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Abstract

Recent developments have demonstrated that particle filtering is an emerging and powerful methodology
for sequential signal processing with a wide range of applications in science and engineering. It is based
on the concept of sequential importance sampling and the use of Bayesian theory, and it is particularly
useful in dealing with nonlinear and non-Gaussian problems. The underlying principle of the methodology
is the approximation of relevant distributions with random measures composed of particles (samples from
the space of the unknowns) and their associated weights. In this paper, first we present a brief review of the
particle filtering theory and then we show how it can be used for resolving many communication problems.
We demonstrate its application to blind equalization, blind detection over flat fading channels, multiuser

detection, and estimation and detection of space-time codes in fading channels.

I. INTRODUCTION

Particle filtering is a technique for sequential signal processing that recently has captured the
attention of many researchers in various communities including those of signal processing, statistics,
and econometrics. The interest in this methodology stems from its potential for coping with difficult
nonlinear and/or non-Gaussian problems.

Particle filtering is a sequential Monte Carlo methodology where the basic idea is the recur-
sive computation of relevant probability distributions using the concepts of importance sampling
and approximation of probability distributions with discrete random measures. The earliest appli-
cations of sequential Monte Carlo methods were in the area of growing polymers [19], [49], and later
they expanded to other fields including physics and engineering. Sequential Monte Carlo methods
found limited use in the past, except for the last decade, primarily due to their very high compu-
tational complexity and the lack of adequate computing resources of the time. The fast advances

of computers in the last several years and the outstanding potential of particle filters have made
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them recently a very active area of research. Their potential for parallel implementation represents
additional impetus for their development. The current interest in particle filtering for signal pro-
cessing applications was brought on by [17]. Recent reviews and accounts of new developments on
the subject can be found in [3], [10], [11].

A large portion of the theory on sequential signal processing is about signals and systems

that are represented by state-space and observation equations, that is, equations of the form

x; = fi(xi1,w)
(1)

ye = 8i(xt,ve)
where y; is a vector of observations, x; is a state vector, g;(-) is a measurement function, f;(-) is a
system transition function, u; and vy are noise vectors, and the subscript ¢ denotes time index. The
first equation is known as state equation, and the second, as measurement equation. The standard
assumptions are that the analytical forms of the functions and the distributions of the two noises
are known. Based on the observations y; and the assumptions, the objective is to estimate x;
recursively.

The method that has been investigated the most and that has been most frequently applied
in practice is the Kalman filter [1]. The Kalman filter is optimal in the important case when the
equations are linear and the noises are independent, additive and Gaussian. In this situation, the
distributions of interest (filtering, predictive, or smoothing) are also Gaussian and the Kalman filter
can compute them exactly without approximations. For scenarios where the models are nonlinear or
the noise is non-Gaussian, various approximate methods have been proposed of which the extended
Kalman filter is perhaps the most prominent of all [1].

The particle filtering method has become an important alternative to the extended Kalman

filter. With particle filtering, continuous distributions are approximated by discrete random mea-
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sures, which are composed of weighted particles, where the particles are samples of the unknown
states from the state-space, and the particle weights are “probability masses” computed by using
Bayes theory. In the implementation of particle filtering, importance sampling plays a crucial role
and, since the procedure is designed for sequential use, the method is also called sequential im-
portance sampling. The advantage of particle filtering over other methods is in that the exploited
approximation does not involve linearizations around current estimates but rather approximations
in the representation of the desired distributions by discrete random measures.

In this paper we discuss the use of particle filtering in several important problems in commu-
nications. Figure 1 presents a diagram that sorts out the addressed problems into two groups, one
related to single-user systems, and the other to multiple access systems. For single user systems,
the interest revolves around detection in flat fading and equalization, where the emphasis of the
latter is on time-invariant, time-variant channels, and Orthogonal Frequency Division Multiplex-
ing (OFDM) systems. For multiple access systems, the focus is on particle filtering for multiuser
detection in Code Division Multiple Access (CDMA) systems and space-time decoding in fading
channels. In all these cases, the first step is defining the problem with state-space representation.

For example, a general baseband communications model for a fading channel can be written as

x¢ = (%1, 1)
(2)
yr = s/ hy + v
where y; is the discrete time signal received at the receiver, and x; is the state of the system
composed of vectors of transmitted symbols s; and fading channel coefficients h;. The state varies
in time according to a known function f; according to a Markov process driven by the noise uy.
Finally, v; is additive channel noise. The primary objective is to sequentially detect the transmitted

symbols and/or estimate the channel as the observations arrive. From a Bayesian point of view,
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this implies obtaining estimates of p(hy, s¢|yo.¢), where yo.: = {v0,y1,- -+ ,y¢}, which is exactly what
particle filters are designed for. Many other problems in communications can be described similarly

as by (2), some of which are presented in the sequel.

Communication Applications

Single—user systems Multiple access systems
fogcfggﬁlén Equalization Synchronization CDMA Spélg((ej;;[;me
Time invariant Time variant
OFDM channels channels

Fig. 1. Problems in communications addressed in the paper.

The paper is organized as follows. First, we present the fundamentals of particle filtering
(Section II) and then we proceed with the applications to blind equalization (Section III), blind
detection over flat-fading channels (Section IV), multiuser detection with particle filtering (Section
V), and estimation and detection of space-time codes in fading channels (Section VI). Section
VII contains a summary of additional work on applications of particle filtering to communications.

Before we continue, we provide a brief summary of our notation:
ag k—th coefficient of an autoregressive (AR) process
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by, k—th coefficient of a moving-average (MA) process
C chip-rate (processing) gain

c(+) code and modulation function

f(-) system transition function at time ¢

g () measurement function at time ¢

h, communication channel at time ¢

m running index for particles or trajectories
K number of users in a CDMA system

L order of communication channel

L symbol alphabet

M total number of particles

N (p,0?) Gaussian distribution with mean ; and variance o2

Ne(i,0?%) complex Gaussian distribution with mean p and variance o2

Np number of transmit antennas
Ng number of receive antennas

() importance sampling function
p(+) probability distribution function
Ta order of an AR process

rh order of an MA process

R correlation matrix

St symbol transmitted at time ¢

o? noise variance
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t discrete time index, where t € N
T size of a frame of symbols
T symbol duration
T continuous time index
uy system noise vector at time ¢
A\ observation noise vector at time ¢
wgm) weighting coefficient of particle m at time ¢
wy (m) non-normalized weighting coefficient of particle m at time ¢
Xy system state vector at time ¢
X0:¢ {x0,%1, -+, X}, a trajectory of states
xgm) m—th particle at time ¢
x{™ m—th traj f icl
0t jectory of particles
&k signature of £k—th user in CDMA transmission
Yt observation vector at time ¢
Yo:t {y0,¥1,- - ,¥t}, a sequence of observations

In general, small and capital letters in bold face denote vectors and matrices, respectively.

II. FUNDAMENTALS OF PARTICLE FILTERING

Consider a system/signal with a state-space representation given by (1). As already pointed
out, the main task of sequential signal processing is the estimation of the state x; recursively from
the observations y;. In general, there are three probability distribution functions of interest, and

they are the filtering distribution, p(x;|yo.;), the predictive distribution, p(xs1|yo:t), [ > 1, and the
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smoothing distribution, p(x;|yo.7), where T' > ¢. All the information about x; regarding filtering,
prediction or smoothing is captured by these distributions, respectively, and so the main goal is
their tracking, that is obtaining p(x¢|yo.;) from p(x;—1|yo0:t—1), or p(Xi4i]yo:t) from p(x1—1|yo:t) or
p(x¢|yo.r) from p(x¢41|yo.r). The algorithms that exactly track these distributions are known as
optimal algorithms. In many practical situations, however, the optimal algorithms are impossible
to implement, primarily because the updates of the distributions require integrations that cannot
be performed analytically or summations that are impossible to carry out due to the number of
terms in the summations.

For the joint a posteriori distribution of xg, x1, -+ -, X¢, in case of independent noise samples

which are assumed throughout the paper, we can write

t
p(x0:t|yo:t) < p(xolyo) H (Yrlxk) p(xk|xK—1)- (3)

It is straightforward to show that a recursive formula for obtaining p(x¢.;|yo:¢) from p(x.1—1|yo0:t—1)

is given by

pye|x)p(xe|xi-1)
p(ytlyo:s—1)

P(X0:t|yo0:t) = P(X0:t—1[y0:t-1)- (4)

Since the transition from p(xg.;—1|yo:t—1) to p(Xo:t|yo:t) is often analytically intractable, we resort
to methods that are based on approximations.

In particle filtering, the distributions are approximated by discrete random measures defined
by particles and weights assigned to the particles. If the distribution of interest is p(z) and its

approximating random measure is
M
x = {2, wim (5)
where 2(™ are the particles, w(™ are their weights, and M is the number of particles used in the
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approximation, y approximates the distribution p(z) by
M
p(z) = Y w™s(e — ™) (6)
m=1
where 0(-) is the Dirac delta function. With this approximation, computations of expectations

(which involve complicated integrations) are simplified to summations, that is, for example,

is approximated by

M
E(g(X)) = Y w™g(a™). (8)

m=1

The next important concept used in particle filtering is the principle of importance sampling.
Suppose we want to approximate a distribution p(z) with a discrete random measure. If we can
generate the particles from p(x), each of them will be assigned a weight equal to 1/M. When direct
sampling from p(z) is intractable, one can generate particles z(™ from a distribution 7(z), known

also as importance function, and assign (non-normalized) weights according to

#(m) _ p(z)
w @) (9)
which upon normalization become
*(m)
0 10
w\™ = .
Ei]\il w*(®) 1o

Suppose now that the posterior distribution p(xg.;—1|yo:1—1) is approximated by the discrete

random measure ;| = {xé@ll, wii?}%[:r Note that the trajectories or streams of particles x(g?zzl

can be considered particles of p(xg.;—1|yo:t—1). Given the discrete random measure y;—; and the

observation y;, the objective is to exploit x; 1 in obtaining x;. Sequential importance sampling

(m)

(m) (7:';) 1 to form x,,”, and

methods achieve this by generating particles x; ’ and appending them to x;
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updating the weights wgm) so that y; allows for accurate estimates of the unknowns of interest at

time t¢.

If we use an importance function that can be factored as

T(X0:t|y0:t) = m(Xt|X0:t—1,Y0:t) T (X0:t—1|y0:2-1) (11)
and if
XSZZ)A ~ m(X0:t—1]yo0z-1) (12)
and
(m)
Xy, e
(X1 |¥o0:t—1)
we can augment the trajectory xgrz?)_l with xgm), where
i)~ (|G 1 Vo) (14)
and easily associate with it an updated weight wgm) obtained according to
(m) (m),.(m)
b x; |x
) o p(yelx; ) p(x; | t—l)wir_nl). (15)

(o™ x5 1 Yor)
The sequential importance sampling algorithm can thus be implemented by performing the
following two steps for every t:

1. Draw particles x§m) ~ 7T(Xt|X§TE,y0:t), where m =1,2,--- , M.

2. Compute the weights of wgm) according to (15).
The importance function plays a very important role in the performance of the particle
filter. This function must have the same support as the probability distribution that is being

approximated. In general, the closer the importance function to that distribution, the better the

approximation is. In the literature, the two most frequently used importance functions are the
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prior and the optimal importance function. The prior importance function is given by p(x; | xgr_n%),

and it implies particle weight updates by

wi™ o w™ ply; | x™). (16)

The optimal importance function minimizes the variance of the importance weights conditional on

the trajectory xgg) , and the observations y.;, and is given by p(x; | x((ﬂ)_l,y():t) [11]. When the

optimal function is used, the update of the weights is carried out according to

w™ o w{™p(y: | x\™). (17)

Note that implementations of particle filters with prior importance functions are much easier than
those with optimal importance functions. The reason is that the computation of p(y; | XETE)
requires integration.

A major problem with particle filtering is that the discrete random measure degenerates
quickly. In other words, all the particles except for a very few are assigned negligible weights. The
degeneracy implies that the performance of the particle filter will deteriorate. Degeneracy, however,
can be reduced by using good importance sampling functions and resampling.

Resampling is a scheme that eliminates particles with small weights and replicates particles
with large weights. In principle, it is implemented as follows:

(m)

1. Draw M particles, x: from the discrete distribution y;.
2. Let xﬁm) = xl‘(m), and assign equal weights (1/M) to the particles.

The idea of resampling is depicted in Figure 2 with M = 10 particles. There, the left column
of circles represents particles before resampling, where the diameters of the circles are proportional
to the weights of the particles. The right column of circles are the particles after resampling. In

general the large particles are replicated and the small particles are removed. For example, the
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@ ® 06 06 O

1/10

1/10

C - ‘

Fig. 2. A schematic description of resampling.

“blue” particle with the largest weight is replicated three times and the “yellow” particle, two
times, whereas the green particles, which have small weights, are removed. Also, after resampling
all the circles have equal diameters, that is, all the weights are set to 1/M. In Figure 3, we represent
pictorially the random measures and the actual probability distributions of interest as well as the

three steps of particle filtering: particle generation, weight update, and resampling. In the figure,
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the solid curves represent the distributions of interest, which are approximated by the discrete
measures. The sizes of the particles reflect the weights that are assigned to them. Finally in
Figure 4, we display a flow-chart that summarizes the particle filtering algorithm. At time ¢, a
new set of particles is generated, and their weights are computed. Thereby we obtain the random
measure Y, which can be used for estimation of the desired unknowns. Before we proceed with
the generation of the set of particles for time instant ¢ + 1, we estimate the effective particle size
(a metric that measures the degeneracy of the particles [29], [36]). If the effective particle size is
below a predefined threshold, resampling takes place; otherwise we proceed with the regular steps
of new particle generation and weight computation.

Recently, a special class of particle filters that approximate the posterior distributions by
single Gaussians has been introduced [30]. Although in their derivation it is assumed that all
the relevant distributions are Gaussian, as is done with some other filters including the extended
Kalman filter and its variants, they are distinguishable in that the updating of the filtering and
predictive distributions is accomplished by propagating particles. This entails advantages of easier
implementation than is the case with the standard particle filters and improved performance over
other Gaussian based approximation filters. The Gaussian particle filter has also been used as
a building block for more complex filters called Gaussian sum particle filters [31]. These filters
approximate the filtering and predictive distributions by weighted Gaussian mixtures and basically
represent banks of Gaussian particle filters.

Before we continue with the presentation of applications of particle filtering to communication
problems, we summarize the procedure for developing particle filtering algorithms. The procedure
involves the following steps:

1. Description of the problem by a discrete state-space model as in (1).
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Fig. 3. A pictorial description of particle filtering.

2. Selection of a proposal function for particle generation.
3. Derivation of the equations for the weight update.
Additional issues are the choice of resampling algorithm and the schedule for resampling. We

proceed with showing how these steps are applied to resolving the problem of blind equalization.

III. BLIND EQUALIZATION

When digital symbols are transmitted over frequency-selective channels, inter-symbol inter-
ference (ISI) occurs, which has detrimental effect on the detection at the receiver. To allow for

symbol detection with reasonable error, channel equalization is needed to reverse the effect of ISI. A
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initialize
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new observation

propose particles

resampling

is
resampling

necessary? update weights

T normalize weights

evaluate

effective particle size compute estimates of

desired unknowns

\%
|

exit

Fig. 4. A block diagram of particle filtering.

popular equalization technique applies the principle of maximume-likelihood estimation that results
in the Viterbi algorithm for symbol detection. When the channel parameters are unknown, they are
first estimated, usually from training data whose transmission contributes to significant overheads
and bandwidth-inefficient communication.

Blind equalization involves detection of transmitted symbols without using training data.
This can be accomplished either without explicit estimation of the channel parameters or by joint
symbol detection and channel parameter estimation.

Recently, several researchers have employed particle filtering for problems of blind equaliza-
tion. The flexibility of particle filtering has allowed for application of several variants of blind
equalization including ones that involve time-invariant channels, [38], [41], time-varying channels
[4], [5], [15], [16], additive Gaussian and non-Gaussian channels [44], as well as OFDM systems [55].

For convenience of discussing in greater detail some of the work done in equalization, we adopt
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the following signal model. When digital symbols s; are transmitted over a frequency selective

channel, the received signal can be represented as

L—1
(TS Z st_thiy +ve =h/s; + v (18)
=0
where y; is the received signal at time instant ¢, s, = [s; s; 1 -5, 141], h] = [heo heg -

hi,,—1] are the coefficients of the unknown FIR channel impulse response, L is the length of the

channel, and v; is an additive noise which is usually considered as a zero mean Gaussian process

2

with a known variance o;. The objective is to detect the transmitted symbols by first obtaining

the posterior distribution p(si.|yi.;) and then using it to perform detection.

A. Time-invariant channels

When the channels are time-invariant, we have h, = h. If we assume Gaussian priors for
the channel coefficients, we can analytically marginalize them and directly draw samples from
the posterior distribution of the symbols only. This allows for performing equalization without
explicitly estimating the channel coefficients. In other words, as per (15), for the update of the
weighting coefficients we would use

§m) IS(()’?ZQ)

) Pl you1)p(s
(0 ¢

wy wETl) (19)

w5y s 1 vor)
Following [41] and with the assumption that the data symbols s; € {—1, 41} are i.i.d. uniform

random variables, we can write the state space model of the observed data as

s; = Fs; 1+u

Yt = hTSt+’Ut (20)
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where F is an L x L state transition matrix given by

000 00
10 0 0 0

F=1010 0 0 (21)
000 .. 10

v ~ N(0,02), and u; = [s; 0 ... 0]. If we assume that the channel coefficients have a Gaussian

prior distribution, h ~ A'(h_;,C_), it can be shown that the posterior distribution of the channel,

)

p (h(m)|sg:';), Yo:t), which corresponds to the m—th trajectory of symbols, sg:'; , is Gaussian, that is,

p (h(m)|sg:';), yoit) = N (Bgm), Cgm)). The mean and the covariance matrix are recursively updated

by
_ (m) (m) e (m
B = ¢ (—Szg“wtlf >h£%)
(22)
(m) T (m)
S

In [38], [41], it is shown that we can obtain an analytical expression for the likelihood function,

p(yt|3(()f?),y0;t_1), by marginalizing out the channel coefficient, i.e.,
o

mn 1 Y 2 = (m)T ~—1(m)(m
ol 1) = o { = L+ RO R
(2%03 CETED

v
Styt 1(m){(m) ! (m) [ StYt 1(m) ¢ (m)
- (?+Ct—1 ht—1> C; <?+Ct—1 ht—l)]}' (23)

‘1/2

v v

The optimal importance function is proportional to the likelihood function, or,
(m) (m)
T(Sel80.4 1, Yoi) X P(YelSt, Spp” 1, You—1)-

It is readily shown that the function has the form

P(yt|8t, 8(()?;),1, yo:t71) (24)

(m)
W(St|30:t71?yoit) =
P(yt|8t =1, 5(()72),17?J0:t71) +p(yt|8t = -1, Sé?z),l,yowq)
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and that the updating of the particle weights is carried out by

(m) (m)

w™ ocwf™) (plyrlse = 1,555 1 you—1) + plurlse = =1, 551150001 ) - (25)

When the particles and weights of all the trajectories are obtained, symbol detection can be
carried out using smoothing. Smoothing in this context has been addressed in [8], [9], where the
emphasis is on the methods for fixed-lag blind equalization and the interest lies in obtaining the
smoothing distribution p(s;—;|y1.1), where [ is the fixed lag, followed up by detection of s;_;.

An interesting extension of the equalization algorithm is its modification to cope with un-
known channel orders. The problem can be resolved by employing a marginalization strategy where
the unknown channel order is marginalized. Another possibility is to estimate the channel order

with the transmitted symbols.

B. Time-variant channels

For time-varying channels, such as mobile communication channels, symbol detection and
channel estimation can be performed jointly following the concept of mixture Kalman filtering
(MKF) [6], [11]. The problem is again formulated by writing the channel model as a state equation.
As before, the channels are represented as FIR filters, but now they have time varying complex
coefficients whose magnitudes are randomly varying Rayleigh processes. The coefficient variations

can be approximately modeled as autoregressive-moving average (ARMA) processes given by

Ta Tb
hig == aghipi+ Y bptig_py (26)
k=1 k=0

where h;; is the [—th coefficient at time ¢, by = 1, and u;; is the driving noise process of the [—th
coefficient. The parameters ai,a2, ---, a,,, and by, by, ---, b, are functions of the fading rate

of the channels and can be evaluated if the Doppler spread of the channels and the symbol rate
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are known. Suppose for clarity of presentation that the variation of the channel is modeled as an
autoregressive process (AR) (all the by’s except by in (26) are zero). Then, if we define the channel
state as xtT = [htT htT_1 h;r—ra+1]v where htT = [ht0,ht1,..., b 1] (that is, x4 is an oL x 1

vector), we obtain the following state space model:

st = Fsi_1+z
Xt = Axt,1 + Dut
_ T
Yt = Sy Xt + 0. (27)
Here s, is an r,L x 1 vector defined by s, = [s; s4_1 -+ s4_41 0 --- 0], F is an r,L x r,L matrix
given by
F O 0
B 0 0 0
F =
00 --- 0

where F is defined by (21), z; is an r,L x 1 vector whose elements are all equal to zero except
for the first one which is equal to s;, and u; is an L x 1 zero mean Gaussian noise vector whose
covariance matrix has diagonal elements proportional to the power of each lag. The matrix A has

dimensions r,L X r,L and is constructed from the coefficients of the AR process according to

—aI —apl - oo —a,I
I 0 --- .- 0

A= (28)
0 0 I 0
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and D is an r,L x L matrix given by

0

where I and O in the above expressions are the identity and zero matrices of sizes L x L.

Now the objective is to jointly estimate the state of the channel x; and to detect the trans-
mitted symbols s;. It should be noted that given the transmitted symbols, the state space model
becomes a linear Gaussian model and the posterior distribution of the channel p(x;|so.¢, Yo:¢) is
Gaussian for all ¢. This permits recursive estimation of the channel parameters using Kalman
filtering [16].

We consider the importance function
(m) (m) (m)
Tr(st|50:t717y0:t) X p(yt|3ta50;75717yO:tfl)p(3t|30;t713yU:tfl)
o plyrlse, s5i) 1 you—1) (29)

where as before we assume that the symbols are i.i.d. uniform random variables. The last term

can be expressed as

p(yt|3t75(()f'z),17y0:tfl) = /P(yt|Xt,St,Sgg)1,y0:t1);0 (Xt|5t73§)73),17y0:t71) dx; (30)

where the second factor of the integrand is the predictive distribution of the Kalman filter. Then,

the expression for the importance function can be rewritten as

ﬂ(3t|SgZL)_1,y0;t) o /Nc(yt;s:(m)Xt,UQ)Nc(Xt;uim),25’")) dxy

— (ST, 02 1 ST ) o)
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where for clarity, ./\/C(yt;stT (m)Xt,UZ) and N.(xy; “Em), Egm)) denote that y; and x; have complex
Gaussian distributions, respectively, §tT (m) _ [s¢ SET% sir_n% SET% 4100 0], and u,gm) and Egm)

are the predictive mean and covariance of x; of the m—th trajectory, respectively. Similarly, we
can show that the corresponding weights can be computed from

w™ o w!™ Z plyelsS 1y 50, yoii—1)
see{£1}

= wETl) Z N (yt; S:(m)ugm), o2 + S:(m)zgm)sﬁm» . (32)
see{£1}

When implementing the algorithm, for each particle we evaluate the predictive mean and co-
variance of two Kalman filters, each corresponding to the symbols s; = 1 and sy = —1, respectively.
Then we draw samples using (31), and calculate the weights by (32). Finally, the Kalman filters
corresponding to the sampled symbols are updated. Once the particles with their corresponding
weights are obtained, the symbol is estimated using the maximum a posteriori (MAP) criterion. If
needed, a minimum mean square error (MMSE) (or other type) estimate of the channel state can
be obtained from the mean updates of the posterior distribution of x;.

Unlike other standard methods, particle filtering can easily be extended to non-Gaussian
noises. In [44], the additive complex noise is modeled as a mixture of J zero mean Gaussians
having different variances. There, a latent variable \; is defined to indicate the distribution of
vg. The procedure draws particles from an importance function p(s;, AAS&?_I, )\gzb)_l, Yo:t), and the
particles are used for approximation of the joint posterior distribution p(s;, A¢|yo:¢) from which the
MAP estimates of the symbols are obtained. It is reported that the algorithm outperforms existing
methods based on Gaussian noise [44].

Recently, a similar treatment has been extended to OFDM systems over frequency selective

channels [55]. One important difference with the above treatment is that the received signal y;
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is considered to be an observation in the frequency domain where the index ¢ there represents
different subcarriers. In such systems the observed signals of all the subcarriers are simultaneously
received. The channel parameters are assumed to have Gaussian a priori distribution which al-
lows, as discussed earlier, to perform symbol detection without explicitly determining the channel
parameters.

Blind equalization for satellite communications was considered in [33]. There, a state equa-
tion was developed for a nonlinear satellite channel consisting of a cascade of linear filters and a
memoryless nonlinear traveling wave tube amplifier. The state equation coupled with the observa-
tion, which consists of the state variable embedded in additive Gaussian noise provided a dynamic
state space model for the system. With the assumption that all the system parameters and noise
variances are known, a generic particle filtering detector employing the prior importance function

was applied to combat the nonlinear distortion of the channel.

C. Simulations

In our experiment we have simulated a scenario of a time-invariant channel with an impulse re-

sponse of length L = 3. We assumed a Gaussian prior for the channel coefficients, h ~ M'(h_1,C 1),

where o _ .
1 0.10000 0 0
h,=|¢|,C= 0 0.24569 0
0 0 0 0.05475

This choice of prior mean and covariance matrix corresponds to an environment with a strong line
of sight component and two weaker, zero-mean paths. This is a fairly realistic scenario for an
indoor communication system, for instance. The numerical values of the means and variances of

the channel taps are selected to yield the delay power profile in Figure 5.
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Fig. 5. Delay power profile of the 3-tap channel.
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Fig. 6. BERs of different equalizers.

In order to estimate the bit error rate (BER) under this channel model, we have randomly
generated 5000 signal bursts of duration 7" = 40 (i.e., 200,000 bits). A new sample channel is drawn
from the above prior distribution for each burst. At the receiving end, we have simulated three

equalizers:

o A one-shot linear MMSE (LMMSE) equalizer: This equalizer has perfect knowledge of the channel
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response, and it represents a Wiener matrix-filter that processes all the observations in a single burst
at once [41]. Clearly, this is not a realistic receiver, but it yields a lower bound on the BER of
simpler LMMSE equalizers.
e The Maximum Likelihood Equalizer (MLE): It, too, has perfect knowledge of the channel impulse
response and is implemented via the Viterbi algorithm. This is the optimal sequence detector and,
therefore, it yields a lower bound on the BER.
o The blind MAP equalizer: It is implemented via the Sequential Importance Resampling (SIR)
algorithm [17]. The number of particles is M = 300 and resampling is carried out each time the
effective particle size goes below the threshold € = 0.25M.! The importance distribution is the
optimal one.

The estimated BER curves are shown in Figure 6. Each point in the plots results from a
trimmed average over the set of 2,500 signal bursts. Extreme simulation samples (the highest 0.5%

and smallest 0.5%) have been discarded.

IV. BLIND DETECTION OVER FLAT FADING CHANNELS

In this section, we discuss in detail the applications of particle filters to detection over flat
fading channels. Figure 7 shows the baseband communications system block diagram over a fre-
quency flat fading channel. The input signal to the system is a sequence of symbols s;, transmitted
after bandlimiting the pulses using a pulse shaping filter g(7). The symbol period is Ts, and the
channel is represented by the complex time varying process h(7) and the additive noise v(7).

Fading, which is the variation of the received complex amplitude, is a result of the multipath
nature of the channel. Signals arriving at the receiver via multiple paths have different complex

2

' The effective sample size is defined by M.z, =1/ 37 _, (wgm))
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Fig. 7. Continuous-time model of the communication system.

gains and add up, resulting in a fading channel. The time variation in the number of paths,
amplitudes and mainly the phases of the multiple paths produces a fading process with random
nature. When the multiple paths arrive roughly within the same symbol period, the received signal
does not undergo distortion in frequency and hence is called frequency flat or non-dispersive fading.
The fading process is, however, highly correlated and is characterized by its bandwidth or Doppler
frequency denoted as f;. The random nature of the fading is described by the distribution of the
process at each time instant. When the real and complex components are Gaussian, the resulting
amplitude is Rayleigh distributed, while a line-of-sight component results in Ricean fading. For a
more elaborate discussion on fading channels, see for example [43], [50].

It is important to note that the multiple paths arrive in the same symbol period, and therefore
there is no inter-symbol interference. The receiver observes both a random complex gain for the
transmitted symbol and additive channel noise. While the Jakes model [25] is often used to model
the flat fading channel, a Markov model is preferred herein to obtain a state-space model. The flat
fading process can be generated by filtering complex white noise by a low pass filter, whose spectral
characteristics match that of the fading process [27]. As mentioned in the previous section, an
AR (or ARMA) model adequately represents the fading process [50], [56], [60]. The AR (ARMA)
parameters are chosen to match the spectral characteristics with those of the fading process. A

simpler method, which uses a two-path model to build AR(2) and AR(3) processes can be found
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in [12] and [56] respectively; the results there closely approximate more complex path models.

The state-space representation of the baseband communications system can thus be given by

hy = Ah; ;| +w

(33)
ye= s/ hy+uy
wheres, =[s; 0 0 ...0], and the channel b, = [h; hy_1 ... hy_,,] is modeled as an autoregression
with _ -
—a; —G ... —Qp,—1 —ap, 0
1 0 0 0 0
A=

0 0o ... 0 1 0

where the AR parameters may be known or unknown, and uz— = [uy 0 ... 0], where u; is complex

white and Gaussian with variance o2. This is a reasonable assumption, since the AR parameters
depend on the second order statistics of the channel and hence do not change as rapidly as the
channel gain.

Our goal is to estimate the Bayesian posterior distribution p (hy, s;|y1.¢). For achieving this,
we discuss two groups of algorithms of which the first assumes that the AR coefficients are known,

and the second, that they are unknown.

A. Known AR coefficients
A.1 Detector I

Detector I employs the prior distribution as the importance sampling function, i.e.,

mi(he,s;) = p(hy, 5t|h§71?, SETE)

= p(hy/h{™)p(s) (34)
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where the last equality is due to the Markovian nature of the channel and assuming that the
transmitted bits are independent of the channel and each other and are identically distributed.

The weight update equation can then be written as
w™ o ™ p(ylby™, ™) (35)
= wlp(ylni™, 5™). (36)
This detector can be used for both linear and nonlinear channel models. It can also be applied
to channels with more general fading characteristics than the ones of Rayleigh fading, for as long
as the fading process can be represented by a Markov model. This detector can also be used for
non-Gaussian noise channels.

A.2 Detector II

Here the importance sampling function is the optimal function given by [11]

7T2(ht, St) = P(ht, 5t|h§71?7 SETzayt)

(37)
= P(ht|hETE, Sty Yt) P(8t|h£Tiayt)-
Thus, a sample sim) is first obtained from
p(sibg™ w) o< plulse ™) p(se)
= N(hi™, ol +00) plse) (3)
followed by a sample from p(ht|hET%, s%m),yt) =N (u,gm), E&m)), where
(m) ()T ~1
2§m):<g%1+5t aszt >
’ - - (39)
p™ =z (Al;f{l + —Stm%yt> '
The weight update equation is given by
w™ o wf" p(yhf", s")) (40)
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where

plyl{™, s = 37 p(s)N (g seh™), o2 + 02). (41)
stEL

In the last expression, N (yy; ng) hgiq, 02 + 02) are Gaussian probability distribution functions

with mean ng)hir_n% and variance o2 + o2 and computed at y;. This detector is optimal in the

sense described in Subsection ITI-A. The generalization to non-Rayleigh fading channels and non-

Gaussian channel noises is straightforward.

A.3 Detector III

This detector combines a bank of weighted Kalman filters and a particle filtering algorithm.
It obtains the posterior distribution of the transmitted symbols by marginalizing the channel [7],
[44]. Given the transmitted symbols, the state-space model in (33) is linear, and hence a Kalman

filter can be used to track the channel. For the posterior of the symbol s;, we can write

P(St|8(()f'z)7p yO:t) X P(yt|8(()7;),1, St yl:tfl)p(st) (42)
where
P(yt|8873),1,3t,3/1:t71) = /p(yt|8t,ht)l7(ht|8(($)pyo:t1)dht (43)

and p(ht|sg§)_1, Yo:t—1) is obtained from the Kalman filter. The weight update is given by

w™ o w,gr_nfp(yt|8§$)—1a Yii—1)
= ’LUETI) Z p(yt|3t7 8(()7;),17 yl:tfl)p(st)‘ (44)
st€L

In [7], extensions to non-Gaussian channel noise and coded symbols are provided. Non-Rayleigh

fading channels can also be tracked using Gaussian sum particle filters [32].
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B. Unknown AR coefficients — Blind detection

In the previous subsection we have assumed that the AR (or ARMA) coefficients of the
channel model are known. In practice, however, the channel statistics are unknown, which implies
that the channel model coefficients must be estimated. One approach to their estimation is by using
pilot signals. For accurate estimation, long sequences of pilot signals may be required, especially
for slow fading channels. Further, for non-stationary channels, pilot signals must be constantly re-
transmitted. An attractive alternative is to build a receiver for joint channel coefficients estimation
and symbol detection.

The presence of unknown model coefficients does not allow for a direct extension of the above
proposed particle filters. In particular, there are three related difficulties. First, the use of the
prior importance function results in inefficient implementations, whereas the employment of the
posterior importance function is prohibited. Second, ambiguities arise between the symbols and
the model coefficients (for PSK modulated signals, there are also phase ambiguities). Third, if
the model coefficients are static parameters, they may create problems because the diversity of
their representations impoverishes after resampling. To provide particle filters with more diversity,

rejuvenation procedures are required.

B.1 Detector T (RLS-based)

A blind algorithm for joint channel estimation and detection was first presented in [34]. The
algorithm is a hybrid method which updates the unknown AR coefficients using the recursive least

squares (RLS) method, while the channel and the symbols undergo particle filtering updates. The
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prior is used as importance sampling function, and the AR coefficients are marginalized as follows:

ﬂ'(hta3t|h§)7;rtl)_1asg)r;rtl)_1ay0:t—l) = p(ht|h§$)_1,y0:t—1)p(8t)
— p(s0) [ (/b @)p(ahf) ) da (45)
where a' = [a1,...,a,,]. This results in a hybrid algorithm, which is a weighted bank of RLS

filters that update a, and whose weights are computed recursively

w{™ oc w{™)p(y ™, 5™). (46)

B.2 Detector II

Another blind particle filtering detector was reported in [21]. The detector adopts an AR(2)
model for the fading channel

ht = —alht_l — Gth—2 + ug. (47)

The parameters a1 and as are obtained from
a1 = —2rqcos(21Qy/V?2) and ag =12 (48)

where 74 is the pole radius of the AR(2) model, and Q4 = f4T is the normalized maximum Doppler
frequency. The expressions described by (48) impose an interesting and important relationship
between the underlying fading channel and the model coefficients. By considering the physical
communication system, the relationship enables us to combat the ambiguity between the symbols
and the coefficients and to implement a fully blind detector. Furthermore, to achieve efficient
implementation, the detector first marginalizes out h; using MKF, and then employs a hybrid

importance function for s; and the model coefficients a; and ag [22]. The hybrid importance
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function is expressed as

7T(8t, at|5(()7;7;)_17 a(()ZL)_p yO:t)

= p(8t|ata SE)T;)Z)_D ag)r;)z)_la yO:t)p(at|agT%)

) ) (m)

= p(silal™,al7) 85 1 you)d(ar, — ol )o(azy —alt) ) (49)

where a; = [a14,a2]", and the last equality is obtained based on the state equations ai; = a11

and as; = as ;1. The corresponding weights are computed by

wgm) x wETl)p(yﬂagzrtl)vS(()TYZ)—1a3/0:t—1)
= w™ > plurlse.aly) 85 1 you1). (50)
st€EL

Note that, as suggested by its name, the hybrid importance function (49) is a combination of the
posterior and the prior importance functions. As opposed to the posterior importance function, it
is easily implementable because the sampling from (49) and the computation of the weight in (50)
can be readily carried out. Finally, to overcome the impoverishment of the particle representation

in a generic implementation, an auxiliary particle filter with a smoothing kernel can be applied.

B.3 Detector IIT

In addition to linear models, alternative modeling of fading channels may be preferred, es-
pecially if one wants to capture the nonlinearities of channels. A wavelet-based nonparametric
modeling of fading channels was used in [18] where the fading process is decomposed using wavelet
expansions, i.e.,

he = @/ o (51)

where ¢, is the wavelet basis vector at time ¢, and oy denotes the wavelet coefficients, where the
two vectors are of size k. A blind receiver employing MKF was proposed for joint estimation of the
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wavelet coefficients and symbol detection. What is more, the receiver treats k as a static unknown
parameter and evolves according to k; = k;—1. As a result, the blind receiver updates the number

of wavelets dynamically and requires no channel statistics.

C. Some Ezamples

In this subsection, we present results of two sets of experiments are presented. In all the
simulations, it is assumed that data are transmitted continuously without pilot symbols or any form
of reinitialization bits in between. Hence, the data are transmitted even during harsh conditions

when the instantaneous signal-to-noise ratio (SNR) is very low, which happens during zero fading.

C.1 Rayleigh fading with Gaussian channel noise — AR parameters known

The first experiment considered a Rayleigh fading channel with additive Gaussian noise. A
BPSK modulation scheme was used for data transmission, with the symbols s; = —1 and s; =1
being equally likely. Data were differentially encoded to mitigate the phase ambiguity problem.
All three detectors from subsection IV-A were implemented for a channel with normalized Doppler
spreads set to fg = 0.001, which corresponds to slow fading, and f; = 0.01, which is a fast fading
scenario. An AR(3) process was used to model the channel, where the AR coefficients are a
function of the Doppler spread and are obtained from the method suggested in [56]. The particle
filter detectors were compared with the clairvoyant detector, which performs matched filtering
and detection assuming that the channel is known exactly at the receiver. Thus, it serves as an
unachievable upper performance bound. The number of particles chosen for Detectors I and II was
M = 1000, while for Detector 11T was M = 50.

In Figure 8, BERs as functions of SNR for the slow fading case (fy = 0.001) are plotted.

The AR coefficients are given by (a1, as,a3) = (—2.9916,2.9833, —0.9917). From the figure, it can

June 24, 2003 10:08



SUBMITTED TO THE SIGNAL PROCESSING MAGAZINE 33

f,=0.001

T T
~&— Clarivoyant Detector
—x— Detector |

Detector Il
- Detector Il

Bit Error Rate
3
T
@
[
>

I I I
6 6.5 7 75 8 8.5 9 9.5 10
Signal to Noise Ratio in dB

Fig. 8. Bit error rate performance of Detectors I, IT and IIT over flat Rayleigh fading with f; = 0.001 for
differentially encoded BPSK signaling.
be seen that Detectors IT and IIT perform similarly. However, it was observed that as the SNR
was increased, Detector II degraded in performance. Detector I does not work well in slow fadings
compared to the other two detectors.
Figure 9 shows the BERs as functions of SNR for the fast fading case, where f; = 0.01.
The AR coefficients are given by (a1, az,a3) = (—2.9145,2.8344, —0.9197). Detectors I and II have

equally good performance and are only slightly better than Detector III.

C.2 Rayleigh fading with Gaussian channel noise - AR parameters unknown

Figure 10 displays the BER performance versus SNR of the blind Detector II from subsection
IV-B.2. The fading process was generated using the Jakes’ method with 8 oscillators and €25 = 0.03.
We can see that Detector II clearly outperforms the differential detector and performs closely to the
lower bound achieved by the pilot aided MKF. For the pilot aided MKF, 1000 pilot symbols were

first used to estimate the AR coefficients (the modified covariance method [20], [26] was employed
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Fig. 9. Bit error rate performance of Detectors I, IT and IIT over flat Rayleigh fading with f; = 0.01 for

differentially encoded BPSK signaling.
for the estimation), and then MKF was implemented with the estimated coefficients set as true

coefficients.

V. PARTICLE FILTERING FOR MULTIUSER DETECTION

Multiuser detection (MUD) has received a great deal of attention since the eighties due to
its potential for increasing CDMA system capacity. A specific feature of MUD is that it does not
treat the multiple access interference (MAT) present in CDMA systems as noise but as information.
Since the optimum MUD is exponential in complexity, numerous approximate detectors have been
developed to reduce that complexity. However, the performance of these detectors is suboptimal
since they use interim hard decisions.

Application of particle filtering to MUD requires a representation of the system by a dynamic
state space model. Since the symbols of a CDMA system are uncorrelated across different time

slots, it is not obvious how to construct such representation.
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Fig. 10. BER performances of Detector II, the pilot aided MKF, and the differential detector. The fading
channel was generated by Jakes’ method and Q4 = 0.03.

The earliest application of particle filters to MUD appeared in [2] and subsequently in [45].
The state-space model is constructed using time dynamics of the fading channels and the symbols
of all the users at a time slot are treated as one super symbol. As a result, the super symbol has
a large alphabet whose size grows exponentially with the number of users. Recently in [58], [59],
an alternative state-space representation of CDMA systems was proposed. It is based on whitened
matched filter (WMF) outputs, where the dynamics of the system evolves with user index. This
representation allows for an efficient application of particle filtering. Here we also note that MUD

methods based on Markov chain Monte Carlo sampling were also proposed [53], [54].

A. State-space representations

Consider a synchronous CDMA system with chip-rate (processing gain) C' and K users. Let
T, denote symbol duration and &;(7) the normalized deterministic signature waveform assigned
to the k—th user. Here 7 € [0,T], and k& € {1,...,K}. Let si(7) € {—1,+1} be the symbol
transmitted by the k—th user, hy(7) the fading coefficient of the k—th user, and v(7) the received
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2

zero mean complex white Gaussian noise with variance o;. We can express the received signal,

y(7), as
K

y(r) =Y hi(r)sk(1)é(7) +o(t) T €[0,T] (52)

k=1

After sampling at the system chip rate and modeling the Rayleigh flat fading channels of all users
as ARMA processes as in (26), where the ARMA coefficients are chosen to fit the spectra of the
fading processes. Here, without loss of generality, we assume that r, = r, = r. We can write for

the state space representation

p, = Ap,_, +Eu (53)
h, = Bp (54)
where p; = (01t PLE—1 ** Pli—r P2t - * PK,t—r) 18 an auxiliary state vector of size (r + 1)K x 1
introduced to facilitate the representation, and hy =[hy; --- h K,t]T is the fading coefficient vector

of all users. The matrices A and B are known and of sizes (r + 1)K x (r + 1)K and K x (r + 1)K
respectively, where A is a block diagonal matrix, i.e., A= diag{A,A,--- A}, with A being an

(ra +1) x (rq + 1) matrix defined by (28), and

b 0 0

0 b 0
B =

00 b

where b" = [by by ---b,] is a vector of the MA parameters of the ARMA process. Finally, E is
an (r + 1)K x K matrix with zero elements except for 1’s at positions ((k — 1)r + 1, k), where

k=1,2,--- K, and w; is a K X 1 noise vector. The observations can now be written as

y, = s, EBp, + v, (55)
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where s; = [s14 -+, K,t]T, and E is a K x K diagonal matrix of spreading codes.

In the algorithm from [2], [45], (53) and (55) form the representation of the system that evolves
based on the chip duration, whereas the parameter of interest s; is static within each symbol time.
Samples of s; are taken from an alphabet of size 2/, and the channel state is integrated out. This
is equivalent to the MKF algorithm proposed in [6], [11]. With large number of users, the alphabet
of s; grows exponentially and the calculation of the importance weight becomes computationally
very expensive. In [45] and [46], it was found that deterministic methods which preserve the most
likely particles were the most efficient.

In the algorithm from [58], [59], WMF outputs were utilized for the system representation
because they are sufficient statistics of the transmitted symbols [52]. We can express the matched
filter output as

yt = RHys; + v (56)

where R is the crosscorrelation matrix whose 7j—th element is defined by R;; =< §,{ >=
Jo 2 &i(m)€;(r)dr, Hy = diag{his,- - ,hx;} is the diagonal matrix of the channel fading coeffi-
cients which are considered static within each symbol interval, s/ = [s1; ---,sk,] is the user
symbol vector, and v; is a complex-valued Gaussian vector with independent real and imaginary
components and covariance matrix equal to o2R.

The cross-correlation matrix is positive definite, and Cholesky factorization can be employed.

There exists a unique lower triangular matrix F such that R = FF. When we apply F~T = (F")~!
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to the matched filter output, we obtain

yo = (F)'ys (57)

= FHtSt + v (58)

— FS;h; + v (59)

where S; = diag(s1, S2¢,- - ,SKk,t) is the user symbol matrix. It can be verified that the covariance

matrix of v; is 02I, where I is the identity matrix. Since the noise becomes i.i.d. white Gaussian,

y: is called the whitened matched filter output. Component-wise, it can be written as

k
Ukt =Y Frihigsiz + Uk (60)
i=1

B. Particle filtering implementation
B.1 MUD when the fading coefficients are known

In this case the unknowns are the user symbols which are uncorrelated across different time
slots. In the following presentation, we drop the time subscript ¢. First, note that s; is independent
of y1.r._1. Therefore, the posterior distribution of the symbols of the first £ users can be factored

according to

P(Tk|S1:ks U1:k—1)P(S 12k |T1:k—1)
P(Uk|U1:k—1)

p(slzk |g1:k) =

o p(Yklsik)P(sk)P(S1:k—1]Y1:8-1)- (61)

Now if we choose an importance function of the form

w(s1:klT1:6) = P(SklStk—1, T1:k)P(Sk—1]S1:6—2, J1:k—1) - - P(S1|Y1)

= p(SklS1:k—1,U1:%)T(S1:k—1|T1:6—1) (62)
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we can create trajectories from p(si.x|¥1.x) using importance sampling recursively and the standard
particle filtering procedure.

During the k—th recursion, the trajectory sgf',? is weighted with respect to p(s%)@lzk) ac-

cording to
o™ = P(S%)@Lk)
k o —
77(3%)|y1:k)
X le:n—l)lp(gMSg?]z)_p gl:k—l)

. (63)

(m)

Observe that at recursion k, the 7, "’’s are all that we need to have for calculating the weights
ol

We note that drawing particles from the importance function W(sk|sm)71, T1:k) = p(Sk |3%)71, T1:k)

is easy since s € {+1,—1}. In particular, we can write

p(sk = 1|S§7f;i)_1,371:k) o< p(Ukl|sk = 1,8%)_1,51:1971)19(% = 1/S1k—1,Y1:k—1)

= p(gklsk = 1,8 Dplsk = 1) (64)

where p(Jk|sk, s%ll) and p(sy) are the likelihood function and the prior distribution at recursion ,
respectively, and they can be easily computed. An analogous expression can be written for p(s; =
—1|3§Z?,17 y1:k). Next, observe that n,(cm) = > s, P(Yk|Sks s%ll)p(sk), and thus the incremental
weight is proportional to the sum of the importance function from (64), which is also readily
obtained.

As in other applications of particle filtering, resampling is required in the algorithm. However,

the weight must be clearly associated with all the particles in the trajectory at all times (that is, for

all users). This is unlike in other applications where only the present particles in the trajectories are
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retained and therefore after resampling, the connection between the present weights and previous
particles is lost.

The complexity of the algorithm is O(K M), i.e., proportional to the product of the number
of particles and the number of users. If the number of particles is fixed, the complexity is only

linear with respect to the number of users.

B.2 MUD when the fading coefficients are unknown

When considering the joint channel estimation and MUD problem, we have to incorporate the
state-space representation of the Rayleigh fading channel in (53) and (54) in the final state-space
representation. If we assume that the channel is static within each symbol duration T, the WMF
output at time ¢ can be written as

y: = FStht + v;. (65)

With f,;r representing the k—th row of F, the WMF output corresponding to the k—th user can be
expressed as . = f,;r S:Bp, + vj . If we process a data block of T symbols, we can organize the
WMF outputs into a sequence of KT' observations, i.e., y1.x7 ={y11 - Uxk,1 - Y17 - UKT}
We introduce now a new index i = (t — 1)K + k, and we summarize the state-space representation

by

_ X, if mod(i, K) =1
S, =
gi—l + X, else
\
4
Ap,_; + Eu;, if mod(i, K) =1 (66)
p; =
pi s else
i — £7S. 5.
yi = £, 8,Bp,+9;
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where X; is a K x K matrix whose only non-zero element is (X;)rr = sii. As we will see later,
such representation facilitates the application of particle filtering.

The posterior distribution can be factored based on the state-space equations in (66),
p(S1ily14) o p(SilSi—)p(Stica]¥ri1) /p(ﬂz'|§z', p.)P(PilS1i—1,Y1:i-1)dp; (67)
and if we choose the importance function in the form of
7(S14]¥1:4) = 7(SilS1ei1, ¥1:0) 7 (S1ei1|Y1:i1)

we can obtain particles using the MKF algorithm. Specifically, the optimal importance function is

p(§1|§§7?11, y1.i) which can be evaluated from

P(§i|§§$11,?1:i) Ocp(gi|§§$l1)/P(yi|§iaPi)P(Pi|§¥?)—1a)—’1:i1)dPi- (68)

Note that given ,Svgr?zl, the state-space model in (66) is linear in p; and is Gaussian, and the term

p(p; | 'Svgf’;)_l,ym,l) can be obtained via the prediction step of the Kalman filter. In turn, the
integration in (68) can be evaluated analytically. The term p(§2|§§";11) is equal to zero if its first
k — 1 elements on the diagonal do not match those of ,sz'fl; otherwise, it is equal to 1/2.

The importance weight becomes
p (891)
p (ggm”ggn;)—lvylz) ™ (§5T11|5’1z—1)

x wZ(Tl)p (Qi|31:i71,}_’1:i71>

= wz(inl) ZP (§z|§§TZ1) /p (?7i|§z', Pi) p (Pi|§¥?),1a5’1;i—1> dp;. (69)

12

w™ -

Further details of the algorithm can be found in [59].
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C. Simulations

For the algorithm based on WMF outputs, first we simulated a synchronous CDMA system
with K = 15 users and a chip-rate of C' = 30. The spreading codes were generated randomly and the
same spreading code was used in all simulated detectors. Residual resampling [37] was performed
after every 5 users. In Figure 11 we present a performance comparison for the equal power case
with other popular CDMA MUD detectors: the 3-stage successive interference cancellation detector
with decorrelating first stage (3-stage), the Gibbs sampler,? and the decorrelating decision feedback
detector (DDF). For the Gibbs sampler, we experimented with two detectors whose difference was
in the length of the burn-in periods (periods until convergence). The first detector drew 100 samples
of which the first 50 were discarded (Gibbs-50). The second detector generated 150 samples, and
the first 100 samples were discarded (Gibbs-100). As a reference, the Breadth-first tree-search
algorithm which is optimum as described in [47] was simulated to provide a lower bound. In the
simulation of the particle filtering method, we used 50 particles (PF-50) and 100 particles (PF-100).
The performance curve in Figure 11 was obtained by averaging the BER of all 15 users. We can
see that in the equal power case, particle filtering can provide near-optimum performance. It seems
that the performance gain by increasing the number of particles from 50 to 100 is only marginal.

In the near-far case, the targeted user (the first user), had an SNR of 9 dB. The signal
strength of the remaining 14 users was identical and compared with that of the targeted user, and
was varied from —10 dB to 10 dB. The results of the experiment are shown in Figure 12. It is
clear that particle filtering performs almost always better than the 3-stage detector and although

it performs worse than the Gibbs sampler with weaker interferers, it is more consistent than the

%In our simulations we include the Gibbs sampler because it is another Monte Carlo based technique where estimates

and detection are based on generated samples from desired a posteriori distributions.
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Fig. 11. Performance comparison of various detectors for C' = 30, K = 15, equal powers, and known
channels.
Gibbs sampler. Also, it is near optimum in the range from —4 dB to 10 dB.

Then we simulated the performance of the algorithm based on WMF outputs in the case of
joint channel estimation and MUD. We simulated a quasi-static Rayleigh flat fading case where
the channel was considered static within a block of L 4 [y symbol times. The first [y symbols were
known to the receiver and they were sent as pilot signals. The fading coefficient within each block
for each user was a complex Gaussian random variable with unit variance and zero mean. The
fading coefficients of different blocks were considered independent from each other. We simulated
blocks of L =10 and lp = 1. For comparison, we also simulated the SAGE-JDE(1) algorithm from
[28]. For every simulated point, at least 300 bit errors were accumulated. In Figure 13, we see that

the particle filtering algorithm consistently outperformed SAGE-JDE(1).
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Fig. 12. Performance comparison of various detectors for C' = 30, K = 15, known channels and near-far

resistance of 9 dB.

VI. ESTIMATION AND DETECTION OF SPACE-TIME CODES IN FADING CHANNELS

Space-time coding (STC) originally introduced in [13] and further developed in [51] provides
a framework for exploiting spatial and temporal diversity to increase data rate in wireless communi-
cations. Although space-time trellis codes (STTCs) are deemed to possess the best coding efficiency
among space-time codes, they are hard for detection especially when unknown time varying fading
coefficients are involved. As demonstrated in [7] and [44], it is quite straightforward to represent
binary or M-ary convolutional (trellis) coded systems in fading channels using state-space models,
and in [57] particle filtering was considered for this problem.

Suppose that a communication system employs N transmit and Np receive antennas and
that a sequence of user data symbols, sg, ..., s;, where s; € A, is put through a trellis space-time
encoder. The new state vector of the trellis space-time encoder at time ¢ is determined according to
the state transition equation s; = f(s;—1, s¢), where s;_1 is the previous state, and s; is the new user

state. Based on the current state vector, the space-time encoder then generates a set of Ny symbols,
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Fig. 13. C =17/31, K = 10 equal power in Rayleigh quasi-static flat fading.

c'(sy) = [c1(st), ..., cnp (51)], to be transmitted by the Ny antennas, where ¢;(-) denotes the code
and modulation function of the i—th antenna. Suppose h,.ny,¢ is the fading coefficient from the
nr—th transmit antenna to the np—th receive antenna at time ¢. Let hJR’t = [Pingt - PNpng.t]
represent the set of channel states from all transmit antennas to the nr—th receive antenna. If we
arrange all the channel states at time ¢ into a single Ny Npg x 1 vector h) = [hIlt e h;R,t]v all the

received signals at time ¢ can be written in vector form as
Yt = C(St)ht + v (70)

where y; = [yi¢- - yNR,t]T is the received signal vector, and v; = [vy - vNR,t]T is the noise vector.

The code and modulation matrix C(s;) is an Ny x Ny Np matrix of the form

- c(sg) O -+ O -
CT(s1) = 0 c(s)) -+ O
| 0 0 c(st) |
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Note that here 0 is an N7 x 1 zero vector. This somewhat odd matrix representation is selected to
simplify the description of the joint estimation and decoding algorithm.

The fading coefficients from the Np—th to the Np—th antenna are modeled in the same way

as in (53) and (b4) except that the subscript nyng is added, i.e.,

pnTnR,t = AnTannTnR,t—l + EnTnRunTnR,t (71)
hynpt = B”T”anTnR,t (72)
where A E and B have the same definition as before.

nrNTHY Hnrngs nTNR

We can represent the whole system in a compact state-space form as follows

p, = Ap,_, +Eu (73)
h, = Bp, (74)
where p, = [p11 4, s Pupits " > Plnpitr pnTnR’t]T is the extended state vector, and the matrices

K, B, and E are constructed accordingly from the matrices Ay, ny, Enpng, and By, nr =
1,2,--- ,Np,np =1,2,--- | Ng, respectively. Note that in the algorithm described above, it is not
required that the fading coefficients or the noise vector at the receive antennas be independent as
required in most other algorithms.

Since the space-time code is trellis coded, besides the current and previous received signals
Yo:t, future observations also hold information about the current user state. Hence it is appropriate
to use the delayed importance function as well as the delay weight method in evaluating the posterior
distribution function. The number of delays can be chosen according to the constraint length of

the trellis code.

June 24, 2003 10:08



SUBMITTED TO THE SIGNAL PROCESSING MAGAZINE 47

A. Simulation

We simulated an STTC system with two transmit and one receive antenna. The ARMA model
for the fading coefficient is described in [7], and it was of order (3,3). This model corresponds to
a fast fading scenario with a normalized Doppler frequency (with respect to the symbol rate 1/T5)
fdaTs = 0.05.

For our simulations, we designed a special STTC based on the Tarokh 8-state STTC [51] that
can combat phase ambiguity utilizing the time correlation of the channels. The details of the design
can be found in [57]. We compared the performance of the system using our STTC with that of a
system that uses Tarokh’s STTC and pilot signals. The SNR was varied between 20 and 25 dB.
During our simulations, we found that we had to apply resampling frequently, which is essential for
good performance of the algorithm. We used the same residual resampling process as described in
[7] and resampling was performed every 5 steps. Because the constraint length is one in the STTC,
the number of delayed weights and delayed samples was one. For every simulated point, at least
100 symbol errors were accumulated.

The comparison results are shown in Figure 14. There we also represent the performance
of a detector that has exact information about the channel states. The simulations show that it
is viable to use particle filtering for decoding STTC with unknown fading channels. In addition,
a significant performance improvement can be obtained by using STTCs that can combat phase

ambiguity [57].
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Fig. 14. Comparison results of a genie aided detector and particle filter detectors that use Tarokh’s and a
newly proposed STTCs.
VII. SUMMARY OF ADDITIONAL WORK ON APPLICATIONS OF PARTICLE FILTERING TO

COMMUNICATIONS

Besides the presented applications, there has been research in applying particle filtering to
other problems in communications such as synchronization of communication systems [14], [40] and
detection of signals in BLAST systems® [23]. In this section, we briefly summarize some of this
work.

It is broadly recognized that many practical communication channels present a high degree of
structure and that they can be accurately characterized through a set of reference parameters with
a clear physical meaning. Since the observed signals collected by the receiver are affected by these
parameters, they should be estimated and compensated prior to data detection in order to achieve
optimal or close-to-optimal performance. The generalized synchronization problem consists of the

recovery of a set of such physical parameters, namely the symbol timing, phase offset and carrier

3BLAST stands for Bell Laboratories Layered Space-Time.
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frequency error. Up to date, many different techniques [39], [48] have been proposed in order to
solve the synchronization problem, but they are based on approximate and heuristic methods, as
optimal estimation of the parameters of interest seems to be analytically intractable [39].

Before particle filters are applied for synchronization, again, the observed signals are ex-
pressed in a state-space form. Synchronization, however, poses the additional difficulty in that the
parameters of interest are usually modeled as fixed [39], while standard particle filtering algorithms
are aimed at tracking time-varying unknowns.

In order to address the optimal recovery of the reference parameters and data detection,
two different approaches are considered. In the first approach [40], the idea of rejuvenation [35]
is applied in deriving a recursive algorithm aimed at approximating the joint smoothing proba-
bility distribution of the transmitted symbols and their (fixed) synchronization parameters. The
other approach, [14], allows the synchronization parameters to evolve in a random way using ar-
tificial evolution mechanisms (the parameters are modeled as autoregressive stochastic processes
[24], [42]) and therefore, they can be estimated using the traditional particle filtering approach.
According to computer simulations, the two methods appear promising for joint data detection
and synchronization.

In BLAST systems, spatial diversity is exploited to improve efficient transmission in broad-
band wireless communications. It is achieved by using multiple transmitting and receiving antennas,
and it provides significant capacity gains. An optimum solution to the detection problem in BLAST
systems is based on the maximum likelihood (ML) principle. Its complexity, however, is exponential
with the number of transmitting antennas, and therefore its use in practice is prohibitive. A rea-
sonable trade-off between complexity and performance was proposed where the detection proceeds

along the signal layers in a decreasing order of their signal-to-noise ratio and where the detection
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in each layer is a two-step scheme of cancellation and nulling [13]. A weakness of this approach,
known also as a V-BLAST receiver, is the propagation of error.

As an alternative, one can derive a dynamic state-space model of the BLAST system. The
states evolve in space rather than in time, and the construction of the model is based on QR
decomposition and the output of the feedforward filters. The proposed particle filters for the
considered state-space model do not suffer from error propagation, and the simulations show that

they greatly outperform the V-BLAST method and have near optimum performance [23].
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