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Gaussian Particle Filtering

Jayesh H. Kotecha and Petar M. Djyr&enior Member, IEEE

Abstract—Sequential Bayesian estimation fornonlinear dy- wheref(-) andh(-) are some known functions, arg, andv,,
namic state-space models involves recursive estimation of filtering are random noise vectors of given distributions. The process
and predictive distributions of unobserved time varying signals equation represents a system evolving with timewhere

based on noisy observations. This paper introduces a new filter . :
called the Gaussian particle filtel. It is based on the particle the system is represented by the hidden stgle and the

filtering concept, and it approximates the posterior distributions  Prior knowledge of the initial state is given by the probability
by single Gaussians, similar to Gaussian filters like the extended dlsmbUt'an(Xo)-_our aimisto |ear_n more a_‘bOUt the unknown
Kalman filter and its variants. It is shown that under the Gaus- State variables, given the observations as time evolves.

sianity assumption, the Gaussian particle filter is asymptotically We denote bwk.. andv... the sianal and observations u
optimal in the number of particles and, hence, has much-improved . )K(.)'" . Yoin _ 9 _ P
to time n, respectively, i.e xo.. = {x0,...,X,} andyo., =

performance and versatility over other Gaussian filters, especially X e ;
when nontrivial nonlinearities are present. Simulation resuilts are {Yo.---,¥x} . In a Bayesian context, our aim is to estimate
presented to demonstrate the versatility and improved perfor- recursively in time

mance of the Gaussian particle filter over conventional Gaussian « the filterina distributi ) im iven all th
filters and the lower complexity than known patrticle filters. The the filte - g distribut _Orp(.xn|y0.n) attimen given all the
observations up to time;

use of the Gaussian particle filter as a building block of more e e . .
complex filters is addressed in a companion paper. « the predictive distribution(x,+1|yo.») at timen given

Index Terms—Bbynamic state space models, extended Kalman all the ot.)se.rvat_lons up to t|.me
filter, Gaussian mixture, Gaussian mixture filter, Gaussian From these distributions, an estimate of the state can be deter-
particle filter, Gaussian sum filter, Gaussian sum particle filter, mined for any performance criterion suggested for the problem.

Monte Carlo filters, nonlinear non-Gaussian stochastic systems, The filtering distribution or the marginal posterior of the state at
particle filters, sequential Bayesian estimation, sequential sam- time n can be written as

pling methods, unscented Kalman filter.

p (Xn | yO:n) = Cnp (Xn | y0:n—1)p (yn | Xn) (2)

|. INTRODUCTION whereC,, is the normalizing constant given by

ONLINEAR filtering problems arise in many fields in-

-1
cluding statistical signal processing, economics, statistics, ¢ — </p(xn | Yorn—1) P (¥n | Xn) dxn) )
biostatistics, and engineering such as communications, radar '
tracking, sonar ranging, target tracking, and satellite ”aVigatiqf]%rthermore the predictive distribution can be expressed as
The problem consists of estimating a possibly dynamic state o ’
a nonlinear stochastic system, based on a set of noisy obser- (x | Youm) = (x | %) P (Xn | You) dx 3)
vations. Many of these problems can be written in the form of £ \Xn+1 1 Y0m) = [ P{Xnt1 | Xn )P Xn | Yoin) @Xn-
the so-called dynamic state space (DSS) model [3]. The DS

. ; . hen the model is linear with Gaussian noise and the prior
model represents the time-varying dynamics of an unomer\{?nowledge aboutk, given by p(xo) is Gaussian, the filtering
state variablex,,, as the distributiop(x,, | x,,_1), wheren in- v v ’

dicates time (or any other physical parameter). The observatiéWsd predictive distributions are Gaussian, and the Kalman filter

y. in the application are usually noisy and distorted versior%ovIdes the mean and covariance sequentially, which is the

of x,,. The distributionp(y,. | x,) represents the observatiorPPtimal Bayesian solution [4]. However, for most nonlinear

equation conditioned on the unknown state variablewhich models and non-Gaussian noise problems, closed-form analytic

is to be estimated. Alternatively, the model can be written as €XPression for th_e posterior dlstrl_butlo_ns dq not exlst in general.
) Numerical solutions often require high-dimensional integra-
x, =f (xn-1,u,) (process equatign tions that are not practical to implement. As a result, several
y» =h (x,,v,) (Observation equation) (1) approximations that are more tractable have been proposed.
A class of filters calledsaussian filterprovide Gaussian ap-
Manuscript received July 5, 2001; revised March 4, 2003. This work wgagroximations to the filtering and predictive distributions, exam-
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case-by-case basis. For some general guidelines, see, foragditive Gaussian noise can be relaxed for the GPF and can,
ample, [5] and [9]. Other approaches that propagate approxinta-general, benon-Gaussiarand nonadditive The GPF has
tions of the first two moments of the densities include [10]-[12improved performance compared with the EKF and UKF, as
These filters, including the EKF, have been successfully impldemonstrated by simulations. It is shown analytically that the
mented in some problems, but in others, they diverge or providstimates of the unknowns converge asymptotically with prob-
poor approximations. This is especially emphasized when thkility one to the minimum mean square estimates (given that
model is highly nonlinear or when the posterior distributions athe Gaussian assumption holds true). The GPF is quite similar
multimodal. In such cases, however, significant improvemerttsthe SIS filter by the fact that importance sampling is used to
are possible. Efforts to improve on the EKF have led to the nesbtain particles. However, unlike the SIS filters, resampling is
filters recently, like the unscented Kalman filter (UKF) by Julienot required in the GPF. This results in a reduced complexity
et al.[13] and similar filters proposed by ltet al. [14], which of the GPF as compared with the SIS with resampling and is
use deterministic sets of points in the space of the state variahlmajor advantage.

to obtain more accurate approximations to the mean and covariThe GPF only propagates the mean and covariance; however,
ance than the EKF. However, note the following. note that the importance sampling procedure makes it simple to

« The improvement of these filters over the EKF can be sigropagate higher moments as well. This gives rise to a new class
nificant, depending on the problem. However, divergen@é filters, where the posterior distributions are approximated by
can still occur in some nonlinear problems. An example @listributions other than Gaussian simply by propagating the re-
such undesirable divergence is shown in the simulationg§uired moments (or functions thereof).

« More importantly, in problems where the above filters do An example of the above is given in a companion paper [24],
not diverge, improvement in the estimates of the mean awdiere we introduce three types of Gaussian sum particle fil-
covariance are desirable. The aim is not only to minimiZ&rs (GSPFs), which are built from banks of GPFs, and de-
the mean square error but also to provide accurate e¥@lop a general framework for Bayesian inference for nonlinear
mates of the covariance that are a measure of the cor@d non-Gaussian additive noise DSS models using Gaussian
dence in the estimates. mixtures.

« Finally, the versatility of the filter can be improved if the To facilitate readability of the paper, we provide a list of ab-
restrictive assumption of additive Gaussian noise madelifeviations used in the sequel.
the EKF like filters is removed. List of Abbreviations:

There have also been other attempts to propagate filteriB§T Bearings-only tracking.
densities, most of them based on Gaussian sum filters (GSP§S Dynamic state space.
[15], where the posterior distributions are approximated &F Extended Kalman filter.
finite Gaussian mixtures (GMs). The GM approximation iEM Expectation—-maximization.
generally more accurate, especially for multimodal systenfsS Gaussian sum.

Other methods evaluate the required densities over grids [V
[16]-[19], but they are computationally intense especially fépMF
high-dimensional problems. GMM
Recently, importance sampling-based filters have been uge@F
to update the posterior distributions [20]-[23]. There, a distr>SF
bution is represented by a weighted set of samples (or pafSPF
cles) from the distribution, which are propagated through théMSE
dynamic system using importance sampling to sequentially U4SE
date the posterior distributions. These methods are collectiv@iis
called sequential importance sampling (SIS) filters, or particRISR
filters, and provide optimal results asymptotically in the numbésKF
of particles. However, a major disadvantage of particle filteMLSI
is the computational complexity (in a serial implementation), a
large part of which comes from a procedure called resampling.
Particle filters are, however, amenable to parallel implementa-

Gaussian mixture.

Gaussian mixture filter.
Gaussian mixture model.
Gaussian particle filter.
Gaussian sum filter.

Gaussian sum particle filter.
Minimum mean square error.
Mean square error.

Sequential importance sampling.
Sequential importance sampling with resampling.
Unscented Kalman filter.
Very large scale integration.

II. GAUSSIAN PARTICLE FILTERING

tion, which provides possibilities for processing signals sampledThe GPF approximates the filtering and predictive distribu-

at high sampling rates.

tions in (2) and (3) by Gaussian densities using the particle

In this paper, we introduce a new Gaussian filter called tfiéering methodology [20], [22], [25]. The basic idea of
Gaussian particle filter (GPF). Essentially, the GPF approX#onte Carlo methods is to represent a distributigr,,) of a
mates the posterior mean and covariance of the unknown st&edom variablec,, by a collection of samples (partlcles) from

variable using importance sampling. The proposed filter ibat distribution.M particles ¥ = {x

") } from

analyzed theoretically and studied by computer simulatiorss.so-called importance sampling dlstnbutm@xn) (which
Comparisons are made with the EKF, UKF, and the standagatisfies certain conditions; see [25] for details) are generated.

sequential importance sampling resampling (SISR) filters. The particles are then weighted@a§) =

(p(x)/(m(x)).

is important to note that unlike the EKF, the assumption of W = {w®) ... w®)}, then the se{X, W} represents
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samples from the posterior distributigrix,,). Monte Carlo TABLE |
integration suggests then that the estimate of GPF—MEASUREMENT UPDATE ALGORITHM

B GPF - Measurement update algorithm.

p(9(xn)) = /g(xn)p(xn)dxn 1. Draw samples from the importance function

7(Xn|yo:n) and denote them as {x’ pig

can be computed as ; - -
P 2. Obtain the respective weights by

wg (x5 , L
3 zJ: g( ) Gy _ PnlxI N (en = %55 i, Tn)
By (9 (%n)) = =7 ) o) = 5) - O
Z wH 7T(Xn |y0:n)
J
. . . N lize th igh
Using the Strong Law of Large Numbers, it can be shown tha 3. Normalize the weights as
A M
Ep (9 (xn)) — Ep (9 (x0)) (5) wd =aP/ 3w (10)
almost surely ad/ — oo; see, for example, [25]. The posterior 7=t
distribution can be approximated as 4. Estimate the mean and covariance by
M ) L
> w8, (dxn) Pn = Zj;\;il w,({)xﬁf) . : (11)
p ) oy = P (dta) ~ *=— © B =Tl ), )
©)
ngw ’ GPF - Time update algorithm.

1. Draw samples from N (xp; it,,, £r) and denote them

wheredy, (dx,, ) is the Dirac delta function. as {X;J') M.
In the sequel, the density of a Gaussian random vartalide = )
written as 2. For j =1,..., M, sample from p(Xp41|xXn = X5) to
obtain {xiﬁl}jﬂil. .
N(x;p, %) 3. Compute the mean f1,,,; and covariance 3, as
1
= (2n) ™28 2 ex (——x— Ty 1(x— ) _ M j
(2m) 7|5 p—5(x—n) (x —n) fnsr = 4 Y X9, . )

3 _ 1Mo J - Jj) \H

where then-dimensional vectog is the mean, and the covari- Bner =57 Djmr(Bgr Xba) (Bn Xn+1)(1.2)

ance is the positive definite matr®. Assume thatattime = 1 ) )

we havep(x; | yo) = N(x1;/,, 1), Whereg, andX; are ?P;F - Time rpjate allgorltfhm 3 Altematbe' ed
chosen based on prior information. As new measurements ¢ . etain weighted samples of p(xn|yo) obtaine
received, measurement and time updates are performed to " (jt)he (T)ea];urement update and denote them as
tain the filtering and predictive distributions as discussed in th {xa’, wi” 2y

following sections. 2. Forj=1,...,M, sample from p(xp1|xn = x$) to
obtain {xgll M
A. Measurement Update 3. Compute the mean f1,,; and covariance £, as
After receiving thenth observatiory,,, the filtering distribu- o
L . p _ 1M () ()
tion in (2) is given by Hnt1 = 737 Zj:l Wn Xp11 :
St = Lzﬂif; w(j)(ﬂ, @ )i x@) )H
P (o | ¥0) =Cap (¥ | %) (%0 | You-1) R

~Cp (Yo | Xn) N (X3 1y, ) - (7)

The GPF measurement update step approximates the above den-

sity as a Gaussian, i.e., Now, we recall a standard theorem of importance sampling,

B(Xn|Y0m) = N (%n; 1y, ). @8) following which We.provide a corollary that undgrscores the
improvements obtained by the GPF in comparison to other
In general, analytical expressions for the mggnand covari- Gaussian filters.
ancex,, of p(x,, | yo..) are not available. However, forthe GPF Theorem 1: Assume that at time, (the analytical form of)
update, Monte Carlo estimates@f andX,, can be computed p(x,, | yo:n—1) IS known up to a proportionality constant. On
from the samplexff) and their weights, where the samples areeceiving the:th observatiory,,, the GPF measurement updates
obtained from an importance sampling functiofx,, | yo.,). the filtering distribution using Monte Carlo integration defined
This allows for the measurement update algorithm in Table Lin (4). Then, therth moment (or therth central moment) of
The updated filtering distribution is now approximated ag(x, | yo.,) €stimated using (4) converges almost surely to
p<xn | yO:n) ~ N(Xn;l"’n-/ 271) E<X; | y0:n) [Or to E((Xn - E(Xn | yO:n>>T|y0:n>]-
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Proof: From (10) and (11), theth moment is estimated A Monte Carlo approximation for the predictive distribution is

as given by
, DN\ G M
. Y (X%)) oy ! (i)
E (x| yon) = T P (Xnt1 | Yon) = 7 Zp (Xn+1 | x5 ) (14)
2 i=1Wn i=1
M (XS‘))’" P(Yn\XSJ))(P)(X?’\YOHI—I) wherex!)) are particles from\/(x,; ,, %, ). Following this
_ - _ ”(x'f Ivon) observation M samples fromp(x,, 1 | xg‘)),i =1,....M
> p(ya ) p (x Iyoin-1) are obtained and are denotedg$, ,, from which the mean
=1 = (xyomn) and covariance gf(x,+1 | yo.n) is computed as
[ el e w G | yom) 5]
- n X0 )P (Xn |yoin—1 Hni1 =57 Xn+1
f 2 Iﬂ(lﬁﬁyo:lff. ) 'W(X’n|y0:n) dx, M i=1
:fxgp (yn | %n) p (Xn | Yoin—1) dx» = 1 & _ 0 _ @ 2
fp(yn | Xn) P (Xn | Yoin—1) dXx En+1 :M Zl (u'n-i-l B xn+1) (I"n+1 N X"+1> ’
Z/XZP (Xn | Yoin) dxp The GPF time update approximatgéx, 1 | yon) as a
L . Gaussian, or
where the convergence is with probability onelds— oo [see - _
(5)] and is due to the Strong Law of Large Numbers. A similar P (Xnt1 | Yom) 2N (X415 g1 Bt -
proof holds for the-th central moment. u Alternatively, we can use the weighted sampleg@f,, |
Corollary 1: Assume that at times, p(x» | Yom-1) = y,..) obtained in the measurement update to get the following

N (%n; b, X)) On receiving thesth observatiory ., the GPF  \vonte Carlo approximation f(x, 1 | yon)
measurement updates the filtering distribution, as shown by the .
algorithm above. Thery,, computed in (11) converges to the  p(x,+1 | Yo:n) :/p(xn+1 | X0) P (Xn | Youn) dxip,
MMSE estimate ok, almost surely agd/ — oo. In addition, o
the MMSE estimate given b¥,, in (11) converges to the true U1 () )
MMSE estimate almost surely dd — oc. M an p (X"“ X ) ’
Proof: The corollary follows straightforwardly from The- =1 ‘
orem 1 since the MMSE estimate =®f, is given by E,(x, | Following this observation) samples fronp(x,41 | ng)),

Yo:n), and the MMSE i, ((x, — Ep(Xn | Yon))? | Yon)- ® i = 1,..., M are obtained and denoted ﬂ,%}rl from which
The above corollary shows that, given the validity of théhe mean and covariance ofx,,+1 | yo.») iS computed as

Gaussian approximation, the GPF provides the MMSE estimate M

asymptotically during the measurement update, which is clearlyﬂn+1 :i Z w,f’xffil

not true for the EKF and UKF. Hence, the GPF is expected to M i1 ’

perform better than the EKF and UKF, which is validated by LM . o H
simulations. i1 =77 > wd) (ﬁn+1 - xg‘il) (ﬂn+1 - xff}rl) :

1) Choice ofr(-): The choice of the importance sampling M i=1
function=(-) depends on the problem; see [23] and [25] for de- The GPF time update steps are summarized in Table I.
tails. For the GPF, a simple choice fof-) is p(x,, | Yo.n—1) =  Similar to Theorem 1, it can be shown that &6 — oo
N (xn; b, X)) since samples from this density can be easilind given the observations until timef,, , ; converges almost
obtained. Alternatively, instead of generating completely negyrely to the MMSE estimate of,, , ;.
samples fron\ (x,; ji,,, X.,) samples obtained in the time up-
date step (presented in the next section) in step 2 can be used. IIl. DISCUSSION
However, this choice can be inadequate in some applications
Another choice I8V (Xp; fi|,> Znjn), Wherep,,,, andX,, |, are
obtained from the measurement update step of the EKF or fr
the unscented Kalman filter [26].

M

From Corollary 1 (and its counterpart in the time update),
Jg may deduce that the GPF provides better approximations
o the integrations involved in the update processes than other
Gaussian filters in the presence of severe nonlinearities. Two
B. Time Update conclusions can be obtained from this observation. One is
that divergence can be avoided by using the GPF unlike other
: ) _Gaussian filters. The other is that the GPF provides more
P(Xn+1 | Xn). With p(x,, | yo.n) approximated as a Gaussian . rate estimates of the mean and covariance (confidence
we would like to'obtalr? the predlctlye distributignx,,1 | . intervals) as a function of the number of particles than the other

yo:n) @nd approximate it as a Gaussian. We recall (3), that 'SGaussian filters. Simulations results in Section IV show that
in general, the GPF has better performance than the EKF and

P (K1 | yom) = /p(X"+1 | %n) P (Xn | Youn) dxn UKF when the mean square errors are compared.

The EKF and its variants assume that the process and obser-
~ /p (X1 | Xn) N (X thy,, Bn) dX vation noise processes additiveand Gaussian. However, as

Assume that at time: it is possible to draw samples from
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long as the posterior distributions can be approximated as Gafis-Univariate Nonstationary Growth Model (UNGM)

sians, these assumptions can be relaxed for the GPF, and the prgya choose this model because it is highly nonlinear and is

posed filter can be applied for a nonadditive and non-Gaussigifyodal in nature. The DSS equations for this model can be
noise DSS model. The measurement and time updates indicaigien as

that this is possible if(y,, | x,,) required in the weight update

(9) can be evaluated and that a sample figma, 1 | x,,) can Ty =QTp_1 + /31%7_21 +vycos(1.2(n — 1)) + uy,
be obtained. ) + Tt
As with most Gaussian filters, it is possible that bias accu- —In 4 vn, n=1,...,N

mulation may occur in certain applications. Particle filters with "20
resampling also have bias due to resampling; see [27] for detaiiiere v, ~ N(0,02), and the distribution ofs, is speci-
However, this phenomenon has not occurred in our simulatiggd below. Data were generated using = 0.1, o2 =1,
examples. A theoretical analysis of bias accumulation due tothe- 0.5, 3 = 25, v = 8, and N = 500. Notice the term in the
approximations involved and finite samples is of interest but jfiocess equation that is independentpfout varies with time
left for future work. n and that it can be interpreted as time-varying noise. The like-
SIS filters essentially obtain particles and their weights froflthood p(y,, | =) has bimodal nature whey, > 0 and when
the posterior distributions in a recursive manner. However,a < 0, itis unimodal. The bimodality makes the problem more
phenomenon callesdample degeneratioaccurs wherein only difficult to address using conventional methods.
a few particles representing the distribution have significant We compare the estimation and prediction performance of the
weights. A procedure calletesampling[22], [28] has been EKF, UKF, GPF, and SIS filters based on the following metrics.
introduced to mitigate this problem, but it may give limitedMSEz ; is defined by
results and may be computationally expensive. Since the GPF
approximates posterior distributions as Gaussians, particle 1 N N2
resampling is not required. This results in a computational MSEr; = N Z (%0 = 2n)
advantage of the GPF over SIS filters. Removal of resampling =t
has another important advantage in implementation. Resafierez, = E(z, | yo.,), and it is obtained from the filtering
pling is a nonparallel operation in an otherwise parallel Sigistribution. MSE:,, is defined similarly withz, = E(z, |
algorithm; hence, the GPF is more amenable for fully parallegh:»—1) and
implementation in VLSI. N )
The GPF propagates only the mean and covariance of the MSEz, = 1 Z (xn — xn) (16)
posterior densities. However, Theorem 1 shows that all mo- N 1
ments can be estimated using importance sampling. This s
gests a natural extension, wherein even higher moments
propagated. Alternatively, it may be motivating to approximate . " . . .
the posterior distributions by distributions other than Gaussia%:smbguon ngf””ieép(y" | Yon—1)- The MMSE estimate of
which may be more accurate. This results in a new and mu@h'> 9'Ven PY¥n = (v | Yom—) OF
richer class of filters following our methodology. An example
is given in the companion paper [24], where Gaussian mixtures
approximate the distributions. Other distributions can also be
considered, for example, the Student-t distribution, which has a ://y”p (W | 2n) P (20 | Yo:n) dTndyn.
heavier tail than the Gaussian; this may be motivating in certain
applications. The mathematic tractability of propagating GauBer this example, we obtain
sians has motivated researchers in the past to provide Gaussian 9
approximations to posterior densities. However, the framework Un = /x—”p (Tn | Youn) day.
provided here makes it possible to obtain better approximations, J 20
albeit at the cost of computational power. We do not elaborateWhen the ratio(z2 /20)/02 is small, the bimodality of the
more on this new class of filters in this paper since the resultipgoblem is more severe, and we expect to see improved perfor-
filtering algorithms are straightforward extensions of ones premance of the GPF over that of the EKF in the presence of this
vided in this paper. high nonlinearity. The process noisg ~ A (0,02), where
o2 = 1. The initial distribution wag(zo) ~ N(0, 1). For both
GPF and SIS, the IS function was given by, | yo.n—1) (in
V. SIMULATION RESULTS SIS terminology, the IS function is written @z, | z,—1) ).
The applied SIS filter was the one from [31], where resampling
The GPF proposed in this paper was applied to numerical exas performed at every step using the systematic resampling
amples, and here, we present the results for two models: the wtiheme [32]. For the EKF, we g&t = (12 + 02)/20. For the
variate nonstationary growth model, which is popular in econ&PF, since we draw particles frop(z,, | yo.,) in the measure-
metrics and has been used previously in [17], [20], and [29], antent update, we obtain a Monte Carlo estimatejfar
the bearing only tracking model, which is of interest in defense A large number of simulations were performed to compare
applications [20], [30]. the four filters. In Figs. 1 and 2, we show plots for the first 100

(15)

Where the estimate is obtained from the predictive distribution.
Ey, is the mean square error computed from the predictive

Z)n :/ynp (yn | yo:n71) dyn
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Fig. 1. Plot of the true state and estimate of the EKF. Fig. 3. Plot of the prediction error add.,, interval for the EKF.
Estimation Error with 3*std confidence intervals
Solid line —x—x~ true system states, dashdot line —.—o-.— estimate Gaussian Particle filtering 50 T T T T T T T T
20 T T T T T T T T T
40+ 4
@ Q K
L & ® - % ©
15 ". d Il 8 ®
A 0]
! !
10 i i o
I & ! 0]
[ 1% &
SHX T ol o
W1 | & | 1 ¢
SR Y ¥ 0 q €
— M (0) o O o5 ¢ @ I
< 0 Q% & ® P t Ous & ¥ % &il
1 1 % i o) 1 \
i o' ¢ Q & &
= (S ; () 71 ¥ K )
! Q ]
! o9
—-10F 'I’ & 4
o
®
1 o1y o L
-15- & ! X5 (o] 4 B! _a0k 4
_20 1 L N 1 L L ° L L ~50 1 I 1 1 I I I 1 1
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 o0 100

Fig. 4. Plot of the prediction error ad& ... interval for the GPF.
Fig. 2. Plot of the true state and estimate of the GPF.

of particlesM = 20, the GPF and SISR filters perform signifi-

states and the estimates obtained using the EKF and GPF widltly better than the EKF and UKF, whereas the MSE for the
M = 100, respectively, for a single simulation. Note the tenGPF is marginally higher than that of SISR. An increase in the
dency of the EKF to track the opposite mode of the bimodalitgumber of particles reduced the MSE even further for the GPF
especially when(zZ /20)/02 is small. This behavior was ob-and SISR filters; however, the change in performance is neg-
served in general for most simulation runs. ligible as the number of particles was increased from 100. As

In Figs. 3 and 4, we plot the errat, — z,, and the 3., in- observed from the figures, fa¥/ = 100 and 1000, there is in-
tervals, wheres,,, was the estimated standard deviation of thsignificant difference in the MSEs for the GPF and the SISR.
prediction error. As expected, the errors lie mostly within thiSimilar behavior was observed for the M§F(see Fig. 6) and
interval for the GPF, which is not the case for the EKF. In adhe MSEy,, metrics.
dition, the values of.,, for the EKF are much higher, pointing A comparison of the computation times is also shown in Fig. 7
to the occurrence of divergence of the filter. All of the abovkor simulations implemented on a 450-MHz Intel Pentium 111
observations were made in most of the simulation runs. Cleantypcessor using MATLAB. Note that as expected, the computa-
the GPF outperforms the EKF significantly for this highly nontion time for GPF and SISR filters is much higher than the EKF
linear example. and UKF. However, as noted in the Section lll, these times in-

Fig. 5 shows the MSE; for 50 random realizations with dicate those obtained on a serial computer and much reduction
M = 100 particles. In Fig. 7, the average MBE is plotted in computation times can be expected for the GPF and SISR
for M = 20, 100, and 1000 particles. Even for a small numb&rhen implemented in parallel. For the EKF, UKF, and GPF, a
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Fig. 7. Performance comparison of EKF, UKF, GPF, and SISR filters.
Computation time (per realization) and average MgEof 50 random

Fig. 5. Performance comparison of EKF, UKF, GPF, and SISR filters, MSE o0 cr 26100, and 1000 for both GPF and SISR filters.

is plotted for 50 random realizations/ = 100 for both GPF and SISR filters.

Performance Comparision of Filters for UNGM model — Average Predictive MSE of x

] Here,z andy denote the Cartesian coordinates of the target

andv, denote the velocities in the andy directions, respec-

P ‘ tively. The system noise is a zero mean Gaussian white noise,
Number of samples: 20, 100, 1000 that is,w,, ~ N(0,021,), wherel, is the 2x 2 identity ma-

Fig.6. Performance comparison of EKF, UKF, GPF, and SISR filters. Averaé@x' T_he |n|t|e_1l statex, qe_s_cnbes the targets initial position and

MSEz,, of 50 random realizations. M=20, 100, and 1000 for both GPF and SiStelocity. A prior for the initial state(x,) also needs to be spec-

filters. ified for the model; we assume, ~ N (p,, Po)-

The measurements consist of the true bearing of the target
clear performance-computational time tradeoff can be seencisrrupted by a Gaussian error term. The measurement equation
the figure. More importantly, the GPF has much less of a coman be written as
putation time than the SISR, and the difference increases as the

Zn = tan™! (

10F

% : . ‘ We employ a change of notation here to better facilitate un-
EKF derstanding of the mechanics of the problem. Let the sensor be
" sor E é'é'; 1 stationary and located at the origin in the-y plane. The ob-
ﬁ?o_ SISR| | ject moves in thec—y plane according to the following process
3 model:
.?.’60— B
: X, =®x, 1+ITw, n=1,...,N
gm— _ 4
:% wherex,, = [Zn, Vzn, Yn, fuyn]T, Wi = [Wan, wyn]T
gﬂ ] 1100 05 0
S a0l 1 01 0 O 1 0
E =100 1 1'T=]0 o5
fool 1 0001 0 1
<

number of particles increases. This is due to the additional re-
sampling required in the SISR filter, which has computational
complexity ofO(N ) for the systematic resampling scheme usaghere the measurement noise is a zero mean Gaussian white

@>+% 17)

Ln

here. noise, that isp,, ~ N(0,02).
) ) It is important to note that from (17), we obtain no informa-
B. Bearings Only Tracking (BOT) tion about the range of the object from the measurement. Thus,

The bearings-only model is well motivated and arises in dgiven a series of measurements, we can only detect in general
fense applications and in engineering problems. The bearirige shape of the trajectory but not its location or distance from
only tracking problem considers tracking an object moving inthe point of measurement. In particular, if we consider the like-
2-D space. The measurements taken by the sensor at fixedlitmeod associated with a single measuremgntis a function
tervals to track the object are the bearings or angles (subjecbfar,, andy,,, that isp(z,, | zn,yn), it is clear that the likeli-
noise) with respect to the sensor. The range of the object, thabd consists of a modal ridge along the lipne= tan(z, )z,.
is, the distance from the sensor, is not measured. The priorp(x,) describes our knowledge about the position and
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Fig. 8. Tracking of a moving target in two dimensions with the EKF, UKFrig. 9. Performance comparision of EKF, UKF, GPF, and SISR filters. MSEs
GPF, and SISR filters. for position and velocities i andy directions. M= 1000 for both GPF and
SISR filters.

velocity of the target at the initial stage. This prior and the like- ,
lihood of the series of measurements are combined to obtain E EKF

estimate of the trajectory. A A é:pi
A target trajectory and associated measurements o\ I
24 time steps was generated with initial state vectc of

xo = [—0.05, 0.001, 0.7, —0.055]T. The process and I I
measurement noise were as specified above sjth= 0.001 -1t -1t
ando, = 0.005. Note that for this particular trajectory, ing o
the initial stages, the bearing of the target with respect to t%—z- %—2-
observer remains almost constant. As the object passes the” ®
server, the change in the angle is large. For the prior, the para [ -3r
eters assumed weyg, = [—0.05, 0.001, 0.7, —0.055]"
(which is the same as the initial vector) and T T
0.1 0 0 0 Sy - —
P 0 0.006 0 0 L]
°= 1o 0 0.1 1 '%‘51_)( ;d' t 1‘.52 . érd. ' 25 %5 1 X1' oty 1j52 . 2I N 25
0 0 0 0.01 : X coordinate . Y coordinate : A velocl 2 Y veloci

Fig. 10. Performance comparision of EKF, UKF, GPF, and SISR filters.
The EKF, UKF, GPF, and SISR filters were applied to get a#verage MSEs for position and velocities inandy directions. M= 1000

estimate of the trajectory. The number of particles used for tffPoth GPF and SISR filters.
GPF and SISR filters wad/ = 1000. Systematic random re-
sampling was used for the SISR filter. Observe that due to thruch higher for the UKF. Comparison of the GPF and SISR fil-
nonlinearity of the observation equation, it is not straightfoters shows that the GPF has marginally better performance then
ward to sample from the optimal importance function. Hencghe SISR filter.
we use the priop(x,, | zo.n—1) andp(x,, | x,—1) as the IS  In another experiment, all the above simulations were repli-
function for the GPF and SISR, respectively. cated for a varying number of particles. Hdr < 500, the GPF

Fig. 8 displays a representative trajectory and the tracking aoid SISR filters diverged, implying that a greater number of par-
tained by all four filters. Fig. 9 shows the MSE for 100 randorticles was required for stability. It was observed that increasing
realizations for all the state variables. The EKF diverged in mord from 500 to 1000 improved the performance. Increasifig
than 50 realizations, whereas the UKF diverged for three re&lther gave minor improvements.
izations. Fig. 10 shows the average MSE obtained for same 10@omputation times are shown in Fig. 12. As expected, the
random realizations for all the state variables on a logarithmitkKF and UKF have very small computation time compared
scale. Fig. 11 displays a trajectory where the EKF and UKkith the particle filters. However, the high use of computational
both diverged. In cases where divergence was not observed,pgbeer is justified for the GPF and SISR since in most cases, the
MSEs of EKF and UKF were much higher compared to th@rget is tracked well. Again, since resampling is required in the
MSEs of the GPF and SISR filters. On an average, the UKF p&ISR, it is more computationally expensive, and a large differ-
formed better than the EKF; however, the MSE of thg was ence is observed in the computation times of the GPF and SISR.
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‘ noise models, and hence, the GPF developed here can also be

06F True trajectory . .

PF used to solve the non-Gaussian noise problem.

GPF
04r UKF
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