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A Hybrid Importance Function for Particle Filtering
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Abstract—Particle filtering has drawn much attention in recent
years due to its capacity to handle nonlinear and non-Gaussian dy-
namic problems. One crucial issue in particle filtering is the selec-
tion of the importance function that generates the particles. In this
letter, we propose a new type of importance function that possesses
the advantages of the posterior and the prior importance functions.
We demonstrate its use on the problem of blind detection in flat
fading channels and provide simulation results that show its effi-
ciency and performance.

Index Terms—Bind detection, non-Gaussian, , nonlinear, par-
ticle filtering, sequential signal processing.

1. INTRODUCTION

NRECENT years, particle filters [ 1] have drawn much atten-

tion in adaptive processing of nonlinear and non-Gaussian
systems. Problems pertaining to particle filtering are concerned
with making inferences in a sequential fashion on x;, the
unknowns at time ¢, based on yy.;, the observations from time O
to ¢. For nonlinear and non-Gaussian systems, the optimum so-
lutions require complex high-dimensional integrations, thereby
imposing great difficulties for the conventional approaches.
Based on the concept of sequential importance sampling
[1], particle filters can approximate the posterior distribution
p(X¢|yo:¢) regardless of the linearity and Gaussianity of the un-
derlying model. Consequently, they have become a prominent
algorithm for adaptive processing of complex systems [1].

A crucial issue in particle filtering is the selection of the im-
portance function. Two standard choices of importance func-
tions are the posterior and the ;)I'IOI' The posterior importance
function is defined as q(x;|x57) 1, y0:) = p(xe|x$) 1, ¥0:0)s
and the importance weights of the particles are obtained from

wi o w®p (ilx§1, ¥ 1) ()
where the superscript j denotes the j-th trajectory. The posterior
importance function is optimal in the sense that it minimizes the
variance of the importance weights. As a consequence, better
particles can be generated at time instant ¢ + 1 and better es-
timates produced at ¢t. However, a major difficulty in its use
is the calculation of the weights since analytical evaluation of
p(y+ |x((]j:t)_17 Yo:t—1) is required, which involves complex high-
dimensional integrations over x;. In addition, direct sampling
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from the posterior importance function may also be prohib-
ited. These difficulties prevent the posterior importance func-
tion from being widely used.
Therefore, most frequently it is the prior importance func-
tion that is used. The prior 1mp0rtance function is defined as
q(x¢ |x0 1 Y0t) = (xt|xt 1) and the weights associated are
computed according to

w( ) X wt(])ﬂ? (Yt|X§]):YO:t—1) . 2)
Compared with the posterior importance function, it is attractive
due to its simplicity in sampling from the prior densities and the
calculation of weights. Despite its simplicity, the prior impor-
tance function is very inefficient. Since no information from the
observations is used, the generated particles often come from the
tails of the posterior distributions, and as a result, the weights
have large variations and the estimation results are poor. Im-
proving stratagems including the auxiliary particle filter have
been proposed [2].

In this letter, we look beyond the above two choices and pro-
pose a new type of importance function, which is a hybrid of
the aforementioned importance functions. Since the proposed
importance function employs most recent observations, it gen-
erates better sets of particles than the prior importance func-
tion, and that altogether leads to more efficient particle filters.
Equally important, the proposed importance function is less re-
strictive than the posterior function and is thus applicable to a
wider range of problems.

II. HYBRID IMPORTANCE FUNCTION

Consider a situation where the use of the posterior impor-
tance function is extremely difficult. In the cases analyzed here,
we assume that the state parameters can be divided into two in-
dependent parts, e.g., X; = {xu, X9t }, where sampling from

(><2t|x2 ;1) and p(X1t|X§t) Xg4_1,Yo:t) can be carried out
easily. For such cases, we propose to use the following impor-
tance function

5 X(()JZ 1 Yo: t) (thlxgt)_l)

(€)
where x<] )isa sample from p(xzt|x2 ;+_1)- Apparently, (3) is
a hybrid between the posterior and the prior importance func-
tions. The computation of the weights of the particles generated
by the hybrid importance function is carried out as in (4), shown
at the bottom of the next page. We note from (4) that the distri-
bution p(y.|x5, x{) . yo._1) is critical in the computation
of the weights, and that therefore, its analytical form should be
available.

The advantage of the proposed hybrid importance function
over the posterior importance function is in the easy updating of
the weights. In addition, since the hybrid importance function

q(xt|xg{t)—17y0:t) :P(X1t|x
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includes information from the observations, it generates sam-
ples with smaller variance on the weights than the prior impor-
tance function.

The key to the applicability of this 1mportance function is the

assumption of possible sampling from p(x1¢ |x2t xéjt) 1, Yo:t)

and knowing the analytical form of p(yt|x2t), xg:t)fl,yoj_l)
(including the normalizing constant). Cases that fall within the
assumption, for instance, are the ones where given X, y; iS
linear in x1;. It should be noted that, although splitting states is
also seen in Rao—Blackwellised filters [3], [4] such as the mix-
ture Kalman filter [5], [6], the purpose of splitting in the hybrid
importance function is substantially different. In Rao—Black-
wellised filters, x1; are nuisance states, and Rao—Blackwellised
filters provide the possibility to marginalize x;;. However, in
our case, X1+ are also the states of interest, and the splitting facil-
itates the use of the hybrid importance function, which is much
more efficient than the prior importance function and more ap-
plicable than the posterior importance function. In fact, the hy-
brid importance function can be used in Rao—Blackwellised fil-
ters. In this case, we split the states into three sets, say, X1, Xo¢,
and x3; where X, are nuisance states. Thus, Rao—Blackwellised
filters can be applied to marginalize X1, and the hybrid impor-
tance function can then be applied on x5; and x3; to achieve
efficient implantation. We provide an example of such usage
in the next section. Additional examples can be also found in
[7]. Furthermore, the hybrid importance function can be utilized
with other techniques for reducing the variance of the weights
including the auxiliary particle filter [1], [8].

III. AUXILIARY PARTICLE FILTERING WITH THE HYBRID
IMPORTANCE FUNCTION

The hybrid importance function generates the particles of xo;
with the prior distribution. Thus, the aforementioned problems
of using the prior importance function are also inherited with
the hybrid importance function on the particles of x3;. When
the process noise is small, one may get around this problem
by combining auxiliary particle filtering with the hybrid impor-
tance function. In addition, smoothing kernel can also be incor-
porated if x5, are static states. However, it should be noted that,
although the use of smoothing kernel proliferates the diversity
of particles, such online estimation is suboptimal. We summa-
rize one such procedure as follows.
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Forj =1,..., N, attime ¢, compute a point estimate s,
N
ax?, + (1 - oz)xt_l where X;—1 = )7, w? x7)

,N:

Sample an aux1hary var1ab1e from {1, -

ability )‘E) X UJE 1p(Yt|ll'2t XE}?& 1, Y0:t—1

sample 1ndex k.
Sample x ~N ([I,Zt) h?V) where V, is the weighted
sample covariance matrix.

Sal(n?leic()]) ~ p(x1t|xgi)7x(()t) 1Yot
J J

k
» X2t E):t)—l :
Evaluate the corresponding weight by

(yt|x2t 7X(()t) 1, Y0:t—1

Forj =1,.

, N} with prob-
), and call the

) and define x((){ 2 =

)

) (k) )
p yt|l"2t » X0:t—1>Y0:t—1

It is suggested in [8] that & = /1 — h2, h? = 1 — ((3¢ —
1)/2¢)2, and € is a discount factor typically from the set [0.95,
0.99].

X

w? )

IV. ADAPTIVE BLIND DETECTION IN FLAT FADING CHANNELS
WITH UNKNOWN NOISE VARIANCE

We demonstrate the use and the advantage of the proposed
hybrid importance function on the problem of adaptive blind
detection in flat fading channels. A similar problem has been
addressed in [6]. Here, however, we consider a more realistic
situation, where we assume that the observation noise variance
is unknown. Consequently, the scheme proposed in [6] is no
longer feasible.

A. Problem Formulation

The state-space model for detection of digital signals in flat
fading channels can be represented as follows:

{ h; = Dh;_1 + gu, 6)
yr =g hysy + ey

where s; is an M-ary transmitted signal, e; is a complex
Gaussian noise with zero mean and unknown variance o2,
h: is a complex Rayleigh fading coefficients whose temporal

correlation is modeled by an AR(2) process with parameters aq

2_ 2
O =011

and as, ht = [ht ht_l]T, v ~ CN(O,]), g = [1 O]T, and
| —a1 —a2
o= o)

(J) ()
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At any time instant ¢, the unknowns of the problem are s, h; and
o2, and our main objective is to detect the transmitted signal s;
sequentially without sending pilot signals. For convenience, we
denote o2 by 6.

B. Particle Filtering Solution

First we observe that given 6, and s, (6) is linear in h;. There-
fore, the mixture Kalman filter can be used to marginalize out
h and particle filtering is then only applied on s; and 6;. Due
to the presence of 6, the posterior importance function is in-
tractable. Alternatively, since s; is a discrete variable, we can
adopt the hybrid importance function as

q (5t70t|5§])179§j)17y0 t) = p(5t|0t7y0:t) o (Ht - 9 j) ) @)

where 6(-) is the Dirac delta function. The corresponding weight
is obtained from (4) as

j) Z (yt|5tv

s:€A

07, You-1) ®)

where A = {a1,---,anr} is the alphabet space of s;. Since
p(3t|0§])7 Vot) o< p(yelse, 051_)1, Yo:t—1), we find that the sam-
pling of s; and the calculation of the weight are achieved by
computing p(yq|s:, 0; ),yg .t—1). This distribution is the likeli-
hood function after margmahzmg out h; and is obtained from
the predictive step of the Kalman filter. It is given by

p (w5007 you1) =N (mf?, ) @

where m(]) — N( 7) gj) _ gTD'yEi)l and cgj) — gTEEj)g-I-
09 with B, = DP(J) DY 4 ggT
Hermitian transpose. Moreover, 'y(] ) and P;J )1 are computed
from the update steps of the Kalman filter and can be expressed
according to v = Dy, + K (y, — m{?) and PY) =
(I-K gstj))EE]), where K\ = ZEJ) cgj) '5). As for 6y,
we notice that no sampling is required. Although this simplifies
the sampling process, the absence of sampling introduces lack
of diversity on 6;. To address this problem, smoothing kernel
techniques can be used during the resampling procedure.

, and where H denotes the

V. SIMULATION

The performance of the proposed particle filtering scheme
using the hybrid importance function was studied for a system
with a1 = —1.99348 and ay = 0.996. They reflect a physical
scenario of a Doppler spread of 113 Hz and data rate of 10 Kbps.
This AR process was normalized to have a unit power. The trans-
mitted signal was BPSK modulated with differential coding. In
the following example, four different particle filtering schemes
were examined. Two of them used the hybrid importance func-
tion: one with a resampling procedure at every ten transmissions
(HIF-R) and the other, with a smoothing kernel for o2, applied
resampling at every transmission (HIF-RS). There were also
two schemes that used the prior importance function. One of
them employed resampling at every ten transmissions (PIF-R)
and the other, used a smoothing kernel (PIF-RS) and resampling
at every step. Also, the HIFs used 150 particles, whereas the
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Fig. 1. Comparison plot of BERs versus SNRs of various detectors.

PIFs employed 2000 particles. In all the cases we calculated the
MMSE estimator for s;.

In Fig. 1, we plotted the bit error rates (BERs) of the four
particle filters for various SNRs. The results show that the
PIF-RS solution provided improvement over the results of
PIF-R and that HIF-R clearly achieved the best performance. It
should be noted that it only used about 1/13 of the number of
particles used by the two PIF filters. Also, we observed that by
applying the smoothing kernel to o2, significant improvements
were achieved by HIF-RS. Especially, at high SNRs, the
performance of the HIF-RS filter approached that of the genie
aided detector with known noise variance.

VI. CONCLUSION

In this letter, we proposed a hybrid importance function
which encompasses the advantages of both the posterior and
the prior importance functions. We have shown its application
to blind detection in flat fading channels. Simulation results
showed much improved performance over particle filters that
use the prior importance function only.
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