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Interpretation of Image Flow:

Rigid Curved Surfaces in Motion

Muralidhara Subbarao

Abstract

A new method is described for interpreting image flow (or optical flow) in a small

field of view produced by a rigidly moving curved surface. The equations relating the

shape and motion of the surface to the image flow are formulated. These equations are

solved to obtain explicit analytic expressions for the motion, orientation and curvatures

of the surface in terms of the spatial derivatives (up to second order) of the image flow.

We state and prove some new theoretical results concerning the existence of multiple

interpretations. Numerical examples are given for some interesting cases where multiple

solutions exist. The solution method described here is simpler and more direct than pre-

vious methods. The method and the representation described here are part of a unified

approach for the interpretation of image motion in a variety of cases (e.g.: planar/curved

surfaces, constant/accelerated motion, etc.). Thus the representation and the method of

analysis adopted here have some advantages in comparison with previous approaches.



1. Introduction

The motion of an object relative to a camera produces a moving image on the

camera’s image plane. The image motion thus produced contains valuable information

about the three-dimensional (3D) shape and motion of the object. Recovering this 3D

information from image motion is the topic of this paper. The approaches that have been

taken in solving this problem fall under two major categories, discrete and continuous.

In the discrete approach, the velocities of a number of distinct image feature points are

used to compute the motions and relative positions of the corresponding points on the

object’s surface [3,19,10,17,18]. In this paper we take the continuous approach. In this

approach the image motion is represented by an image velocity field or image flow.

Image flow is a two-dimensional velocity field defined over the camera’s image plane.

The velocity at any point is the instantaneous velocity of the image element at that point.

Some authors refer to image flow as optical flow. Methods for the computation of image

flow from time-varying intensity images have been proposed by many researchers (e.g.:

[5,4,22]). Here we are concerned with the interpretation of image flow, i.e. recovering

the geometry and the motion of objects in a scene from the image flow.

Methods for finding the motion and orientation of a rigid planar surface from its

image flow have been proposed by Longuet-Higgins [11], Kanatani [6], and Subbarao

and Waxman [16]. For rigid curved surfaces, a formulation and solution method is pro-

posed by Longuet-Higgins and Prazdny [9], but their method cannot be used if either

there is no translation along the line of sight or the direction of translation, the surface

normal and the line of sight all lie in a common plane. Recently Waxman, Kamgar-Parsi

and Subbarao [20] have obtained a complete solution in closed-form for this problem.

However some important theoretical questions concerning the multiplicity of solutions

remained unanswered.

Here we reconsider the curved surface problem in the frame-work of a unified for-

mulation for the interpretation of image flow proposed in [15]. Based on this work, we

formulate the problem and derive closed-form solutions for motion, orientation and cur-

vatures of a rigid surface in terms of its spatial image flow derivatives. In the previous
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approaches [9,20] the image coordinate system and the image flow derivatives are

transformed corresponding to a rotation to solve the image flow equations; the solution

computed is again transformed back to the original coordinate system. In contrast to this,

the method described here does not involve such an intermediate step. This saves some

computation. More importantly we state and prove some new theoretical results con-

cerning the multiplicity of interpretations for image flow. Conditions for the occurrence

of up to four (four being the maximum possible) solutions are stated and proved. Numer-

ical examples are given for some interesting cases where multiple solutions exist.

Recently Maybank [12] has also obtained some results concerning the multiplicity

of interpretations for image flow. His formulation uses a polar projection (spherical

image screen) camera model. The main result of his work is that an ambiguous flow field

has at most three values of angular velocity compatible with it. This should be compared

to our result here which gives conditions for the occurrence of three solutions for the

image flow equations. Although Maybank indicated an implicit method for constructing a

case where three solutions exist, no numerical example was given. Here we give one

example which is constructed using our own algorithm. According to one of our result

here, if one uses only up to second order derivatives of image flow then there can be up

to four solutions for the image flow equations. A numerical example of this case is given.

In this case, as a consequence of Maybank’s result, third and higher order derivatives of

image flow restrict the number of possible interpretations to at most three.

In the next section we formulate the problem and derive the relevant equations. In

Section 3 we give the solution in a general case, and in Section 4 we summarize the

situations under which multiple solutions occur. The actual derivation of the solution

and proofs regarding the occurrence and detection of multiple solutions are given in the

appendices. Section 5 deals with error sensitivity analysis and numerical examples for

some interesting cases where multiple solutions exist.

2. Formulation of the problem
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In this section we derive a set of equations relating image flow derivatives to the

shape and motion parameters of a rigid surface in motion. The derivation method in this

section is primarily due to Longuet-Higgins and Prazdny [9], but it has been extended so

that equations relating the image flow derivatives of any order to shape and motion

parameters can be derived.

To keep the dimensionality of the parameter space small and the image flow

analysis tractable, it is necessary to restrict attention to local analysis. Therefore, a large

image is first broken into small image regions corresponding to small fields of view and

the image flow is analyzed separately in each of these fields of view.

A pin-hole camera with a spherical projection screen whose center is at the pin-hole

is a good camera model. For this camera model, due to symmetry, the image flow

analysis is identical at all regions on the projection screen. However, actual camera sys-

tems usually have a planar screen. We adopt this planar projection screen model in our

analysis. The geometry of the screen is entirely a matter of convenience and does not

affect our results. Note that there is a one to one correspondence between an image on a

curved screen such as a spherical screen and an image on a planar screen. The choice of

the planar screen geometry restricts our analysis to the field of view along the optical

axis. However, the image flow in a field of view not along the optical axis can be

analyzed by first projecting the image velocities on to a suitable plane perpendicular to

the field of view. This projection process is quite straightforward [7].

The camera model is illustrated in Figure 1. The origin of a Cartesian coordinate

system OXYZ forms the center of projection (or ‘‘pin-hole’’) of the camera. The Z-axis

is aligned with the optical axis and points in the direction of view. The image plane is at

unit distance from the origin perpendicular to the optical axis. (Without loss of general-

ity, the image plane has been taken to be in front of the ‘‘pin-hole’’ to avoid dealing with

inverted images.) The image coordinate system oxy on the image plane has its origin at

(0,0,1) and is aligned such that the x and y axes are, respectively, parallel to the X and Y

axes.
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Let the relative motion of the camera with respect to a rigid surface along the opti-

cal axis be described by translational velocity (VX ,VY ,VZ) and rotational velocity

(ΩX ,ΩY ,ΩZ) around the origin. Due to the relative motion of the camera with respect to

the surface, a 2D image flow is created by the perspective image on the image plane. At

any instant of time, a point P on the surface with space coordinates (X, Y, Z) projects

onto the image plane as a point p with image coordinates (x, y) given by

(2.1a,b)x = X / Z and y = Y / Z .

If the position of P is given by the position vector RR(X,Y,Z) then its instantaneous velo-

city (X
.
, Y

.
, Z

.
) is given by UU = −(VV + ΩΩ × RR). Therefore we have

(2.2a)X
.

= −VX − ΩY Z + ΩZ Y ,

(2.2b)Y
.

= −VY − ΩZ X + ΩX Z ,

(2.2c)Z
.

= −VZ − ΩX Y + ΩY X .

The instantaneous image velocity of point p can be obtained by differentiating equations

(2.1a,b):

(2.3a,b)x
.

=
Z
X
.� � −

Z
X� �

Z
Z
.� � and y

.
=

Z
Y
.� � −

Z
X� �

Z
Z
.� �

In the above two expressions we substitute for the appropriate quantities using relations

(2.2a-c,2.1a,b) to obtain

(2.4a)x
.

= u =

�� �
x

Z

VZ	 	
	 −
Z

VX����� 
 �� + [xy ΩX − (1 + x 2) ΩY + y ΩZ ] and

(2.4b)y
.

= v =

�� �
y

Z

VZ� �
� −
Z

VY� �
� � �� + [(1 + y 2) ΩX − xy ΩY − x ΩZ ] .

These equations define the instantaneous image velocity field, assigning a unique two-

dimensional velocity to every point (x, y) on the surface’s image.

Note that the image velocity at a point (x, y) (given by equations (2.4a,b)) in the

image domain is due to the world velocity of a point (xZ, yZ, Z) in the world domain.
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The value of Z is determined by the actual surface. Suppose that the visible surface is

described by Z = f (X, Y) in our camera-centered coordinate system; then, assuming that

the surface is continuous and differentiable, a Taylor series expansion of f can be used to

describe a small surface patch around the optical axis:

(2.5)Z = Z 0 + ZX X + ZY Y +
2
1� � ZXX X 2 + ZXY X Y +

2
1� � ZYY Y 2 + O3 (X, Y)

for Z 0 > 0 . In the above expression, Z 0 is the distance of the surface patch along the

optical axis, ZX and ZY are the slopes with respect to the X and Y axes, ZXX , ZYY , ZXY are

the curvatures, and the last term denotes higher order terms of the Taylor series with

respect to X and Y. Using the method given in Appendix A the surface can be expressed

in terms of the image coordinates of the image points:

(2.6)Z(x,y) = Z 0

��
� 1−ZXx−ZYy−

2
1� � Zxxx 2−Zxyxy−

2
1� � Zyyy 2−O 3(x,y)

�  
! −1

where

(2.7a-c)Zxx = Z 0 ZXX , Zxy = Z 0 ZXY , Zyy = Z 0 ZYY

and O 3(x, y) denotes higher order terms. Note that the curvatures are scaled by the dis-

tance along the optical axis according to relations (2.7a-c) and therefore absolute curva-

tures are not recoverable. The slopes ZX , ZY and the scaled curvatures Zxx , Zyy , Zxy will

be collectively referred to as the structure parameters. Substituting for Z from equation

(2.6) into equations (2.4a,b) we obtain

(2.8a)u(x,y)=

"#
$ x Z 0

VZ% %
% −
Z 0

VX&�&�& ' ()
*(
+ 1−ZXx−ZYy−

2
1, , Zxxx 2−Zxyxy−

2
1- - Zyyy 2−O 3(x,y)

. /
0

+
12
xyΩX−(1+x 2)ΩY+yΩZ

34
,

(2.8b)v(x,y)=

56
7 y Z 0

VZ8 8
8 −
Z 0

VY9 9
9 : ;<
=;
> 1−ZXx−ZYy−

2
1? ? Zxxx 2−Zxyxy−

2
1@ @ Zyyy 2−O 3(x,y)

A B
C
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+
DE
(1+y 2)ΩX−xyΩY−xΩZ

FG
.

In the above equations, the distance Z 0 between the surface and the camera along the

optical axis always appears in a ratio with the translational velocity VV and therefore is not

recoverable. Therefore, we adopt the following notation in presenting the image flow

equations.

Translation parameters:

(2.9a-c)Vx =
Z 0

VXH�H�H , Vy =
Z 0

VYI I
I , Vz =
Z 0

VZJ J
J for Z 0 > 0 .

The three components of rotation ΩX , ΩY , ΩZ and the three components of scaled trans-

lation Vx , Vy , Vz will be collectively referred to as the motion parameters.

Now, since the surface is assumed to be smooth (i.e. continuous and differentiable)

the instantaneous image velocity in a small neighborhood around the image origin may

be expressed in the form of a Taylor series:

(2.10a)u(x,y)=u 0+uxx+uyy+
2
1K K uxxx 2+uxyxy+

2
1L L uyyy 2+O 3(x,y) and

(2.10b)v(x,y)=v 0+vxx+vyy+
2
1M M vxxx 2+vxyxy+

2
1N N vyyy 2+O 3(x,y)

where the subscripts indicate the corresponding partial derivatives evaluated at the image

origin and O 3 (x, y) denotes the second and higher order terms of the Taylor series. In

the above expression, the coefficients of the Taylor series expansion, u 0 , v 0 , ux , . . . ,

etc., will henceforth be referred to as the image flow parameters. From the image velo-

city equations (2.8a,b), we can derive the following equations which relate the image

flow parameters up to second order at the image origin (i.e. x =y =0) to the structure and

motion parameters:

(2.11a,b)u 0 = − Vx − ΩY , v 0 = − Vy + ΩX ,

(2.11c,d)ux = Vz + Vx ZX , vy = Vz + Vy ZY ,
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(2.11e,f)uy = ΩZ + Vx ZY vx = − ΩZ + Vy ZX ,

(2.11g,h)uxx = − 2 Vz ZX + Vx Zxx − 2 ΩYuxy = − Vz ZY + Vx Zxy + ΩX ,

(2.11i,j)uyy = Vx Zyy , vxx = Vy Zxx ,

(2.11k,l)vxy = − Vz ZX + Vy Zxy − ΩY and vyy=−2VzZY+VyZyy+2ΩX .

These equations, which we shall refer to as image flow equations, were originally derived

by Longuet-Higgins and Prazdny [9]. The method we have described to derive the above

equations can also be used to derive the equations relating the third and higher order

image flow parameters to the structure and motion parameters. However we stop at

second order as we have a sufficiently constrained system of equations (twelve equations

in eleven unknowns). We will say more about this in the next section.

2.1 The nature of the image flow equations

The image flow equations (2.11a-l) form twelve non-linear algebraic equations in

eleven unknowns (five structure parameters and six motion parameters). Since the system

of equations is overdetermined it is found that, in general, the solution is unique, but

since the equations are non-linear, in some exceptional situations multiple solutions do

occur. In these equations we observe that none of the rotational components appear in

the non-linear terms. All the non-linear terms are formed by the product of a structure

parameter and a translation component. Further, all structure parameters appear only in

products with the translation parameters. Therefore, it is translation through space that

reveals surface structure. If there is no translation, all the structure parameters remain

undetermined. Also, a curvature parameter always appears in product with a component

of translation parallel to the image plane. Therefore, if there is no translation parallel to

the image plane the curvatures remain undetermined by image flow parameters up to

second order. There are also many situations where some of the image flow equations

become dependent in which case multiple solutions occur. For example, if all the curva-

tures are zero (i.e. the surface is planar), or if the optical axis, direction of translation and
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surface normal all lie in a plane, then there are in general two solutions. A systematic

analysis of all the different cases is given in the appendices. The solution in general

cases and a summary of the nature of the solutions are given in the following sections.

Notice that measuring the image velocity derivatives up to second order (given by

the coefficients of the Taylor series in equations (2.10a,b)) is adequate since we obtain a

sufficient number of constraints (twelve) on the eleven unknowns. On the other hand spa-

tial derivatives up to only first order are inadequate since the first six image flow equa-

tions give only six equations involving eight unknowns. Since our analysis is local, we

need to solve for the structure and motion parameters separately for each small image

neighborhood. However, interestingly, for planar surfaces eight image motion parame-

ters specify the image motion field globally (e.g. see [16]). An intuitive explanation of

this is that the motion parameters are constant everywhere in both cases, but whereas the

structure parameters for a plane constituting the two slopes are constant everywhere, for

curved surfaces they change.

3. Solving the image flow equations

In solving the image flow equations (2.11a-l) we use a new parameterization of the

solution space; we use a trigonometric substitution which introduces two new variables r

and θ which respectively correspond to the (signed) magnitude and direction of the trans-

lational component parallel to the image plane. This particular representation simplifies

the task of solving the image flow equations and proving many uniqueness results. Using

this representation, a unified computational approach for interpreting image flow pro-

duced by rigid surfaces has been obtained in [15].

The solutions for the image flow equations in some degenerate cases are derived in

Appendix B. In the remaining part of this section we assume that we are not dealing with

any of these cases. This in effect implies that we are dealing only with cases where the

surface is curved (i.e. at least one of the curvature parameters is non-zero) and the trans-

lation parallel to the image plane is non-zero.
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In the first two theorems of Appendix C the solution is derived for a curved surface

with non-zero translation parallel to the image plane. Using the notation

(3.1a,b)s ≡ sinθ , c ≡ cosθ

(3.2a,b)a 1 = uy+vx , and a 2 = ux−vy

the solution of equations (2.11a-l) in terms of r, θ is

(3.3a,b)Vx ≡ rc, Vy ≡ rs,

(3.3c,d)Vz = uxs 2+vyc 2−a 1cs, ΩZ=uys 2−vxc 2+a 2cs,

(3.3e,f)ZX = (a 1s+a 2c)/r, ZY = (a 1c−a 2s)/r,

(3.3g,h)ΩX = v 0+rs, ΩY = −(u 0+rc),

(3.4a)Zxx =
r
1O OQPR uxxc + vxxs − 2u 0c − 2rc 2 + 2VzZXc

ST

(3.4b)Zyy =
r
1U UQVW uyyc + vyys − 2v 0s − 2rs 2 + 2VzZYs

XY

(3.4c)Zxy =
2r
1Z Z
ZQ[\ s(uyy+2vxy−uxx) + c(vxx+2uxy−vyy)

]^
(Note: the right hand sides of equations (3.4a,b) can be expressed in terms of only r and θ

by substituting for ZX , ZY and Vz from (3.3c,e,f).) In Theorem 2 of Appendix C the fol-

lowing three equations are derived for r and θ:

(3.5a)uyy tan3θ+(2uxy−vyy) tan2θ+(uxx−2vxy) tanθ−vxx = 0 ,

(3.5b)2r 2cs+
_`
vxxc−(uxx−2u 0)s

ab
r−2Vzs(a 1s+a 2c)=0 ,

(3.5c)2r 2cs+
cd
uyys−(vyy−2v 0)c

ef
r−2Vzc(a 1c−a 2s)=0.

(Equation (3.5a) is also derived in [9,20]). Equations (3.5a-c), after substituting for Vz

from (3.3c), form three equations in the two unknowns: r, θ. Therefore, to solve the
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image flow equations, first we solve for θ by solving the cubic equation (3.5a). Then r is

obtained as the common root of the two quadratic equations (3.5b,c). If there is no com-

mon root then the corresponding solution of θ is not valid. Thus there is one extra con-

straint and this in general results in a unique solution. Corresponding to each solution of

r and θ obtained by solving equations (3.5a-c) we get one solution for the image flow

equations (from 3.3a-h,3.4a-c)

In general we can obtain an explicit solution for r by eliminating the term 2r 2cs

from equations (3.5b,c). The solution is

(3.6)r =
(vyy−2v 0+vxx)c−(uxx−2u 0+uyy)s

2Vz

gh
s(a 1s+a 2c)−c(a 1c−a 2s)

ij
k k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k .

This solution should further satisfy either (3.5b) or (3.5c) in order for it to be acceptable.

If either the denominator or the numerator on the right hand side is zero, then the above

expression degenerates and cannot be used to solve for r. This is because we are solving

for a case where the translation parallel to the image plane is finite and non-zero. In this

case we have to go back to (3.5b,c) to obtain r. A complete computational algorithm for

solving the image flow equations is given in Appendix C.

4. Conditions for the presence of multiple interpretations

The number of solutions for the image flow equations (2.11a-l) is equal to the

number of solutions for r,θ obtained by solving equations (3.5a-c). Therefore conditions

for the occurrence of multiple solutions can be obtained by an exhaustive analysis of

these three equations. This analysis turns out to be a long and tedious exercise in algebra.

This analysis is given in Appendix D. A summary of the analysis is given below.

Since equations (3.5a-c) form an over-constrained system of equations (three equa-

tions in two unknowns) the solution is in general unique (Theorem 9, Appendix D), but

multiple solutions are possible as the equations are non-linear. Equation (3.5a) is a cubic

equation involving only θ and therefore is easily solved. This gives at most three solu-

tions for θ (in the interval −π/2 < θ ≤ π/2). We find (in Lemma 1 of Appendix D) that for
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ovoid surfaces (i.e. convex or bowl shaped surfaces) only one of the three roots of equa-

tion (3.5a) is real and therefore we obtain a unique solution for θ. For cylindrical surfaces

up to two, and for saddle shaped surfaces up to three solutions for θ are possible (Lemma

1 of Appendix D). Note that, for a given θ we can immediately solve for Vz and ΩZ from

relations 3.3c,d. Therefore, given θ, equations (3.5b) and (3.5c) reduce to simple qua-

dratic equations in r and therefore can be easily solved. The common root(s) of these

two equations is (are) the solution(s) for r. If there is no common root then the given

solution for θ is not acceptable. If the roots of the two quadratic equations obtained from

equations (3.5b,c) are identical (which is the case when the coefficients of the two equa-

tions are proportional) then we have two solutions for a given θ. This is found to be the

case (Theorems 7 and 8 in Appendix D) when the direction of translation, the surface

normal and the optical axis all lie in a common plane. However, in this case, the solution

for r becomes unique when the two roots of the quadratic equation (3.5b or 3.5c) are

equal. In one case (Theorem 8, Appendix D) the two roots become equal when the direc-

tion of translation is parallel to the surface normal.

There are two special situations when equations (3.5b,c) reduce to a single linear

equation in r (as compared to two quadratic equations in a general case) for a given θ : (i)

a specular saddle surface (i.e. the tangent plane to the surface is frontal or parallel to the

image plane and the surface itself is saddle shaped) with mean scaled curvature equal to

−1 (Theorem 5 of Appendix D), and (ii) a saddle or a cylindrical surface with mean

scaled curvature equal to −1, no translation along the optical axis, and the slopes and cur-

vatures satisfy a certain condition (D17) (Theorem 6 of Appendix D). In these situations

all solutions for θ obtained by solving equation (3.5a) are acceptable (Theorem 3 of

Appendix D) and each of these results in one solution for the image flow equations. In

fact it is found that for case (i) above three solutions exist (Theorem 5 of Appendix D)

and for case (ii) up to two solutions are possible (Theorem 6 in Appendix D).

There is one case where there are two solutions for θ and for each of these there are

two solutions for r, thus leading to a total of four solutions. This occurs when there is a

rare coincidence (relations D6c,D23) of the translation vector, slopes, and curvatures (see
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Theorem 7, Appendix D). However the presence of four solutions is an artifact of using

only up to second order image flow parameters. Use of higher order flow parameters

should prevent any more than three solutions according to Maybank [12]. A more pre-

cise account of the nature of the solution in various cases follows.

4.1 Overall summary of the nature of the solutions

This subsection summarizes the detailed results presented in Appendices B, and D.

The most important results of these appendices are the explicit statement and proofs of

all the conditions for the occurrence of up to four solutions, four being the maximum

possible. Following is a summary of the nature of the solutions to the image flow equa-

tions (2.11a-l) in different cases. Here we list the different cases in a sequential order

such that the occurrence of a particular case is detected by the absence of the previous

cases and checking for the satisfaction of one or more constraints on the image flow

parameters.

(i) If there is no translation, the structure parameters are undetermined and the

solution is unique.

(ii) If either there is no translation parallel to the image plane or the surface is

planar and frontal, then there can be up to three solutions for the image flow equa-

tions.

(iii) If the surface is planar then there are two solutions with the exception of the

following cases:

(a) There is no translation along the optical axis.

(b) Translation is parallel to the surface normal.

(iv) There are three solutions if the surface is a specular saddle and the mean

scaled curvature is −1 (i.e. Zxy
2 −ZxxZyy > 0, ZX = ZY = 0 and (Zxx+Zyy)/2 = −1.).

(v) There are two solutions if the surface is saddle or cylindrical (i.e.

Zxy
2 −ZxxZyy ≥ 0), there is no translation along the optical axis and the mean scaled

curvature is −1 except when the translation vector, surface normal and the optical

axis all lie in a plane; in this case the solution is unique.
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(vi) There can be up to four solutions if the translation vector, surface normal and

the optical axis all lie in a plane.

(vii) In cases other than the ones listed above the solution is unique.

5. Error sensitivity and numerical examples

In the compuatational approach described here, the solution for the image flow

equations is given by explicit analytic expressions. Therefore, a theoretical sensitivity

analysis can be done by taking error differentials. If the uncertainty in the input image

flow parameters are known, then approximate bounds on the maximum error in the 3D

structure and motion parameters can be estimated. This analysis holds for all cases. In

contrast, the sensitivity analyses of previous approaches are based on a few numerical

examples; a general analysis was not possible as closed-form solutions were not available

[1,2,21,22].

The error in the output 3D structure and motion parameters depend on the uncer-

tainty in the input flow parameters. The errors in the flow parameters in turn depend on

two factors: the image quality (in terms of spatial resolution, gray level resolution, and

the noise level in grey level and pixel registration) and the computational method

employed in estimating the flow derivatives. If a tolerance is specified for the output

structure and motion, then it is in principle possible to obtain an approximate idea of the

required image quality.

A sensitivity analysis based on error differentials gives only the worst case

behavior. Therefore such an analysis is often inadequate in practical applications. A

more accurate analysis is difficult unless a domain of application is specified. This

difficulty arises from the non-linear nature of the problem.

5.1 Estimation of maximum absolute error

The maximum absolute error in the computation of an analytic function can be

estimated using the total differential of the function (cf. [14]). Let y = f(x 1 ,x 2 , ....,xn) be
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an analytic function and ∆x 1 ,∆x 2 , .....,∆xn be the errors in the corresponding arguments.

Then, for sufficiently small absolute values of ∆x 1 ,∆x 2 , .....,∆xn , the error ∆y in y can be

shown to satisfy the relation

(5.1)
l
∆y m ≤ n

∂x 1

∂ fo o
o
oqp p∆x 1 r + s ∂x 2

∂ ft t
t
tvu u∆x 2 w + .... + x
∂xn

∂ fy y
y
yqz z∆xn {
Relation (5.1) can be used to estimate the maximum absolute errors in the scene parame-

ters given the uncertainties in the image parameters. For example, consider the estima-

tion of error in tanθ by solving the cubic equation (3.5a). Let the cubic equation be

represented by

(5.2)x 1+x 2y+x 3y 2+x 4y 3 = 0 .

Then, using relation (5.1) we can obtain

(5.3)
|
∆y } ≤ ~

x 2 + 2x 3y + 3x 4y 2 ��∆x 1 � + �∆x 2 � �y � + �∆x 3 � �y 2 � + �∆x 4 � �y 3 �� �
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
� .

Therefore, if the uncertainties in the coefficients of the cubic equation are given, then the

uncertainty in the roots can be estimated. Errors in the other unknowns can be estimated

similarly.

The actual error is usually much smaller than that given by relation (5.1). We give

here the result of an experiment where the correct solution and the solution obtained from

noisy input are given. This example is included to give an idea about the sensitivity of

the approach. Bounds on the error are not estimated.

Example: The estimated image flow parameters for a curved surface in rigid motion

using the velocity functional method (Waxman and Wohn, [22]) are given (from Wohn

[23]). The estimation was based on a noisy (5%) normal velocity field along a contour.

The contour spanned approximately a ten degree field of view. The result of solving the

image flow equations in this case is given below.

Noisy input image flow parameters:
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u 0 : -6.017523 ux : 2.999429 uy : -0.088125

uxx : 3.009457 uxy : 0.023188 uyy : 3.052289

v 0 : -3.965109 vx : 0.087267 vy : 2.997560

vxx : 2.020104 vxy : -0.015687 vyy : 2.046979

Solution of image flow equations:

(Vx ,Vy ,Vz) : ( 5.991399 3.984022 2.998529 )

(Ox ,Oy ,Oz) : ( 0.018913 0.026124 -0.087696 )

(ZX ,ZY) : (-0.000008 -0.000005 )

(Zxx ,Zyy ,Zxy) : ( 0.506775 0.001294 0.509323 )

Original scene parameters:

Z 0 : 1.000000

(Vx ,Vy ,Vz) : ( 6.000000 4.000000 3.000000 )

(Ox ,Oy ,Oz) : ( 0.034966 0.017453 -0.087266 )

(ZX ,ZY) : ( 0.000000 0.000000 )

(Zxx ,Zyy ,Zxy) : ( 0.500000 0.00000 0.500000 )

Here we see that that the computed solution compares well with the original values.

In general it has been observed that the error in the input image flow parameters

recovered by Wohn [23] are large for curved surfaces, perhaps due to the inadequate spa-

tial resolution of the images. Consequently, the error in the output 3D parameters are

large.

5.2 Numerical examples of multiple solution cases

The solution method described here was implemented on a Symbolics 3600 com-

puter. Random values of motion and structure parameters were generated and the image

flow parameters were computed using relations (2.11a-l). These image flow parameters

were given as input to a program to solve the image flow equations. The program was
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successfully run on hundreds of test examples. Many of these examples were specifically

designed (using the results in Appendix B and D) to produce the cases of multiple

interpretations. Some non-trivial examples of these cases are given here. In each case the

solutions of (θ,r) are given. For each (θ,r), the corresponding solution for the structure

and motion can be obtained using relations (3.3a-h,3.4a-c). The validity of the solution

thus obtained can be easily verified by computing the image flow parameters using rela-

tions (2.11a-l) and comparing them to the input flow parameters. More details on numer-

ical examples can be found in [15]. (All values are rounded to the sixth decimal place.)

Example 1 : For a curved surface with non-zero translation parallel to the image plane,

there are three solutions if the surface is a specular saddle and the mean curvature is −1.

Input image motion parameters:

u 0 : 9.560000 v 0 : 13.570000 ux : -9.140000 vx : 8.960000

uy : -8.960000 vy : -9.140000 uxx : 14.563000 vxx : -3.402000

uxy : -5.825180 vxy : -40.404280 uyy : 4.557000 vyy : 30.542000

The set of solutions for (θ, r):

{ (-0.035108 , -50.740273) , (1.381851 , -10.399291) , (1.329556 , -7.785441) }.

Example 2 : For a curved surface with non-zero translation, there are two solutions if it

is saddle or cylindrical, there is no translation along the optical axis, its mean scaled cur-

vature is −1 and the slopes and curvatures are related by relation (D17).

Input image motion parameters:

u 0 : -13.090000 v 0 : 10.130000 ux : -2.025000 vx : 6.870000

uy : -0.618000 vy : -3.050400 uxx : 2.625994 vxx : -12.576974

uxy : -23.874837 vxy : 10.120568 uyy : -28.805994 vyy : 32.836974
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The set of solutions for (θ, r):

{ (-1.187512 , 31.733480) , (-0.545848 , 4.738576) }

Example 3 : There are four solutions when the vector given by (slope along the X-axis,

slope along the Y-axis, 1+mean scaled curvature) is parallel to the translation vector.

Input image motion parameters :

u 0 : -8.300000 v 0 : 2.530000 ux : 8.886919vx : -4.112594

uy : -1.332594 vy : 3.122606uxx : -30.694250 vxx : 3.251107

uxy : -12.390270 vxy : -4.858356 uyy : 14.094250 vyy : 1.808893

The set of solutions for (θ, r):

{ (-0.378468 , 2.733441) , (-0.378468 , -5.917901 )

( 1.192328 , -15.826524) , ( 1.192328 , -4.995007 ) }.

6. Conclusion

We have described a new method for interpreting image flow produced by a rigidly

moving curved surface. We have also stated and proved conditions for the presence of

multiple interpretations. Previous work along with the work reported here leads us to

believe that the (local) analysis of instantaneous image flow produced by rigidly moving

surfaces is now well understood. We now know how to formulate the image flow equa-

tions, how to solve them, and what are the situations for which multiple interpretations

exist. However, practical applications of this flow analysis requires very high quality

images (in terms of spatial and gray level resolution) and large computational power

unless severe restrictions are imposed on the shape and motion of surfaces in the scene

(e.g.: planarity of surfaces, pure translatory motion with no rotation, etc). This is evident

as second order image flow derivatives are needed to recover the surface structure. One

way to deal with this problem is not to restrict the analysis to instantaneous flow, but use

temporal variation of the flow as well. A systematic method to incorporate temporal
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information in image flow analysis is described in [15]. It is found that only first order

spatial and temporal derivatives of image flow are sufficient to recover the structure and

rigid motion of a surface. Further, the image flow problem has been formulated for arbi-

trary shapes and transformations of surfaces (e.g. non-rigid, non-uniform motion, etc.).

Now we are focusing our efforts on obtaining robust computational techniques for image

flow analysis.
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APPENDIX A. Expressing a surface in terms of image coordinates

Here we give a method of deriving the function that maps image points (x,y) on the

image plane to points on the surface in the scene along the optical axis. Since the image

at a point (x, y) on the image plane corresponds to the point (xZ, yZ, Z) in the scene, our

goal is to express Z in terms of (x, y) and the surface structure parameters. In [9,21] Z

was so expressed only up to second order terms of (x, y). Below we give a systematic

method which can be used to express Z up to any desired order of terms in (x, y).

Assuming that the surface is smooth and is given by Z = f (X,Y) we can expand

f (X,Y) in a Taylor series:

(A1)Z = a 0+a 1X+a 2Y+a 3X 2+a 4XY+a 5Y 2+a 6X 3+.....

Using equations (2.1a,b) and equation (A1) we can obtain an implicit expression for Z in

terms of the image coordinates x, y :
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(A2)Z = a 0 + Z (a 1x + a 2y + Z� � ( a 3x 2 + a 4xy + a 5y 2 + Z (a 6x 3 + .....) ) )

Now we systematically substitute for the appropriate Zs on the right hand side to elim-

inate second and higher order terms in Z on the right hand side of equation (A2). Substi-

tuting the entire right hand side of equation (A2) for the Z underlined in equation (A2)

we get

(A3)Z = a 0+Z (a 1x+a 2y+(a 0+Z (a 1x+a 2y+....))

(a 3x 2+a 4xy+a 5y 2+Z (a 6x 3+.....)))

Rearranging terms in equation (A3) we have

(A4)Z = a 0+Z(a 1x+a 2y+a 0a 3x 2+a 0a 4xy+a 0a 5y 2+a 0Z� � (a 6x 3+.....)

+Z� � (a 1x+a 2y+....)(a 3x 2+a 4xy+a 5y 2+Z(a 6x 3+.....)))

We again substitute for the Zs underlined in equation (A4) the entire expression on the

right hand side of equation (A4):

(A5)Z = a 0+Z(a 1x+a 2y+a 0a 3x 2+a 0a 4xy+a 0a 5y 2+(a0
2a 6+a 0a 1a 3)x 3+...).

Continuing this recursive substitution procedure, Z can be expressed explicitly in terms

of the image coordinates x, y to any required order of terms. Using O 3(x,y) to denote

third and higher order terms equation (A5) can be written as

(A6)Z = a 0+Z (a 1x+a 2y+a 0a 3x 2+a 0a 4xy+a 0a 5y 2+O 3(x, y)) .

Rearranging terms in equation (A6) we get

(A7)a 0 = Z (1−a 1x−a 2y−a 0a 3x 2−a 0a 4xy−a 0a 5y 2−O 3(x,y)) .

Equation (A7) can be used to obtain an expression for Z which is explicit up to second

order terms:

(A8)Z = a 0 [1−a 1x−a 2y−a 0a 3x 2−a 0a 4xy−a 0a 5y 2−O 3(x,y)]−1 .

APPENDIX B. Some degenerate cases and conditions
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In this appendix we mainly consider some degenerate cases. Conditions for the

presence of these cases are given in terms of the image flow parameters and in each case

the solution of the image flow equations is given. This enables us to analyze a general

case by precluding the occurrence of these degenerate cases. This strategy of analysis is

almost a necessity due to the non-linear nature of the image flow equations.

Below we systematically consider the different cases in a sequential order. The

solution is presented in a sequence of theorems and lemmas. Typically, a theorem or a

lemma gives the solution when a specified condition is true. The condition part usually

specifies that the condition for none of the preceding theorems or lemmas is true but a

certain condition specific to this (theorem/lemma) holds. This style of presentation sug-

gests an implementation algorithm based on testing for conditions on the image flow

parameters. Whenever the proof of a theorem or a lemma is obvious or simple we have

not included the proof here.

B1. Some degenerate cases

Theorem 1 : The condition

(B1)ux=vy=uy+vx=uxx−2u 0=u 0−vxy=vyy−2v 0=v 0−uxy=uyy=vxx=0.

is true if and only if there is no translation, i.e. Vx=Vy=Vz=0.

Lemma 1a : Under the condition stated in the above theorem the solution of the image

flow equations is

(B2a)ZX , ZY , Zxx , Zyy and Zxy are indeterminate ,

(B2b)(Vx , Vy , Vz) = (0, 0, 0) , and

(B2c)(ΩX , ΩY , ΩZ) = (v 0 , −u 0 , uy) .

Theorem 2 : The condition under Theorem 1 is false and
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(B3)(ux−vy=uy+vx=uxx−2vxy=vyy−2uxy=uyy=vxx=0)

if and only if one of the following is true:

(i) there is no translation parallel to the image plane, i.e.

(B4a)Vx = Vy = 0

(ii) the surface is frontal, planar, and Vx=0, i.e.

(B4b)ZX = ZY = Zxx = Zyy = Zxy = Vx=0 .

(iii) the surface is frontal, planar, and Vy=0, i.e.

(B4c)ZX = ZY = Zxx = Zyy = Zxy = Vy=0 .

Lemma 2a : Under the conditions of the above theorem there can be up to three solutions

for the image flow equations, one solution each for the three cases (B4a),(B4b), and

(B4c). The solutions are

(B5a)(i) Zxx , Zyy and Zxy are indeterminate ,

(B5b)(Vx , Vy , Vz) = (0, 0, ux) ,

(B5c)(ΩX , ΩY , ΩZ) = (v 0 , −u 0 , uy) ,

(B5d)(ZX , ZY) = �� (u 0−vxy)/ux , (v 0−uxy)/ux

��

(B6a)(ii) ZX = ZY = Zxx = Zyy = Zxy = 0 ,

(B6b)( Vx , Vy , Vz) = (0, uxy−v 0 , ux) ,

(B6c)(ΩX , ΩY , ΩZ) = (uxy , −vxy , uy) ,

and

(B7a)(ii) ZX = ZY = Zxx = Zyy = Zxy = 0 ,
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(B7b)( Vx , Vy , Vz) = (vxy−u 0 , 0, ux) ,

(B7c)(ΩX , ΩY , ΩZ) = (uxy , −vxy , uy) .

B2. Condition for the moving surface to be planar

Theorem 3 : Conditions under Theorem 1 and Theorem 2 are both false and

(B8)(uyy=vxx=uxx−2vxy=vyy−2uxy=0)

if and only if the surface is planar, and there is a finite translation parallel to the image

plane, i.e.

(B9a)Zxx = Zyy = Zxy = 0 ,

(B9b)Vx ≠ 0 OR Vy ≠ 0 .

This case of planar surfaces is treated elsewhere (e.g.: [16]).

B3. Condition for the moving surface to be curved

Theorem 4 : If conditions under Theorem 1, Theorem 2, and Theorem 3 are all false,

then the surface is curved (i.e. at least one of the curvatures is non-zero) and translation

parallel to the image plane is non-zero; i.e.

(B10a)( Zxx≠0 OR Zyy≠0 OR Zxy≠0 ) AND

(B10b)Vx ≠ 0 OR Vy ≠ 0 .

In the following discussion the condition part of the above theorem (i.e. conditions under

Theorem 1, Theorem 2, and Theorem 3 are all false) will be referred to as the curved-

surface- condition.

APPENDIX C. Solving the image flow equations

Throughout this appendix we assume that the surface in motion is curved (i.e. at

least one of the curvatures is non-zero), and translation parallel to the image plane is not
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zero. Conditions for the presence of this case in terms of the image flow parameters is

given in Theorem 4 of Appendix B.

We give here a method to solve the image flow equations by first solving for θ, then

for r, and then for the other unknowns.

C1. Solution for orientation and motion in terms of r and θθ

Theorem 0: Suppose that translation parallel to the image plane is not zero and let r and θ

be such that

(C1a,b)Vx ≡ r cosθ and Vy ≡ r sinθ for −π/2 < θ ≤ π/2 .

Then, using the notation

(C2a,b)s ≡ sinθ and c ≡ cosθ ,

the motion and orientation are given by relations (3.3a-h).

Proof : Relations (3.3a,b,g,h) are easily obtained from relations (2.11a,b) and (C1a,b).

From relations (3.2a,b), (2.11c-f), and (C1a,b) we can get

(C3a,b)a 1 = rcZY + rsZX and a 2 = rcZX − rsZY .

Solving for ZX and ZY from above equations, we get relations (3.3e,f). Now, from rela-

tions (2.11c), (C1a), and (3.3e) we can get

(C4a)Vz = ux−a 1cs−a 2c 2 .

Or, using relation (3.2b) and the identity s 2+c 2=1,

(C4b)Vz = ux(s 2+c 2)−a 1cs−a 2c 2 .

Relation (3.3c) can be obtained from the above relation. The derivation of relation (3.3d)

is similar to that of relation (3.3c) �
C2. Solution for curvatures

Theorem 1: Suppose that the curved-surface-condition is true. Then the solution(s) of
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the curvatures are given in terms of θ and r by relations (3.4a-c).

Proof : In equation (2.11g) we substitute for Vx and ΩY from relations (3.3a,h), multiply

the resulting equation by c and rearrange terms to get

(C6a)rc 2 Zxx = uxxc − 2u 0c − 2rc 2 + 2VzZXc.

In equation (2.11j) we substitute for Vy from (3.3b) and multiply the resulting equation

by s to get

(C6b)rs 2Zxx = vxxs .

Adding equations (C6a,b) and simplifying we can get equation (3.4a).

Derivation of equation (3.4b) is similar to that of (3.4a) above. In this case we mul-

tiply (2.11l) by s, (2.11i) by c, add the resulting equations, do appropriate substitutions,

and simplify to get (3.4b).

From equations (2.11g,k,3.3a,b) we get

(C7a)uxx−2vxy = rcZxx − 2rsZxy

From equations (2.11j,3.3b) we have

(C7b)Zxxs = vxx /r.

Multiplying (C7a) by s and using (C7b) we get

(C7c)s(uxx−2vxy) = cvxx − 2rs 2Zxy .

Now we use equations (2.11l,h,3.3a,b) to get

(C8a)vyy−2uxy = rsZyy − 2rcZxy .

From equations (2.11i,3.3a) we have

(C8b)Zyyc = uyy /r.

Multiplying (C8a) by c and using (C8b) we get

(C8c)c(vxx−2uxy) = suyy − 2rc 2Zxy .
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Adding (C7c,C8c) and simplifying we get (3.4c) �
C3. Constraints on r and θθ

Theorem 2 : When the curved-surface-condition is true, the parameters r and θ are

related to the image flow parameters by the relations (3.5a-c).

Proof : In equation (C7c) we substitute for Zxy from (3.4c) and simplify to get

(C9a)s(uxx−2vxy) = vxxc + s 3(uxx−2vxy) − s 3uyy + s 2c(vyy−2uxy) − s 2cvxx .

Using the identity s 2+c 2 = 1, this can be rewritten as

(C9b)s(uxx−2vxy) = vxxc + (1−c 2)s(uxx−2vxy) − s 3uyy

+ s 2c(vyy−2uxy) − (1−c 2)cvxx .

Simplifying the above equation and dividing by c 3 we get (3.5a).

In equation (2.11g) we substitute for Vx and ΩY from relations (3.3a,h), multiply

the resulting equation by s and rearrange terms to get

(C10a)rcs Zxx = uxxs − 2u 0s − 2rcs + 2VzZXs.

In equation (2.11j) we substitute for Vy from (3.3b) and multiply the resulting equation

by c to get

(C10b)rcsZxx = vxxc .

Subtract (C10b) from (C10a), substitute for ZX from (3.3e), and simplify to obtain (3.5b).

Derivation of equation (3.5c) is similar to that of (3.5b) above. In this case we mul-

tiply (2.11l) by c, (2.11i) by s, subtract the resulting equations, do appropriate substitu-

tions, and simplify to get (3.5c) �
C4. Summary of computational algorithm

First check if the input image flow corresponds to a degenerate case as discussed in

Appendix B, and if so, obtain the solution according to Appendix B. Otherwise first
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solve for θ by solving the cubic equation (3.5a) and then solve for r by simultaneously

solving equations (3.5b,c). Now, for each set of solutions obtained for θ, r, solve for the

other unknowns from relations (3.3a-h,3.4a-c).

If the input image flow parameters are in error due to noise, then there may be no

solution for θ and r which satisfies all three equations (3.5a-c). In this case we can solve

for θ and r by using only two of these three equations. If this gives multiple solutions

then we select the one which is closest to satisfying the third equation. In this solution

method the solution we obtain could be complex valued. For example the solution for r

obtained by solving a quadratic equation may have a small imaginary part. In this case

we may either ignore the imaginary part or take the magnitude to be the solution. In gen-

eral it will be necessary to use some heuristics to deal with noisy input data.

A note on solving polynomial equations in tanθ: while solving a cubic, quadric, or a

linear equation in tanθ, the coefficient of the highest power of tanθ may be zero. In this

case we can take one of the solutions for θ to be π/2 and then proceed to solve the next

lower order equation in tanθ. This gives correct results because we have assumed

−π/2 < θ ≤ π/2.

APPENDIX D. Conditions for multiple interpretations

In this section we give conditions for the presence of multiple interpretations for the

structure and motion of a moving curved surface. Throughout this section we assume that

we are dealing with a curved surface with non-zero translation parallel to the image

plane. The condition for this case in terms of the image flow parameters is given in

Theorem 4 of Appendix B.

The number of solutions to the image flow equations is equal to the number of solu-

tions for r and θ obtained by solving equations (3.5a-c). Therefore we analyze equations

(3.5a-c) exhaustively to derive the conditions for multiple interpretations.

D1. Solutions for θθ
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The following two lemmas are related to the nature of the solution for θ as deter-

mined by equation (3.5a). The results of these lemmas were known earlier [20].

Theorem 1 : The roots of the cubic equation (3.5a) are

(D1)tanθ =
Vx

Vy� �
� ,
Zyy

1� �
�
� (−Zxy±√� �������������Zxy
2 −ZxxZyy ) .

Proof : The coefficients of the cubic equation (3.5a) can be respectively expressed in

terms of the structure and motion parameters as

(D2)VxZyy , 2VxZxy−VyZyy , VxZxx−2VyZxy , −VyZxx .

Therefore, equation (3.5a) can be factored as

(D3)(Vx tanθ−Vy) (Zyy tan2θ+2Zxy tanθ+Zxx) = 0 .

The roots of the above equation are given by (D1) �
Lemma 1 : There is one real solution for θ if the surface is ovoid (i.e. bowl shaped),

there are two real solutions if the surface is cylindrical and there are three real solutions

if the surface is a saddle.

Proof : The shape of a surface can be inferred from the sign of the Gaussian curvature

(cf. [13]). The Gaussian curvature has the same sign as the expression

(D4)ZxxZyy−Z 2
xy .

If the sign is positive then the surface is ovoid, if it is zero then it is a cylinder (or a

plane) and if it is negative then it is a saddle. From this and the expressions for the solu-

tion of θ given by (D1) the proof is clear �
D2. Multiple interpretations due to multiple solutions for θθ
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Although equation (3.5a) may give up to three solutions for θ, in most cases only

one of them corresponding to the correct physical interpretation satisfies equations

(3.5b,c) for some real value of r. In the following we consider cases where θ has two or

more solutions. Theorem 2 to Lemma 3d correspond to this case.

D2.1 A necessary condition for multiple solutions to θθ

Theorem 2: For a given set of image flow parameters, the curved-surface-condition is

true, and

(D5a)(vyy−2v 0+vxx = 0) and

(D5b)(uxx−2u 0+uyy = 0)

if and only if one of the following is true :

(D6a)(i) (ZX = ZY = 0) and (Zxx+Zyy+2 = 0)

(D6b)(ii) (Vz = 0) and (Zxx+Zyy+2 = 0)

(D6c)(iii) (Vz≠0) and (Zxx+Zyy+2≠0) and

ZX

Vx� �
� =
ZY

Vy� �
� =
1+(Zxx+Zyy)/2

Vz���
�
�
�
�
���
�
�
�
�
(Note: Case (i) implies that the surface is frontal (or specular) and the mean scaled curva-

ture is −1; Case (ii) implies that there is no translation along the optical axis and the

mean scaled curvature is −1; Case (iii) implies that the direction of translation is parallel

to the vector: (ZX ,ZY ,1+(Zxx+Zyy)/2.)

Proof : From equations (2.11a,b,g,i,j,l) we have

(D7a)vyy−2v 0+vxx = Vy(Zxx+Zyy+2)−2VzZY and

(D7b)uxx−2u 0+uyy = Vx(Zxx+Zyy+2)−2VzZX .

Therefore, conditions (D5a,b) hold if and only if
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(D8a)Vy(Zxx+Zyy+2) = 2VzZY and

(D8b)Vx(Zxx+Zyy+2) = 2VzZX .

Now recall that Vx ≠ 0 or Vy ≠ 0 since r ≠ 0. Now consider the logical expression

(D 8a) and (D 8b) and �  (Zxx+Zyy+2=0) or (Zxx+Zyy+2≠0)¡¢ and

(D9)(Vx≠0 or Vy≠0) and (Vz=0 or Vz≠0).

Expanding the above logical expression and simplifying, we get the disjunction of the

three clauses (D6a-c). £
Theorem 3 : Under the conditions of Theorem 2 when either (D6a) or (D6b) is true equa-

tions (3.5b,c) are independent of θ, i.e. they cannot be used to solve for θ (nor do they

give rise to any constraint on θ ).

Proof : For the cases (D6a,b) we get from equations (3.5b,c) the following constraint on

θ :

(D10)(vyy−2v 0+vxx) cosθ = (uxx−2u 0+uyy) sinθ .

The above constraint is identically true for all values of θ under the conditions (D5a,b). ¤
If conditions of Theorem 2 are true then we can determine which one of the three

conditions (D6a-c) is actually true in that order by further testing the image flow parame-

ters.

Theorem 4 : Under the conditions of Theorem 2,

(i) case (D6a) is true if and only if a 1 = a 2 = 0,

(ii) case (D6a) is false and case (D6b) is true if and only if

(D11)tanθ =
2ux

a 1±√¥ ¥�¥�¥�¥�¥�¥a1
2 −4uxvy¦ ¦
¦
¦
¦
¦
¦
¦
¦
¦
¦
¦
¦
¦ .

(iii) cases (D6a,b) are false and (D6c) is true if and only if
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(D12)tan2θ = a 1/a 2 .

Proof : Case (i) is obvious from equations (3.3e,f). Case (ii) is easily proved by equat-

ing the expression (3.3c) for Vz to zero. To prove the last case, we solve for θ from equa-

tions (3.5b,c) as follows. Eliminating the term 2r 2cs from the expressions (3.5b,c) and

rearranging terms, we get the following constraint on θ :

(D14)r §¨ (vyy−2v 0+vxx)c−(uxx−2u 0+uyy)s©ª
= 2Vz

«¬
s(a 1s+a 2c)−c(a 1c−a 2s)­® .

Under the conditions (D5a,b), the left hand side of equation (D14) is identically zero.

Therefore equating the right hand side to zero we get equation (D12). ¯
D2.2 Triple solution theorem

Theorem 5 : Under the conditions of Theorem 2, equations (2.11a-l) can have three solu-

tions if and only if case (D6a) is true (i.e. the surface is frontal and the mean scaled cur-

vature is -1) and the surface is a saddle, i.e.

(D15)Z 2
xy−ZxxZyy>0 .

Proof : In this case, all the values of θ computed by solving equation (3.5a) are valid

since there is no other extra constraint on θ (from Theorem 4). Under condition (D15)

there are three solutions for θ given by relations (D1). For each value of θ this case

results in a unique value for r obtained by solving (3.5b) or (3.5c) given by

(D16)r = −
2
1° °²±³

s

vxx´
´
´ +
c

uyyµ µ
µ
µ ¶ ·¸ .

Therefore, there are three solutions in this case. ¹
D2.3 Double solution theorem 1

Theorem 6 : Under the conditions of Theorem 2 suppose that case (D6a) is false. Then
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equations (2.11a-l) can have up to two solutions if case (D6b) is true (i.e. translation

along the optical axis is zero and the mean scaled curvature is −1) and the two solutions

of equation (D11) are also the roots of the the cubic equation (3.5a).

Proof : In this case equations (3.5a) and (D11) are the only constraints on θ. For each

solution common to these equations we get a unique value for r obtained by solving

equations (3.5b,c) given by relation (D16). Therefore there can be up to two solutions

for the image flow equations (2.11a-l). º
Lemma 2 : Under the conditions stated in Theorem 6 the structure parameters of the sur-

face satisfy (D6b and) the following constraint:

(D17)
ZX

ZY» »
» =
Zyy

1¼ ¼
¼
¼ (−Zxy±√½ ½�½�½�½�½�½�½Zxy
2 −ZxxZyy ) .

Proof : Substituting for terms on the right hand side of equation (D11) in terms of the

structure and motion parameters (from relations (2.11c-f) and (3.2a)) we can show that

the two solutions for θ are

(D18)tanθ =
Vx

Vy¾ ¾
¾ ,
ZX

ZY¿ ¿
¿ .

Since these are also the roots of the cubic equation (3.5a), from Theorem 1 we conclude

that the structure parameters are related as in (D17). À
As can be seen from the expressions for the two roots in relation (D18), the solution

for θ becomes unique when VxZY = VyZX , i.e. the translation vector (Vx , Vy , Vz), the sur-

face normal (ZX , ZY , −1) and the optical axis (the Z-axis) all lie in a plane.

D2.4 The four solution theorem

Theorem 7 : Under conditions of Theorem 2 if the cases (D6a,b) are false and the two

solutions of equation (D12) for θ are also the roots of the cubic equation (3.5a) then up to

32



four solutions are possible for the image flow equations (2.11a-l).

Proof : Here the common solutions of the equations (3.5a) and (D12) are the valid solu-

tions for θ. Using the trigonometric identity

(D19)tan2θ =
1−tan2θ

2tanθÁ Á
Á
Á
Á
Á
Á
Á
we can show that the solutions of equation (D12) are

(D20)tanθ =
a 1

−a 2±√Â�Â�Â�Â�Â�Âa 2
1+a 2

2Ã Ã
Ã
Ã
Ã
Ã
Ã
Ã
Ã
Ã
Ã
Ã
Ã
Ã
Ã .

Expressing the terms on the right hand side of equation (D20) in terms of the structure

and motion parameters (using relations (2.11c-f) and (3.2a,b)), the two roots for θ in this

case can be shown to be

(D21)tanθ =
Vx

VyÄ Ä
Ä , −
Vy

VxÅ Å
Å ÆÇ
È OR

ZX

ZYÉ É
É , −
ZY

ZXÊ Ê
Ê Ë ÌÍ .

Note that the two roots are such that their absolute difference is equal to π/2 radians. For

each of the above two roots we may solve for r from either (3.5b) or (3.5c). In this case

equations (3.5b) and (3.5c) are identical and can be written as

(D22)r 2+
2
1Î Î ÏÐÑ s

vxxÒ
Ò
Ò +
c

uyyÓ Ó
Ó
Ó Ô ÕÖ r−Vz 2cs

a 1× ×
×
× = 0 .

Equation (D22) gives up to two solutions for r for each θ. Therefore up to four solutions

are possible in this case. Ø
Lemma 3a : Under the conditions stated in Theorem 7 the structure parameters satisfy

(D6c and) the following constraint:

(D23)−
ZY

ZXÙ Ù
Ù =
Zyy

1Ú Ú
Ú
Ú (−Zxy±√Û Û�Û�Û�Û�Û�Û�ÛZxy
2 −ZxxZyy ) .
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Proof : Since the two roots for θ given by (D21) are also the roots of the cubic equation

(3.5a), from Theorem 1 we see that relation (D23) should be true of the structure parame-

ters. Ü
The image flow equations always have one solution which corresponds to the actual

shape and motion of the surface in the physical world. Therefore when there are multiple

solutions it is natural to try to relate the spurious solutions to the actual shape and motion

of the surface. In order to do this we will adopt the following notation: we will denote

the parameters corresponding to the actual or the ‘‘correct’’ solution by appending a ‘‘0’’

to the subscripts of the respective parameters, and we will denote the spurious solutions

by appending distinct integers to these subscripts. For example, r 0 denotes the actual

translation parallel to the image plane whereas r 1 , r 2 , ..., etc. denote the spurious solu-

tions for the translation parallel to the image plane. Also, for the case considered in

Theorem 7 and other cases (considered later) where the translation vector, the surface

normal, and the optical axis all lie in a plane, we will define a quantity k such that

(D24)ZX = kc and ZY = ks .

Lemma 3b : Under the conditions stated in Theorem 7, the spurious solutions are related

to the actual shape and motion parameters by

(D25a,b)θ1 = θ0±π/2 , r 1 = −Vz 0k 0 ,

and r 2 and r 3 are the roots of the quadratic equation

(D25c)r 2+
2
1Ý Ý Þßà ±c 0

s 0Zxx 0á á
á
á
á
á
á +
+â s 0

c 0Zyy 0ã ã
ã
ã
ã
ã
ã ä åæ r+(Vz 0r 0k 0) = 0 .

Proof : Relation (D25a) is easily derived from the two solutions for θ given by (D21)

(note that tanθ0 = Vy /Vx). In order to derive (D25b), in equation (D22) we substitute

s←s 0 and c←c 0 , and substitute for all the image motion parameters in terms of r 0 and

θ0 (using relations (3.3a,b),(2.11i,j), (2.11e,f) and (D24)). Then using relation (D6c) we
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can derive

(D26)r 2+(Vz 0k 0−r 0)r−(Vz 0r 0k 0) = 0 .

The two roots of the above quadratic equation are r 0 and −Vz 0k 0 . Hence the relation

(D25b). To derive relation (D25c) we first substitute s←s 1 , c←c 1 in relation (D22).

Then, as before, we substitute for all the image motion parameters and θ1 in terms of r 0

and θ0 to get relation (D25c). ç
Lemma 3c : Under the conditions stated in Theorem 7, for θ=θ0 the solution for r is

unique when the direction of translation is parallel to the surface normal.

Proof : In this case the solutions for r are the roots of the quadratic equation (D26) which

are r 0 and −Vz 0k 0 . Using relations (3.3a,b) and (D24) we can easily show that these two

roots are equal when the translation vector (Vx ,Vy ,Vz) is parallel to the surface normal

vector (ZX ,ZY ,−1). è
Lemma 3d : Under the conditions stated in Theorem 7, the spurious solution for θ given

by relation (D25a) is a valid solution if and only if the roots of the quadratic equation

(D25c) are real. é
Using relations (D6c), (D23) and the condition that the roots of the quadratic equa-

tion (D25c) be real we have constructed an algorithm to generate numerical examples

which result in up to four solutions for the image flow equations. One such example is

given in Section 5 (Example 3).

D3. Multiple interpretations due to multiple solutions for r

In Section D2.4 we have seen one case where multiple interpretations arise because

of multiple solutions for both θ and r. Next we consider another case of multiple

interpretations characterized by a unique solution for θ but two solutions for r.
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D3.1 Double solution theorem 2

Theorem 8 : Suppose that the curved-surface-condition is true and (D5a,b) are false.

Then a solution for θ (obtained by solving equation (3.5a)) gives two solutions for r (and

consequently for the image flow equations (2.11a-l)) if and only if the following condi-

tions are true of θ :

(D27a,b)tanθ =
uxx−2u 0+uyy

vyy−2v 0+vxxê
ê
ê
ê
ê
ê
ê
ê
ê
ê
ê and tan2θ =
a 2

a 1ë ë
ë

Proof : We will first prove the only if part. For a given θ we solve for r by solving the

two quadratic equations (3.5b,c) (each of which may yield up to two roots) and take the

root(s) common to both as the solution. If there is no common root or the roots are com-

plex then the given θ is not a valid solution. If there is one common root then the solu-

tion for r is unique. If both roots are (real and) common then the coefficients of the two

quadratic equations have to be proportional (i.e. the two quadratic equations become

linearly dependent). Equating the ratios of the corresponding coefficients of the two

equations (3.5b,c) we have

(D28)
2cs
2csì ì
ì
ì =

uyys−(vyy−2v 0)c

vxxc−(uxx−2u 0)sí í
í
í
í
í
í
í
í
í
í
í
í
í
í =
c(a 1c−a 2s)

s(a 1s+a 2c)î î
î
î
î
î
î
î
î
î
î = 1 .

Therefore, equating the numerator and the denominator of the second term in equation

(D28) we get condition (D27a) and equating the numerator and the denominator of the

third term we get condition (D27b). The if part can be similarly proved. ï
Note that the equality of the numerator and the denominator of the third term in

equation (D28) together with (3.3a,b) and (3.3e,f) implies

(D29)tanθ = Vy /Vx = ZY/ZX .

Equation (D29) implies that the translation vector (Vx , Vy , Vz), the surface normal

(ZX , ZY , −1) and the optical axis (the Z-axis) all lie in a common plane. Also note that

we can check that there is no θ for which there are two solutions by first solving for θ

from equation (D27a) and checking for the validity of (D27b) (or, the right hand sides of
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equations (D27a) and (D27b) can be directly related by using the relation (D19) between

tanθ and tan2θ ).

In this case, the condition for the solution for r to be unique can be derived as fol-

lows: since equations (3.5b) and (3.5c) are linearly dependent, we add them to get the

following equation:

(D30)r 2+
4
1ð ð ñòó s

vxx−vyy+2v 0ô ô
ô
ô
ô
ô
ô
ô
ô
ô
ô +
c

uyy−uxx+2u 0õ
õ
õ
õ
õ
õ
õ
õ
õ
õ
õ ö ÷ø r−Vz 2cs

a 1ù ù
ù
ù = 0 .

In terms of the actual structure and motion parameters, the above equation can be shown

to reduce to equation (D26) whose roots are r 0 and −Vz 0k 0 . When these two roots are

equal we can show that the translation vector is parallel to the surface normal (see

Lemma 3c).

D4. Condition for uniqueness of interpretation

Theorem 9 : Suppose that the curved-surface-condition is true, (D5a,b) are false, and

there is no θ which satisfies (D27a,b) (i.e. the translation vector and the surface normal

do not lie in a plane) then there exists a unique solution for the image flow equations

(2.11a-l).

Proof : To prove this, we simply observe that there is always one solution for θ com-

puted by solving equation (3.5a) which corresponds to tanθ = Vy /Vx and this θ and the

corresponding r computed from, say, (3.5b) always satisfies the constraint equation

(3.5c). Multiple solutions are ruled out due to the previous theorems. ú
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