042 0.354 -1.542 0.518

Pos 2 6.167 0.000 4.917 0.463 3.167 0.000 0.167 0.000 -1.333 0.535 -4.208 0.518

Pos 3 -0.417 0.463 -0.167 0.000 -0.167 0.000 0.333 0.535 0.708 0.354 -2.042 0.354

Pos 4 -7.167 0.000 -6.042 0.354 -3.167 0.000 0.458 0.518 2.333 0.535 1.208 0.518

Pos 5 -14.125 0.354 -12.250 0.707 -6.875 0.641 -0.750 0.463 1.750 0.463 3.250 0.707

Pos 6 -4.625 0.991 -3.750 0.463 -4.125 0.518 -3.250 0.463 -3.250 0.463 -1.500 0.535

Pos 7 -0.583 0.463 -0.583 0.463 -0.708 0.354 0.292 0.354 0.417 0.463 -1.833 0.000

Pos 8 -4.292 0.835 -2.292 0.991 -0.542 1.061 -0.042 0.991 0.458 0.744 -8.667 0.535

Table 5.1: DFD lens step error by mean and RMS before nonlinear sensor compen-

sation

Exposure 1 Exposure 2 Exposure 3 Exposure 4 Exposure 5 Exposure 6

Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

Pos 1 -0.347 0.236 -1.139 0.309 0.611 0.000 -0.056 0.000 -0.347 0.236 0.278 0.000

Pos 2 -0.528 0.309 -1.278 0.000 0.056 0.000 -0.153 0.345 -0.278 0.000 -0.861 0.309

Pos 3 -0.139 0.309 0.236 0.236 -0.056 0.000 -0.056 0.000 0.111 0.356 -0.639 0.309

Pos 4 1.194 0.309 2.986 0.236 -0.056 0.000 0.694 0.309 1.528 0.309 -0.181 0.345

Pos 5 1.667 0.000 3.292 0.236 -0.500 0.356 1.250 0.309 1.250 0.309 0.292 0.427

Pos 6 0.083 0.309 0.375 0.345 0.083 0.309 0.167 0.000 -0.125 0.236 -0.958 0.345

Pos 7 -0.611 0.000 -0.569 0.236 -0.611 0.000 -0.319 0.236 -0.611 0.000 -1.611 0.000

Pos 8 -2.472 0.992 -1.306 0.690 -0.514 0.496 -0.347 0.661 -0.556 0.356 -4.431 0.236

Table 5.2: DFD lens step error by mean and RMS after nonlinear sensor compensation
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of the OOFH progressively narrows and starts to resemble a cat’s eye. The larger the

distance from the image center, the narrower the cat’s eye becomes.

A vignetting calibration method is used to evaluate the effect of vignetting on

DFD measurement. If a uniform illumination is available, the vignetting coefficient

could be simply calculated from a single image of a diffusive white screen. However it

is difficult to obtain a uniform illumination that is accurate, although not impossible.

An alternative way is used in our calibration. The setup for vignetting calibration

was similar to that in Fig. 5.1. A 5 × 5 grid pattern is used as a calibration pattern

(see Fig. 5.6(a) ). In each grid, illumination is measured by the Digital Lux Tester

YF-1065 at the center of grids, and the image of the grid pattern is captured by

the camera. The gray level obtained is a transformed value of real photo-quantity

due to the nonlinearity of sensor response. A lookup table for the reverse mapping

discussed in Section 3 is used. The vignetting coefficient is calculated by the ratio of

illumination intensity at pixel (x, y) to the intensity at the center of the image. Due

to the rotational symmetry property, the relation between vignetting coefficient and

pixel distance in polar coordinate is obtained from a third-order polynomial fitting:

V (ρ) = −3.1064× 10−9ρ3 + 3.2488× 10−7ρ2 − 6.7845× 10−5ρ+ 1 (5.7)

The result of vignetting factor vs. pixel distance is shown in Fig. 5.6(b). From

Fig. 5.6(b), if the DFD AF window is in the center area, the distortion of vignetting

can be ignored. (for a 96 × 96 focusing window, the intensity attenuation is 0.24%).

When the focusing window is near a corner of the view, there could be a 12.1%

difference in the diagonal direction. In this case, vignetting should be compensated

by multiplying the reciprocal of the corresponding vignetting coefficient.
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Figure 5.6: Vignetting calibration

5.3 Magnification Calibration

In STM1, when the object to be focused is fixed, there is a magnification change

between defocused images acquired at two different lens steps. A magnification cali-

bration method is developed to determine this variation.

A chessboard pattern whose grid size is 15 mm by 15 mm, is captured by the

camera at focus steps 35 and 98, and the corner points are detected as shown in

Fig. 5.7. The distance between the camera and the chessboard pattern is 500 mm,

which corresponds to the focused image approximately at step 62. For convenience,

we define the defocused image at step 35 as image 1, and the one at step 98 as image

2. The transformation between image 1 and image 2 can be calculated through a

projection matrix.

The corners on image 1 and image 2 are detected and sorted row by row into

two corner arrays respectively. Corners on the same position of array make a corre-

sponding corner pair. There are 11 × 8 corner pairs as shown in Fig. 5.7(a) and
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(b).

For each corresponding corner pair, the coordinates of the corners can be expressed

as:

Vi = MUi i ∈ N (5.8)

where Ui and Vi are coordinates of corner pairs in image 1 and image 2 respectively.

These coordinates are expressed in projective space, i.e. Ui = [x1,i y1,i 1]t, and

Vi = [x2,i y2,i 1]t. N is the total number of corresponding pairs. M is a 3 × 3

transformation matrix. Since we have no prior knowledge about the transformation,

there are 9 unknown elements in M .

For Npairs of corner pairs, a least-square matrix can be obtained:

AM ′ = b (5.9)

where A is a 3N × 9 matrix, and b is a 3N column vector that is made from lapping

over Vi, i = 1, · · · , N .

A =




x1,1 y1,1 1 0 0 0 0 0 0

0 0 0 x1,1 y1,1 1 0 0 0

0 0 0 0 0 0 x1,1 y1,1 1

: : : : : : : : :

x1,N y1,N 1 0 0 0 0 0 0

0 0 0 x1,N y1,N 1 0 0 0

0 0 0 0 0 0 x1,N y1,N 1




(5.10)

b =
[

x2,1 y2,1 1 · · · x2,N y2,N 1
]t

(5.11)

and M ′ is reorganized from M :

M ′ =
[

m11 m12 m13 m21 m22 m23 m31 m32 m33

]t

(5.12)

93



Then the transform matrix M can be calculated by:

M ′ = (AtA)−1Atb (5.13)

The transformation matrix M between image 1 and image 2 is calculated and

reformed from Eqn. (5.13):

M =



1.0083 0 −2.6526
0 1.0082 −2.0510
0 0 1


 (5.14)

Using this matrix M to project image 1 to image 2, the projection error for each

corner is plotted in Fig. 5.8. The projection error can be expressed by mean and RMS

pixel error (-2.283e-013±0.061, -1.389e-014±0.050), and the maxim error is less than

0.2 pixel both in x and y direction. This is an acceptable error as the sampling interval

is quantized to 1 pixel. The new image can be generated by a bicubic interpolation

of image 1.
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Figure 5.7: Magnification calibration using pattern captured at different steps
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In this chapter, calibration methods and procedures for nonlinear sensor response,

optical vignetting, and magnification variation are presented. The correctness and

effects on the performance of DFD have been evaluated with experiments. These

calibrations do not need expensive and strictly controlled laboratory environment.

They can be used for off-the-shelf cameras. Therefore, these calibration methods

should be of general value to other image based algorithms.
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Chapter 6

Performance of STM DFD Algorithm for Different

Sensor Sub-sampling Schemes

6.1 Draft Modes for Depth-from-Defocus

Digital cameras use CCD or CMOS image sensors. CCD image sensors are used in

digital compact and SLR cameras. In the case of CCD sensors, the sensed images are

often subsampled for LCD display, autofocusing, gain control, white balancing, etc.

Sub-sampling becomes necessary due to the limited bandwidth of the sensor readout

circuitry. The full resolution capture rate is about 15-20 frames/sec. Sub-sampled

draft mode readout is higher at 30-60 frames/sec. Since a fast autofocusing response is

needed, particularly in tracking autofocusing of moving objects, it becomes necessary

to use sub-sampled images for DFD. Evaluating the performance of DFD technique for

various sub-sampling schemes found in digital cameras is of much interest to camera

manufacturers.

The typical implementation for draft mode readout are line skipping and pixel

mixture [58, 59, 60]. The line skipping mode sends one line over the neighbor n lines

to the readout register. The number n usually adopts odd numbers such as 3, 5
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or 7 to guarantee the continuation of Bayer pattern in the sub-sampling set. The

pixel mixture mode mixes n neighboring pixels in the same color plane. The scene

information is compressed to 1/n, and the corresponding readout time can be save to

1/n. The line direction could be either row or column direction, which is decided by

the structure of image sensors.

Often subsampling is done at non-uniform pixel spacing. In such cases, an in-

terpolation scheme is used to resample at uniform intervals. Experimental results

show that typical subsampling schemes do not result in any significant degradation of

performance. The BET and BM-OSOI techniques both give acceptable autofocusing

RMS errors of 12 steps and 14 steps respectively out of a maximum of 1500 lens

position steps.

In this section, seven different sets of draft readout modes were considered and

compared for DFD performance. The different draft readout modes are named S1

and S2 for 1/7 sampling rate, S3 to S5 for 2/7 sampling rate, M4 (4 × 4) and M7

(7× 7) for pixel mixture sampling . The details of implementations are summarized

in Table 6.1 and Table 6.2.

• Sampling Scheme S1

Draft Mode Vertical 1/7 Skip, Horizontal 1/7 Skip in Pixel Map(PM).

In vertical lineskipping 1/7 readout mode, one line/column is read out for each 7

consecutive lines. The sampling rate in vertical direction is not equal to the one in

horizontal direction. Non-isotropic sampling will cause directional sensitivity in DFD

autofocusing.

To obtain a uniform sampling, the simplest way is to also skip in the horizontal

direction. This draft mode sampling is suitable for CMOS imager with random access

ability. For the CCD imager, this mode does not use all the available data in the

horizontal direction. As Fig. 6.1(b), the readout forms a new Bayer pattern. Instead
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Draft

Mode

Sampling

Rate

Sampling Scheme Description

S1 1/7 (1) Vertical 1/7 Skip, Horizontal 1/7 Skip in Pixel

Map

(2) Convolution to get intensity map

S2 1/7 Vertical 1/7 Skip, Horizontal 1/7 Integration in Pixel

Map

S3 2/7 (1) Vertical 1/7 Skip in 1st Frame,

(2) Set Offset=4, Vertical shift offset, Vertical 1/7

Skip in 2nd Frame,

(3) Then change to gray level image Img1 and Img2

(4) Intersection Img1 and Img2 in horizontal

(5) Vertical uniform skip by offset 1:4:7

S4 2/7 (1) Vertical 1/7 Skip in 1st Frame,

(2) Set Offset=4, Vertical shift offset, Vertical 1/7

Skip in 2nd Frame,

(3) Horizontal 2/7 Integration using averaging and

nearest neighbor borrowing to get corresponding B

or R components

S5 2/7 (1) Vertical 1/7 Skip in 1st Frame,

(2) Set Offset=4, Vertical shift offset, Vertical 1/7

Skip in 2nd Frame,

(3) Horizontal 2/7 Integration using averaging and in-

terpolation to get corresponding B or R components

Table 6.1: Sampling scheme summary (line skipping)
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Draft

Mode

Sampling

Rate

Sampling Scheme Description

M4 1/4 (1) 4× 4 integration in R, G1, G2, B channel

(2) Convolution to get intensity map

M7 1/7 (1) 7× 7 integration in R, G1, G2, B channel

(2) Convolution to get intensity map

Table 6.2: Sampling scheme summary (pixel mixture)

of demoisaicing or interpolating, a gray intensity is obtained from 2×2 local averaging.
The resulting gray image is used in DFD algorithms.

• Sampling Scheme S2

Draft Mode Vertical 1/7 Skip, Horizontal 1/7 Integration in Pixel Map.

In S2 sampling scheme, a horizontal pixel is integrated to ultilize all the available

data. After vertical skipping and integration, a compound cell whose size is 7×7 can
be formed. The repeating pattern is a 14 × 14 size tile, as noted by the yellow area

in Fig. 6.2(b). Cells contain R/G information at odd rows and G/B information at

even rows. To obtain the intensity, the missing B or R channel are interpolated by

nearest neighbor strategy.

In the first and alternate rows, B is copied from the nearest neighbor. In the

second and alternate rows, R is copied from the nearest neighbor. Then averaging

between R, G and B color plane is used to create gray level images.

• Sampling Scheme S3

Interlace CCD sensor only captures half of the vertical information. The scan

function breaks the integration period into two sequential field scans. Then the two
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  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

1 R G R G R G R G R G R G R G R G R G R G R G 

2 G B G B G B G B G B G B G B G B G B G B G B 

3 R G R G R G R G R G R G R G R G R G R G R G 

4 G B G B G B G B G B G B G B G B G B G B G B 

5 R G R G R G R G R G R G R G R G R G R G R G 

6 G B G B G B G B G B G B G B G B G B G B G B 

7 R G R G R G R G R G R G R G R G R G R G R G 

8 G B G B G B G B G B G B G B G B G B G B G B 

9 R G R G R G R G R G R G R G R G R G R G R G 

10 G B G B G B G B G B G B G B G B G B G B G B 

11 R G R G R G R G R G R G R G R G R G R G R G 

12 G B G B G B G B G B G B G B G B G B G B G B 

13 R G R G R G R G R G R G R G R G R G R G R G 

14 G B G B G B G B G B G B G B G B G B G B G B 

15 R G R G R G R G R G R G R G R G R G R G R G 

16 G B G B G B G B G B G B G B G B G B G B G B 

17 R G R G R G R G R G R G R G R G R G R G R G 

18 G B G B G B G B G B G B G B G B G B G B G B 

19 R G R G R G R G R G R G R G R G R G R G R G 

20 G B G B G B G B G B G B G B G B G B G B G B 

21 R G R G R G R G R G R G R G R G R G R G R G 

22 G B G B G B G B G B G B G B G B G B G B G B 

 

  1(1) 2(8) 3(15) 4(22) 

1(1) R G R G 

2(8) G B G B 

3(15) R G R G 

4(22) G B G B 

 

(a) (b)

Figure 6.1: Pixel map of draft mode S1
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  1 2 3 4 5 6 7   8 9 10 11 12 13 14 

1 R G R G R G R   G R G R G R G 

2 G B G B G B G   B G B G B G B 

3 R G R G R G R   G R G R G R G 

4 G B G B G B G   B G B G B G B 

5 R G R G R G R   G R G R G R G 

6 G B G B G B G   B G B G B G B 

7 R G R G R G R   G R G R G R G 

                                

8 G B G B G B G   B G B G B G B 

9 R G R G R G R   G R G R G R G 

10 G B G B G B G   B G B G B G B 

11 R G R G R G R   G R G R G R G 

12 G B G B G B G   B G B G B G B 

13 R G R G R G R   G R G R G R G 

14 G B G B G B G   B G B G B G B 

 

  1(1-7) 2(8-14) 3(15-21) 4(22-28) 

1(1) 4R, 3G 4G, 3R 4R, 3G 4G, 3R 

2(8) 4G, 3B 4B, 3G 4G, 3B 4B, 3G 

3(15) 4R, 3G 4G, 3R 4R, 3G 4G, 3R 

4(22) 4G, 3B 4B, 3G 4G, 3B 4B, 3G 

 

(a) (b)

Figure 6.2: Pixel map of draft mode S2

scan periods are combined to create the whole, interlaced picture. This technique is

widely adopted in TV display. It can generate higher spatial resolution with a limited

data transform bandwidth.

The sampling scheme S3 is used for interlace CCD imager. In the first frame,

a vertical 1/7 line skipping is conducted. In the next frame, a line offset is set as

4, then an additional line skipping is performed. As desplayed in Fig. 6.8(b). The

intensity images are calculated from the corresponding pixel map 1 and pixel map 2

by local averaging to avoid demosaic operation. The whole image is generated from

interlacing two intensity images.

• Sampling Scheme S4

In the previous draft mode S3, a coupling happens between odd lines and even

lines without demosaic. In sampling scheme S4, compound cells are integrated from

4 or 3 neighboring pixels alternatively in a horizontal scan. As displayed in Fig. 6.4,
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  1 2 3 4 5 6 7  8 9 10 11 12 13 14  

1 R G R G R G R   G R G R G R G  

2 G B G B G B G  B G B G B G B  

3 R G R G R G R  G R G R G R G  

4 G B G B G B G  B G B G B G B  

5 R G R G R G R  G R G R G R G  

6 G B G B G B G  B G B G B G B  

7 R G R G R G R  G R G R G R G  

8 G B G B G B G  B G B G B G B  

9 R G R G R G R  G R G R G R G  

10 G B G B G B G  B G B G B G B  

11 R G R G R G R  G R G R G R G  

12 G B G B G B G  B G B G B G B  

13 R G R G R G R  G R G R G R G  

14 G B G B G B G  B G B G B G B  

 

 Pixel Map 1          

  1 2 3 4 5 6 7  8 9 10 11 12 13 14  

1 R G R G R G R   G R G R G R G   

8 G B G B G B G   B G B G B G B   

15 R G R G R G R   G R G R G R G   

22 G B G B G B G   B G B G B G B   

29 R G R G R G R   G R G R G R G   

                 

 Pixel Map 2          

  1 2 3 4 5 6 7  8 9 10 11 12 13 14  

5 R G R G R G R  G R G R G R G   

12 G B G B G B G  B G B G B G B   

19 R G R G R G R  G R G R G R G   

26 G B G B G B G  B G B G B G B   

 

(a) (b)

Figure 6.3: Pixel map of draft mode S3

a nearest neighbor borrowing can be used to get corresponding B or R components.

The repeatable cell pattern size is 14× 14, as shown in the yellow area.

• Sampling Scheme S5

Nearest neighbor is a computationally efficient algorithm, but it may cause false

edge. The compound cells are formed follow sampling scheme S4. As a counterpart,

the missing B or R value can be linearly interpolated using vertical 3 components.

• Sampling Scheme M4

The pixel mixture draft mode is widely used for video recording on digital cameras

and video recorders. In 4× 4 pixel mixture M4 sampling scheme, each pixel value is

mixed with neighboring 4 by 4 pixel arrays in the same color plane. Then the 2× 2

local averaging is implemented to get a gray intensity.
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  1 2 3 4 5 6 7  8 9 10 11 12 13 14  

1 R G R G R G R   G R G R G R G  

2 G B G B G B G  B G B G B G B  

3 R G R G R G R  G R G R G R G  

4 G B G B G B G  B G B G B G B  

5 R G R G R G R  G R G R G R G  

6 G B G B G B G  B G B G B G B  

7 R G R G R G R  G R G R G R G  

                   

8 G B G B G B G  B G B G B G B  

9 R G R G R G R  G R G R G R G  

10 G B G B G B G  B G B G B G B  

11 R G R G R G R  G R G R G R G  

12 G B G B G B G  B G B G B G B  

13 R G R G R G R  G R G R G R G  

14 G B G B G B G   B G B G B G B  

                 

 

  1(1-4) 2(5-7) 3(8-11) 4(12-14) 

1(1-4) 2R, 2G 2R, 1G 2G, 2R 2G, 1R 

2(5-7) 2R, 2G 2R, 1G 2G, 2R 2G, 1R 

3(8-11) 2G, 2B 2G, 1B 2B, 2G 2B, 1G 

4(12-14) 2G, 2B 2G, 1B 2B, 2G 2B, 1G 

 

(a) (b)

Figure 6.4: Pixel map of draft mode S4

• Sampling Scheme M7

In 7× 7 M7 pixel mixture sampling, each pixel value is integrated with the neigh-
boring 7 by 7 pixels, which reduce the cutoff frequency of low pass filter in the Fourier

domain. And a gray intensity is obtained from 2× 2 local averaging.

6.2 Experimental Results

In our experiment, a digital SLR-like Olympus camera is used to evaluate different

draft mode readout. 9 objects of different levels of focusing difficulty (from (a) to (i)

as shown in Fig. 6.5) were used in the experiments. 6 of the 9 objects are standard

AF accuracy test charts (Ogata Charts) for digital cameras. Each object was placed

at 6 different distances from 250 mm to 1750 mm, as listed in Table 6.3. At each

distance, 2 images were captured at lens positions of step number 400 and 600.

Two STM1 methods were tested — BM-OSOI (Binary mask based, without squar-
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ing, without integrating), and BET (Blur equalization technique). For each case, two

types of results are reported as compared with the result of DFF — (i) mean lens

step error and (ii) RMS (root-mean square) lens step error.

(a) People (b) Letter (c) Poster

(d) Chart 1 (e) Chart 2 (f) Chart 3

(g) Chart 4 (h) Chart 5 (i) Chart 6

Figure 6.5: Test objects

Experimental results shows that DFD STM1 works reasonably well in both 1/7

line skipping (S1, S2), 2/7 draft mode (S3, S4, S5) and pixel mixture mode (M4, M7).

In 1/7 draft mode, as demonstrated in Fig. 6.6, the Mean/RMS errors are 13.2/17.3

lens steps for BET (Blur Equalization Technique), while the Mean/RMS errors are
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Position 1 2 3 4 5 6

Distance [mm] 246.5 616.0 915.5 1195.2 1458.8 1745.1

Focus Steps [step] 754.67 440.33 347.67 290.00 258.67 231.00

Table 6.3: Test positions for draftmode readout
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Figure 6.6: DFD performance on draft mode S1 (1/7 line skipping)
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Figure 6.7: DFD performance on draft mode S2 (1/7 line skipping with pixel inte-

gration)
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Figure 6.8: DFD performance on draft mode S3 (2/7 line skipping)
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Figure 6.9: DFD performance on draft mode S4 (2/7 line skipping)

200 400 600 800 1000 1200 1400 1600 1800
10

15

20

25

30

Distance [mm]

M
ea

n 
S

te
p 

E
rr

or
 [s

te
p]

Mean Step Error vs Distance E1 @ Step: 600 400 Format: s5

BM−OSOI Mean 17.4383
BET Mean 14.5432

200 400 600 800 1000 1200 1400 1600 1800
10

15

20

25

Distance [mm]

R
M

S
 S

te
p 

E
rr

or
 [s

te
p]

RMS Step Error vi Distance E1 @ Step: 600 400 Format: s5

BM−OSOI RMS 17.2937
BET RMS 15.7258

Figure 6.10: DFD performance on draft mode S5 (2/7 line skipping)
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Figure 6.11: DFD performance on draft mode M4 (4× 4 pixel mixture)
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Figure 6.12: DFD performance on draft mode M7 (7× 7 pixel mixture )
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17.7/17.2 steps for BM-OSOI. BM-OSOI has a similar RMS error compared to BET.

For 1/7 draft mode S2, due to the integration between horizontal pixels, the perfor-

mance of BET (Mean/RMS: 10.0/12.3 steps) and BM-OSOI (Mean/RMS: 15.2/14.8

steps) are improved compared to draft mode S1. The performance of BET is better

than BM-OSOI. It is worthwhile to mention that the RMS error reduces to 0.82%

(BET) and 0.99% (BM-OSOI) in the full step range.

In the three different 2/7 draft modes S3 to S5, the performance of DFD STM1 is

similar. For BET, the Mean/RMS step errors for S3, S4, S5 are about 14/15 steps, and

Mean/RMS step errors for BM-OSOI are around 17-18/17-18 steps. The measure-

ment results are not benefit from a higher sampling rate. The unequal sub-sampling

schedule and demosaic like interpolation may cause the frequency overlapping which

causes a higher measurement error.

For the pixel mixture mode M4, the Mean/RMS errors for BET is 11.6/12.5

lens steps, and the Mean/RMS errors for BM-OSOI is 13.8/13.2 steps respectively.

When the sampling rate decreases to 7 × 7 pixel mixture, the performance of BET

is 11.7/12.6 lens steps. While the performance of BM-OSOI is 14.0/13.9 lens steps.

From the experimental results, we observe that there is no significant change when

the sub-sampling rate increases from M4 to M7. The reason is that both M4 and M7

inherently provide low pass filtering to effectively suppress the frequency overlapping

due to sub-sampling effect.

Under the same 1/7 sub-sampling rate, S2 line skipping mode and M7 pixel mix-

ture mode have similar performance as BET. However, the RMS measurement result

of BM-OSOI improves from 14.8 lens steps (0.99% of full measurement range) to 13.9

steps (0.93% of full range). The performance of DFD algorithms on seven draft modes

are summarized in Table 6.4.

By carefully tuning the DFD STM1 parameters, the performance of BM-OSOI

and BET may be improved a little more. For example, in the current experiments,
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the lens positions for image capture are 400 and 600. There may be better positions.

Experimental results show that an error of about 12 steps (BET) to 14 steps

(BM-OSOI) out of 1500 steps is acceptable for use in actual camera systems.

Mean RMS Step Error in Draft Mode

Algorithm S1 S2 S3 S4

Step % Step % Step % Step %

BM OSOI 17.24 1.15 14.79 0.99 18.39 1.23 17.60 1.17

BET 17.32 1.15 12.27 0.82 15.80 1.05 15.78 1.05

S5 M4 M7

Step % Step % Step %

BM OSOI 17.29 1.15 13.20 0.88 13.94 0.93

BET 15.72 1.05 12.46 0.83 12.58 0.84

Table 6.4: DFD performance on different sampling modes
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Chapter 7

Tracking Focusing using DFD

Continuous focusing of a moving object or Region Of Interest (ROI) is of much

interest in digital cameras. The movement of objects could be an arbitrary combina-

tion of 3D translations and/or 3D rotations. For a digital camera, tracking focusing

includes two stages. The first stage is to locate the correspondence between adjacent

frames in 2D image space for a given ROI. In the second stage, an fast autofocusing

algorithm is required for z-tracking or finding the lens position for best focusing in

the ROI.

In this chapter, an adaptive feature-block based pyramid SSD matching is pro-

posed for 2D tracking in the first stage. A new multiple base point beta calibration

is introduced for Z or depth tracking. 3D DFD tracking focusing is realized by a

combination of 2D tracking and Z tracking. A direct calibration technique based on

lens design data is also studied. Initial results demonstrate that camera calibration

can be done effectively using only the lens design data.
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7.1 2D Tracking

Object tracking algorithms can be divided into two categories: feature based

tracking [61, 62, 63] and correlation based tracking [64, 65]. Correlation based tech-

nique finds correspondence in a sequence of images which maximize a cross-correlation

function. It is easy to implement and robust, but computationally expensive. With

growing availability of computing power, some approaches have been investigated for

fast matching by employing multi-resolution techniques [66]. Gaussian pyramids are

used for generating multi-resolution images, and coarse-to-fine matching techniques

reduce computation time [67].

The challenge of tracking focusing lies in that the movement of object involves

not only X, Y and Z translations, but also 3D rotations such as roll, yaw, pitch.

Object size and magnification change with object position and orientation. Further,

processing speed should be fast enough to match the frame rate of digital cameras.

7.1.1 2D Tracking Algorithm

• Feature Block Selection

Given an image window that needs to to be focused and tracked, a feature block

within the window is selected. The entire focusing window is divided into many image

blocks and one block with the highest gray-level variance is selected as a feature block

with the highest contrast. The relative position of this block within the full focusing

window is recorded. After selecting the feature block in the first image frame of

a time/video sequence, in the subsequent frames, the best matching block for the

selected feature block is found. The location of the best matching block is then used

to determine the location of the full focusing window.
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• Multiple Resolution Registration

The 2D Tracking algorithm is based on a multiple resolution pyramid matching

technique. Matching is done by minimizing the Sum of Squared Difference (SSD)

between image blocks f1 and f2, i.e.

SSD[i][j] =
∑

k

∑
l

(f1[i][j]− f2[i+ k][j + l])
2

(7.1)

A flow chart of the algorithm is shown in Fig. 7.1. At the beginning of 2D tracking,

an image block with the highest variance or contrast is selected from current AF

window (frame 0). The searching space in the next fame i+1 is defined by the block

location (xi, yi) and a searching range parameter. Then, after down-sampling, the

coarse registration step calculates the approximate block location (xi1, yi1) by SSD.

The down sampling ratios are typically powers of 2 or 4. The coarse block position

in frame i + 1 is used as a starting point for registration refinement in the original

resolution image. Using SSD based matching, the refined block position in frame i+1

is calculated, and the AF window in frame i+ 1 is located.

One of the algorithms involves matching at three resolutions, first at 1/4-th of the

original resolution, then 1/2 of full resolution, and finally the original full resolution.

The matching at 1/4 resolution has less computation but also less accuracy. The

accuracy is improved by going to the 1/2 resolution and re-matching in a small region

around the estimated resolution. This accuracy is further improved by re-matching

in the original resolution images. Some minor variations of this basic algorithm are

possible. For example, we may consider image resolutions of 1/16, 1/4 and full

original resolution instead of 1/4, 1/2 and full resolution. Also, the computation can

be further reduced by predicting the motion of an image block by extrapolation of the

locus of motion of the image block. In general XY tracking works quite well giving

fast and robust results under limited X, Y and Z translations and limited rotations
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about X,Y and Z axes.

• Adaptive Target Block

One of the challenges of tracking focusing is the possibility of simultaneous 3D

translations and rotations. The image of an object can translate, rotate, change scale,

and undergo other shape and contrast deformations, including partial occlusion. In

the absence of a priori information on 3D motion parameters of the object, it becomes

necessary to use an adaptive image block for tracking instead of the fixed original

image block.

In the continuous shooting of a digital camera, the relative motion between one

frame to the next frame is relatively small. The 3D translation and rotation is an

accumulative result over multiple frames. Adaptive feature block tracking is based on

this assumption. In order to continuously track an image block from frame i to i+1,

and then from i+1 to frame i+2, the best matching block in frame i+1 is used as the

new image block which needs to be matched in frame i+2. The original image block

in frame i is not used for matching blocks in frame i+ 2. The search range in frame

i + 2 can be estimated from previous block positions in frames (i − 1, i, i + 1, · · ·).
Thus 2D tracking can be made quite robust for XY translation, Z translation, axis

rotation (X, Y and Z) and combinations of translation/rotation.

7.1.2 2D Tracking Results

To evaluate the performance of 2D tracking, a compact digital camera is used to

record movies. The image size of the movie is 320× 240 provided in the draft mode

readout. A 400-frame movie is recorded for test purpose. In this image sequence,

a piece of paper with printed letter is randomly moved around. The motion effects

includes rotation, translation, and non-rigid movements simultaneously. The tracking
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Figure 7.1: Flowchart of XY 2D tracking
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result is shown in Fig. 7.2. The 2D tracking is quite robust for XY translation, Z

translation, axis rotation (X, Y and Z) and also combinations of translation/rotation.

Due to the change of viewpoints, sometimes there exist significant distortions. Even

in these situations, the 2D tracking algorithm could still locate the focusing window

around the correct position.

The parameters in 2D tracking can be adjusted for robustness and computation

speed. In our experiments, a significant portion of the time was consumed by data

transfer from the camera to the computer. The image data was transferred through a

USB 1.1 interface. In Table 7.1, time (which includes data transfer) for three different

2D tracking variations are compared. The images are processed using a Pentium 4 3.0

GHz Personal computer. The table demonstrates the advantage of multi-resolution

image matching.

Processing Time [ms/frame]

Scheme 1/2+Full 1/4+1/2+ Full 1/3+Full

Patch Num. 4 31.15 25.43 24.64

Patch Num. 6 13.91 11.84 11.89

Table 7.1: 2D window registration time comparison
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Frame 002 Frame 024 Frame 046 Frame 068

Frame 090 Frame 112 Frame 134 Frame 156

Frame 178 Frame 200 Frame 222 Frame 244

Frame 266 Frame 288 Frame 310 Frame 332

Frame 354 Frame 376 Frame 398 Frame 400

Figure 7.2: Tracking example
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7.2 Z Tracking

Object movement along the optical axis (Z direction) changes the lens position

of best focus. To continuously capture the focused image, the lens position needs to

track the Z-movement of the focused image of the object. A straightforward way of

Z-tracking is to directly extend DFD to continuous focusing. As shown in the flow

chart of Fig. 7.3, two defocused images g1(ti) and g2(ti) are captured at two fixed steps

Step1, Step2. Then the focused image gf(ti) is obtained. However the performance of

this direct approach is not satisfactory as it needs to capture 3 images– two defocused

and one focused. A scheme for capturing only two images will be considered next.
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Figure 7.3: STM continuous focusing

Wei and Subbarao [68] proposed a Fourier domain approach for focusing of moving

objects. They reported a focusing accuracy about 4.3%. In the spatial domain,

Continuous Spatial-domain Transform Method (CSTM) was proposed by Surya and

Subbarao [69]. There are two variations - CSTM1 and CSTM2. CSTM1 involves

multiple calibrations for different lens position pairs of the camera. In CSTM2 the

camera is calibrated only for one lens position pair, and the data for other lens

positions are approximated through an interpolation scheme. In the next section we

propose an improved scheme for obtaining accurate calibration data throug the so
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called Beta calibration technique.

7.2.1 Beta Calibration

In Z tracking based on DFD, the main problem is to keep the number of images

captured and processed to a minimum of only two images. Park and Subbarao [70]

proposed a beta calibration technique to reduce the required number of images to

two. In this technique, the first image is focused, as shown in the flow chart of Fig

7.4.

From Eqn. (3.16), G can be expressed by:

G = σ2
1 − σ2

2 =
4(g1 − g2)

∇2g
(7.2)

When either image is fully focused, one of σi, i = 1, 2 equals zero. Eqn. (7.2) can

be rewritten as:

G =


 −σ2

2 , σ1 = 0

σ2
1, σ2 = 0

(7.3)

When a calibration object is placed at a fixed distance, the corresponding lens position

for best focus is Stepf in camera. If the lens position changes continuously from near

field to far field of the camera, the difference of σ with respect to the clear/focused

image in Stepf corresponds to the parameter beta in Eqn. (3.11). It can be calculated

from Eqn. (7.2).

In continuous focusing, two defocused images g1(t0) and g2(t0) are captured at

time t0. If g2(t0) captured at step number n is focused, a lookup table links the step

number n and G(n(t)). Suppose the object moves and two images g1(t1) and g2(t1)

are obtained at the same steps, then σ2(t1) will change corresponding to focus step

n(t+1). By assuming that σ2 is locally linear, we can estimate the next focus position

as n(t+ 1) = G−1(t1).
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In the experiment, a G vs Step lookup table is created and used for interpolation.

The base step 65 is selected approximately around the middle of the step range.

However, as shown in Fig. 7.5, the beta calibration has a relatively flat slope in the

middle field of the camera. Moreover, a large step RMS error will occur for distances

whose focus step is around the flat slope region. The comparitive experimental results

are shown in Fig. 7.9. It will be discussed in the next subsection where a new beta

calibration technique is introduced.
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Figure 7.4: Beta continuous focusing

7.2.2 New Beta Calibration Technique

A new multiple base point beta calibration technique is presented here. From

Chapter 3, if two images are recorded with different parameter settings−→e1 = (s1, f1, D1)

and −→e2 = (s2, f2, D2), we have

σi =
Disi

2k
(
1

fi
− 1

ui
− 1

si
) (7.4)

where Di is the diameter of aperture, fi is the focal length and si is the image distance.

k is a camera PSF constant (approximate value is
√
2.

When lens positions s1 and s2 change, image magnification also varies. A normal-

ization magnification operation is needed. This normalization is with respect to the
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Figure 7.5: G calibration table

base step, as suggested in [70].

D1s1

D2s2

σ2 =
D1s1

2k
(
1

f2

− 1

u2

− 1

s2

) (7.5)

For the same object distance under different parameter settings, u1 = u2. There-

fore

σ1 =
s1

s2
σ2 +

D1s1

2k
(
1

f1
− 1

f2
− 1

s1
+
1

s2
) (7.6)

σ1 = ασ2 + β (7.7)

where

α =
D1s1

D2s2
(7.8)

β =
D1s1

2k
(
1

s2
− 1

s1
) +

D1s1

2k
(
1

f1
− 1

f2
) (7.9)

When Step2 is selected as the base step, and the object distance u = u1 = u2 is

choosen as the distance that corresponds to the base step Step2, the image taken at
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Step2 will be a focused image. Then Eqn. (7.7) can be rewritten as:

σ1 = β (7.10)

By changing Step1, a β vs. Step calibration Table can be obtained. For improving

the linearity of calibration curve, a new β to as a function of the reciprocal of object

distance 1/u is computed.
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Figure 7.6: Beta calibration table: Beta vs. Step

The two fixed steps (Step 35 and step 98) are used as base steps. A switching mech-

anism is used for selecting one of these base steps depending on the current focused

step position. The scheme for selection is as below.

Require: load Beta Calibration 1 for Step1

Require: load Beta Calibration 2 for Step2

if Current Step ≥ Threshold1 then

Base Step ⇐ Step2

else if |Current Step − Step1| > Threshold2 then

Base Step ⇐ Step1
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Figure 7.7: Beta calibration table: Beta vs. 1/u

else

Base Step ⇐ Step2

end if

do Z Tracking using Current Step & Base Step

update Current Step

Experimental results of tracking are shown in Fig. 7.8. The corresponding RMS

step error is shown in Fig. 7.9. In this Figure we see that the RMS Lens step error is

greatly improved at positions 5, 6 and 7. For example, the RMS lens error reduced

from approximately 20 steps to 3 steps at position 5. Compared to the old beta

calibration, the new beta calibration significantly improves the overall RMS step

error from 9.43 to 3.36 lens steps.
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7.3 Calibration From Lens Design Data

DFD calibration links the blur parameter sigma to the object distance u or lens

position in steps. The procedure requires changing the object distance to cover the

full range of measurement. Moreover, at each object distance, the calibration for

continuous tracking focusing also needs to be measured for many different pairs of

lens step positions. DFD calibration is a time-consuming procedure.

An alternative to extensive calibration work is to generate DFD calibration ta-

ble from lens information. There are two approaches as shown in Fig. 7.10. The

first approach generates the calibration table from geometric optics. It involves less

computation, however there exist some error in the near focus positions; The second

approach use wave optics to compute the sigma look-up table. This approach needs

more computation, and are able to obtain more accurate results.

A computer simulation is conducted to compare the sigma calculated from geom-

etry optics and wave optics. From wave optics [71, 72], the wavefront on the exit

pupil of the optical system with defocus aberration is a spherical wave, and its phase

is plotted in Fig. 7.11 (a). The corresponding Point Spread Function (PSF) in spatial

domain and Modulation Transfer Function (MTF) in spatial frequency domain are

displayed in Fig. 7.11 (b) and (c) respectively. The change of sigma with respect

to object distance u, inverse of object distance 1/u and lens step are calculated and

shown in Fig. 7.12 (a), (b) and (c). Fig. 7.12 (d) is a partially enlarged plot from (c),

it shows the error of geometry optics approach at the near focus position.

We used the PSF data obtained from the optical design software to compute the

sigma vs. 1/u table. In order to make sure that the sigma vs. 1/u table computed

by this method will be the same as that obtained using the calibration method using

real images, experimental verification has been investigated. In the experiments, a

digital SLR-like camera’s PSF data provided by Olympus is used. These PSF data are
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generated by the lens design program. The design PSF data are plotted in Fig. 7.13

and Fig. 7.14.

Geometric Optics
Defocus Module

Wave
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Table
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Camera
Params

Scene
Params

� Less Computation
� Useful most of the time

except near focus

� More Computation
� More Accurate
� Also Useful near focus

position

Figure 7.10: Calibration table generation

The PSF data is for lens step positions 500 and 600 (note that 400 and 600 would

have been better according to previously described experiments). The data was given

for many different object distances. This PSF data was used to compute the sigma

vs. 1/u table. Then we took the actual camera images provided by Olympus (TeleA,

TeleB, TeleC, TeleE, TeleF) and computed the sigma vs. 1/u table. The results are

shown together in the Fig. 7.18 and Fig. 7.19 for comparison.

In the figures, the sigma vs. 1/u curves of the two different methods match well in

the middle range but not so well in the region near the end points. This is as expected

because, near the end points, the real images are blurred too much and therefore the

estimated sigma values are noisy. Note that, when the images are blurred too much,

the Laplacian of computed images are noisy and therefore the estimated sigmas are

noisy.

Also the sigma plot computed from the PSF data is remarkably linear (i.e. a
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Figure 7.11: Defocus aberration
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Figure 7.12: Calibration table from simulation
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Focus distance = 500 mm Object distance = 400 mm

Focus distance = 500 mm Object distance = 600 mm

Focus distance = 500 mm Object distance = 800 mm

Figure 7.13: PSF changes with object distace (1)
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Focus distance = 500 mm Object distance = 1000 mm

Focus distance = 500 mm Object distance = 1200 mm

Figure 7.14: PSF changes with object distace (2)
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Figure 7.16: Sigma vs. inverted object distance
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Figure 7.17: Test objects for direct calibration from lens design data
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Figure 7.18: Sigma table calculation from PSF data and actual images (draft mode:
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Figure 7.19: Sigma table calculation from PSF data and actual images (draft mode:

M4)

straight line) with respect to 1/u. This shows that interpolation and extrapolation

of this data will give very accurate results for sigma when the design data is not

available for a particular distance u. This reduces the design PSF data that we need

in actual implementation of DFD-AF.

The most important result of the above experiments is that we have verified that,

whenever we process images which are blurred moderately or less (i.e. the blur is

not too much), then the sigma computed from the real images matches well with

the sigma computed from the PSF data provided by the lens design program. In

actual DFD-AF, the sigma computed from actual images will be used to look up the

sigma-table computed from the PSF data to find the object distance (or lens focus

position). Therefore, the calibration data obtained from the PSF data is accurate

and sufficient for practical applications.

In Z tracking, the two images captured are blurred only moderately or less because
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the Z motion from one frame to the next is not too much (less than 200 lens steps).

For example, let the focusing position of the previous frame be step 700 and the

focusing position of the current frame be step 800. The image for step position 700

will already be known, and a second image which is always a fixed 200 steps more

than the current position (700+200=900 in this example) can be captured. Then, we

can use the dynamically computed calibration table for steps 700 and 900 in DFD-AF

to find that the focusing position is 800. In this case, the images will be blurred only

moderately or less (corresponding to only 100 step lens displacement).

In conclusion, we have experimentally verified that the sigma vs. 1/distance cali-

bration table computed from real images and from the PSF data provided by the lens

program are almost the same.

The sigma vs. 1/u plot computed from the PSF design data is linear. Therefore

interpolation and extrapolation can be used to compute the sigma vs. 1/u table

to a degree of high accuracy for those distances u at which the design PSF data is

not available. This greatly reduces the amount of design data needed for practical

implementation of DFD based autofocusing. Also, it facilitates dynamic computation

of sigma vs. 1/u table for any u during Z-tracking.

DFD will work as well for Z tracking as it does for still (non-moving) objects

because the required calibration table can be computed dynamically using the PSF

data. For non-moving objects, earlier experiments on DFD-AF have given an error

of about 15 lens steps. Therefore, for moving objects with Z-tracking and using the

PSF design data, the error should be again around 15 lens steps (out of a maximum

of 1500 possible steps).
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7.4 Dynamic DFD

In this dissertation, research efforts on DFD based autofocusing are concentrated

on improving the accuracy and robustness of DFD algorithms. Various STM and

BET algorithms are presented to improve the accuracy of DFD. Different factors

that affect the performance and robustness of DFD algorithms are calibrated and

compensated. From above results, the critical factor for DFD algorithm is SNR.

In order to further improving DFD autofocusing, a novel concept – Dynamic

DFD is proposed for further research. In the dynamic DFD, the sigma table can be

dynamically generated for different lens positions, and the selection of lens position

always keeps DFD AF in high SNR region, as shown in Fig. 7.18 and Fig. 7.19.

The initial results on calibration from the optical design software make this con-

cept possible. Dynamic DFD will further improve the accuracy of DFD even in a

weak-contrast condition, and it also can reduce 1 more image in continuous tracking

focusing.
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Chapter 8

Conclusions

In this dissertation, novel image-based techniques are proposed and developed for

3D modeling with zoom calibration, autofocusing, and continuous tracking autofo-

cusing of moving objects.

A new technique is introduced to extend current 3D modeling technology for

variable/dynamic zoom settings so that objects of very different sizes and at many

different distances can be modeled by the system. A new calibration technique that

includes translation and rotation parameters is developed for projective matrices.

Experimental results are presented to demonstrate the effectiveness of the new tech-

nique.

Several binary mask based Depth-from-Defocus (DFD) algorithms are proposed

to improve autofocusing performance and robustness. A binary mask is defined by

thresholding image Laplacian to remove unreliable points with low Signal-to-Noise

Ratio (SNR). Three different DFD schemes– with/without spatial integration and

with/without squaring– are investigated and evaluated, both through simulation and

actual experiments. The actual experiments use a large variety of objects including

very low contrast Ogata test charts.
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A new spatial-domain DFD technique named Blur Equalization Technique (BET)

is presented. The theoretical basis of BET relies on equalizing the blur or defocus of

two different images recorded with different camera parameters. In contrast, com-

parable spatial-domain techniques rely on equalizing the deblur or focus of the two

images. Also, BET facilitates modeling of images locally by higher order polynomials

with lower series truncation errors. The accuracy of BET is further enhanced by dis-

carding pixels with low Signal-to-Noise ratio by thresholding image Laplacians, and

relying more on sharper of the two blurred images in estimating the blur parameters.

These steps makes BET a very accurate and robust technique useful in practical ap-

plications such as depth recovery and autofocusing. Its performance is compared with

three highly effective and significantly improved versions of STM1. BET is found to

be superior to some of the best comparable DFD techniques in a large number of

both simulation and actual experiments.

Different factors that affect the performance of DFD algorithms are studied. In

particular, nonlinear sensor response, lens vignetting, and magnification variation

affect the accuracy of DFD. In order to implement DFD on off-the-shelf commercial

digital cameras, these factors need to be calibrated and corrected. We have presented

new calibration methods for these three factors. Their correctness and effects on

performance of DFD have been evaluated with experiments.

DFD performance on different sub-sampling schemes are investigated. Experi-

mental results show that most sub-sampling schemes that are of interest in digital

imaging technology introduce only a small additional error.

A multiple resolution pyramid SSD matching is proposed for 2D tracking in the

first stage. A new multiple base point beta calibration is introduced for Z direction

tracking. 3D DFD tracking focusing is realized by combination of 2D tracking and Z

tracking. A direct calibration from lens design data is also studied. The initial results

demonstrate that the camera calibration can be completed using the lens design data
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only.

Further research on improving accuracy and speed of DFD, object tracking, and

restoration of focused images from blurred images, will enhance the capabilities of

modern digital cameras.
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