BLIND EQUALIZATION BY SEQUENTIAL IMPORTANCE SAMPLING
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ABSTRACT

This paper introduces a novel blind equalization algorithm for
frequency-selective channels based on a Bayesian formulation
of the problem and the Sequential Importance Sampling (SIS)
technique. SIS methods rely on building a Monte Carlo (MC)
representation of the probability distribution of interest that
consists of a set of samples and associated weights, computed
recursively in time. We elaborate on this principle to derive a
blind sequential algorithm that performs Maximum A Posteriori
(MAP) symbol detection without explicit estimation of the channel
parameters.

1. INTRODUCTION

The practicality of future wideband wireless communication
systems greatly depends on the development of sophisticated
coding and signal processing techniques that provide high spectral
efficiencies and allow an approach to the theoretical capacity
limits.

One fundamental problem in this context is the detection
of a symbol sequence transmitted through a frequency-selective
channel. This is a classical topic that has received considerable
attention. When the channel parameters are known, Maximum
Likelihood (ML) detection is optimal, and can be efficiently
implemented by means of the Viterbi algorithm [1]. The
straightforward way to acquire channel state information is
to transmit training sequences which are known a priori by
the transmitter and the receiver, but this approach results in
an efficiency loss. Hence, a major stream of research has
focused on blind methods where symbols are detected without
knowledge of the channel coefficients and without using any
training symbols. This includes both linear equalizers aimed
at symbol detection without explicit channel estimation (see [2]
and references therein), and joint channel estimation and symbol
detection techniques [3]).

This paper introduces a novel blind equalization algorithm
based on a Bayesian approach to the problem and the Sequential
Importance Sampling (SIS) technique [4, 5], a sequential Monte
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Carlo (MC) methodology recently revived in the field of statistics.
SIS methods rely on building an MC representation of the desired
probability distribution, consisting of samples (sometimes called
particles) and associated weights, computed recursively in time as
new observations are received. This MC representation exhibits
uniform convergence to the true probability distribution as the
number of particles grows [6] and allows to tightly approximate
several types of estimators. We have elaborated on these principles
to derive a sequential algorithm that attains Maximum A Posteriori
(MAP) symbol detection without explicit estimation of the channel
response.  Although SIS methods have a weakness in that
they are computationally very intensive, they lend themselves to
implementation in massively parallel hardware, hence presenting
themselves as potentially attractive for real-time implementation.

The remaining of this paper is organized as follows. Section
2 describes the signal model for the equalization problem. The
Bayesian formulation underlying the proposed blind equalizer is
developed in Section 3. In Section 4 we present a deterministic
sequential solution to the problem of MAP symbol detection based
on the Viterbi algorithm, and we identify its limitations. In Section
5, the SIS algorithm is briefly introduced and applied to the
blind equalization problem. Illustrative computer simulations are
presented in Section 6 and some concluding remarks are made in
Section 7.

2. SIGNAL MODEL

Let us consider an uncoded digital communication system where
binary symbols, s € {1}, t = 0,1,2,..., are transmitted
in frames of length T + 1 through a frequency-selective fading
channel. When the coherence time of the fading process is long
enough compared to the frame size, it is common to assume that
the channel impulse response is constant for the duration of the
frame. At the receiving end, the observed signal is matched-
filtered and sampled at the bit rate. The resulting discrete-
time sequence constitutes a set of sufficient statistics for symbol
detection and can be adequately represented by a dynamical state-
space model of the form

State equation: s; = Ts;—; + us 1)

Observation equation: y; = s; h+ v;. )
In (1), the m x 1 symbol vector
St = [St—m+1 St—m+42 ... St]T
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is referred to as the system state at time ¢,

0 10 0
0 01 0
T=|: @
o0 0 - 1
0o 00 -~ 0

is the m X m state-transztzon matrix, and the m X 1 vector
u; = [00 ... s]" (where the new symbol s; is a binary
uniform random variable, i.e., 8¢ ~ U(=£1), and it is independent
from previous and future symbols) is the state perturbatton In
the observation equation, h = [hm—1 hm—2 ... hg]' is an
m x 1 vector representing the discrete-time equivalent channel
impulse response, v; ~ N'(0, a?%) is a zero-mean Additive White
Gaussian Noise (AWGN) component with variance o2, and y; is
the observation at time t. The channel order, m, will be often
referred to as the channel memory because it determines the span
of Inter-Symbol Interference (ISI).

The aim is to find a sequential algorithm to compute the
MAP estimate of the transmitted symbols in a frame, so.r =
{s0, 81,. .., 87}, when the channel coefficients in h are unknown.

3. RECURSIVE COMPUTATION OF THE POSTERIOR
PROBABILITY

Let p(so.7|yo.T] represent the probability mass function (pmf) of
the state sequence, so.T, conditional on the corresponding series of
observations. Hereafter, we will use the notation p[-|-] to represent
the probability density or mass function of the first argument,
depending on whether it is continuous or discrete, respectively,
conditional on the second argument. According to (1), the symbol
and state sequences are equivalent as long as the bits preceding the
current frame, §_41:—1, are known. Under this assumption, we
can write the MAP estimate of the transmitted symbols as

sgi ) = arg max {p[so.r|yo:r]} - 3)

For reasons of computational complexity, it is desirable to solve
problem (3) sequentlally and recursively, i.e., obtaining 30 it MAP)
from sff‘f Al as y is observed. In order to achieve this goal, let

us consider the following decomposition of the posterior pmf,

plso:¢|yo:t] o plyelso:e, yo:e—1)p[So:t—1]yo:e—1]. 4)

Equation (4) provides the basis for the sequential computation of
P[so:t|yo:¢] as long as the likelihood function, p{y:|so:t, yo:e—1],
can be analytically derived. This problem is addressed below.

Let us assume the channel vector is a priori distributed
according to a Gaussian model with mean h_; and covariance
C_1, i.e‘, _

h~N(h-1,C-;). %)

The likelihood in (4) can be written as
plyelso:t, yot—1] = / p[ye|h, st]plhlso.s—1,yo:e—1]dh  (6)
Rm

where ply:|h, s} = N(s{ h,o?). It is important to realize that
the posterior pdf of the channel attime ¢ is also proportional to the
above integrand,

plhlso.cyo.¢] o ply:|h, s:] plhlso.t—1, yoit-1] @)

and, therefore, the posterior channel densities are also Gaussian, as
a consequence of (5), i.¢., p[hlso:c—1, yo:t—1] = N (h¢—1, Ce—1)
and p[h|so.¢, yoit] = N (ht, C:). Since both pdf’s in the integrand
of (6) are Gaussian, their product is also Gaussian and can be
analytically found. We begin with the update of the posterior mean
and covariance of h at time ¢. In this derivation, we exploit (8) (see
top of next page). If we identify U = %, H=15s;, A = C;;
and zq = hy_q itis straightforward to show that

S¢S, -1

t -

C = ( 0; +Ct‘.ll)

h, = C, (w-i-ce 1he- 1)

where h; is the optimal Bayesian estimate of the channel impulse
response at time ¢ given the observations and the symbols.
Finally, since the application of the relationship (8) also yields the
proportionality constant in (7), we can easily solve the integral in
(6) to obtain the desired analytical expression for the likelihood,
shown in (9).

4. EQUALIZATION VIA THE VITERBI ALGORITHM

In this section, we apply the Viterbi algorithm [1] to the sequential
computation of s, TAP) using the recursive decomposition (4).
This is a well-known tool for the solution of optimization problems
that can be translated into a search of the best path in a special type
of graph termed trellis. A trellis graph is arranged as a sequence of
regularly connected stages, each one consisting of a fixed number
of nodes, and a regular pattern of edges linking stage j to stage
J + 1. The Viterbi algorithm can be applied whenever the overall
cost of a path across the trellis admits an additive decomposition,
i.e., whenever we can assign a fixed cost to every edge in the graph
and: (a) the cost of a particular path is given by the addition of
the costs of the edges in the path, (b) either all edges have a non
negative cost or all edges have a non positive cost. The algorithm
is completely specified by a cost function and a set branch metrics,
i.e., the costs of the edges in the graph.

In our case, there are 2™ nodes in the t-th stage of the
trellis, one for each possible configuration of the state vector,
st € {£1}™. The cost function is the logarithm of the posterior

pmf, L(so.7) = log (p[so.7|yo:T]), which, by virtue of (4), can be
decomposed as an addition of T' + 1 terms
T
L(so0.7) = log(p[yolso]) + Zlog(p[yt[so:e,yo:t-ll)-
t=1

As a consequence, the branch metrics are

o Ao = log(plyo|so]) fort = 0,

o )\ = log(p[deo:g, yo:t—ll),t =1,2,..T.

Unfortunately, a closer look at the branch metrics reveals
that they do not fulfill condition (b) above, i.e., they are not
either always non negative or always non positive, since the
likelihood function, p[yt|so:¢, yo:t—1], can take values both smaller
and greater than 1. Therefore, the Viterbi algorithm as specified by
the cost function £(:) and the branch metrics A is not guaranteed
to provide the MAP estimate of the data. Even if the algorithm can
be applied anyway, we have verified through computer simulations
(see Section 6) that it suffers from frequent misconvergence for
medium and high Signal-to-Noise Ratio (SNR) values and attains
a suboptimal Bit Error Rate (BER).
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(y —Hz) U(y — Hz) + (2 — 2a) " A(z — 2a)

= (z2-12) B(z—2p)+y Uy+z, Az,

—(H Uy + Az,) B~ (H Uy + Az,) ®)
where B=H'UH+A and z,=B"! HTUy + Az,
P
ICt|1/2 -3 %;-+F;r_1c:_lliz—1‘(%%'—+C,__11F¢—1)Tcz (5:;3'2!-+C¢__11F:—1)]

p[yt|80:t, yo:t—ll m

®

5. EQUALIZATION VIA THE SIS ALGORITHM

The convergence of the Viterbi algorithm to the true MAP
data estimate is not guaranteed, and therefore we consider the
application of the SIS algorithm [4, 5] in order to solve problem
3).

The standard statement of the SIS algorithm [5, Section 2] is
concerned with dynamical systems in state-space form where all
fixed parameters are known and only the state sequence has to be
estimated. This is not the case of model (1)-(2), so we present a
slightly different derivation here. We begin with an Importance
Sampling (IS) [7] scheme to draw M particles from the posterior
pmf of the symbols,

Sor

5@ — Plsorlyor]
(5)

q[sg.r |yo:r)

~  g[so:T]yo:T]
™

Ek =1 wk)

where g[so:7|yo:7] is an importance pmf with the same support as
p[so:r|yo.7] but easier to sample from, and {w}i=1,..u is a
set of normalized importance weights. These particles are said to
be properly weighted,' and they yield an MC estimate of the true
posterior pmf [4],

and w® =

M
plso:r|yo:T] = Plso:r|yo:r] = Zéiw(” (10)
i=1
(%)

where 6; = 1 if so.7 = sy, and §; = 0 otherwise.
The IS method can be modiﬁed so that it becomes possible
to build the state trajectories, sf;:)T, and the importance weights,

w', sequentially as new observations arrive. Let us consider an
importance pmf that can be factorized as

qlso:t|yo:t] = g[st|so:t—1, yo:t]g(so:t—1|y0:e-1], Vi (11)

Working with (4), (11) and the IS principle, it is simple to see
that the importance weights can be evaluated recursively in time,
leading to the SIS algorithm

st~ qlsils)_y,y0u)

~ (i)

(i) Plyelss, yo:e—1] @ W

Wy = w1 and w;’ = —=
‘I[Stl)lsm 1> Yo:t] Ek 1w ( )
'Meaning that EtI[h(s(’) Yo = E [h(s ], where Ep denotes

statistical expectation with respect to the pmf in the subindex and h(-) is
an arbitrary integrable function of the state sequence.

for ¢« = 1,..,,M. The set of particles and normalized
weights at time t yield an MC estimate of the posterior,
plso:t|yo:t], analogous to (10). Hence, at time T the resulting

approximate pmf can be used to perform inference on the posterior

distribution. Namely, the MAP estimate of the symbols, s((,A;I-AP),

is approximated by the particle with the highest importance
weight, i.e.,

“(MAP) — (hna:c)
So.r = Sor
where  imar = argmax{wél)}, i=1,.., M.
1

The steps involved in the SIS algorithm for channel
equalization are described in detail in Table 1, including a
resampling step [5] every time the effective sample size (My ¢
in the table) goes below a certain threshold (¢). This operation is
necessary to prevent the distribution of the weights from becoming
too skewed, with all trajectories having negligible weights except
for a few of them. Intuitively, the resampling operation consists
of discarding those state sequences with very small importance
weights, while those with a higher probability are replicated.

5.1. Optimal Importance PMF

The importance function g[-] is chosen by the designer, where the
choice is based on a trade off between complexity and performance
of the algorithm. In this section, we derive the optimal importance
pmf that employs all the information available up to time ¢ in order
to propose new samples, i.e.,

alselsS)_ 1, yost] = plsels?, youe] o plyelse, s, yoie—1)-

The likelihood in the above equatlon is shown in (12) (see top of
— 8t ‘t + C(v)
draw the new sample, sE’), using the set of functions

next page), with éﬁ")_ . To be specific, we

p[ytlst) Sgi_)ly yO:t-l]

st|s it = 13

glsils{;, youd Pet 4P 13)

where pi4+ = P[ytlst = 41,50, you-1] and pr- =
plyelse = —1,5), yo.e_1] are computed according to (12).

Correspondingly, the weight update equation becomes

d’t()_wt 1 (Pt,+ +pe,-)
which therefore, does not depend on the new sample to be added to
the trajectory and can be carried out in parallel with the sampling
step.
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plyelse, sy, yoie—1] = —tl———e
’ (2mo?|C{, )12

- =1 _r: T _. -1 —
7 ol R - (el R, ) T (et B) |

6. COMPUTER SIMULATIONS

Let us consider a system with h = [-0.7 1]T, T = 200
and differentially encoded BPSK symbols. The reason for
the differential modulation scheme is to avoid the well-known
problem of phase ambiguity in blind equalization [2]. Fig. 1 plots
the Bit Error Rate (BER) attained by:

e The linear Minimum Mean Square Error (MMSE) equalizer
with known channel. It is a one-shot equalizer consisting of
a Wiener matrix filter with dimensions T’ x (T' + m — 1).

e The Maximum Likelihood Equalizer (MLE) implemented
via the Viterbi algorithm with known channel [1].

e The blind MAP equalizer with unknown channel,
implemented via the Viterbi algorithm in Section 4.

e The blind MAP equalizer with unknown channel that
employs the SIS algorithm described in Section 5 with
the optimal importance pmf, p[s¢|s$)_,, yo:t), M = 100
particles and resampling steps every time Mes5 < 0.2.

We observe that the MAP equalizer implemented with the Viterbi
algorithm has a poor performance in the higher SNR region
because it does not necessarily converge to the true MAP estimate,
as explained in Section 4. The blind MAP equalizer implemented
with the SIS algorithm, instead, presents a much better BER curve
that steadily tracks the performance limit given by the MLE. All
nonlinear equalizers outperform the linear MMSE receiver.

7. CONCLUSIONS

We have introduced a novel blind equalization algorithm for
frequency-selective channels based on a Bayesian formulation of
the problem and the SIS methodology. A recursive algorithm that
sequentially builds an MC representation of the symbol posterior
pmf given the available observations has been derived. At any
time, it is possible to draw from this representation, which consists
of a set of data samples and corresponding weights, an arbitrarily
tight approximation of the MAP estimate of the transmitted
symbols. Hence, optimal blind equalization is achieved without
explicit estimation of the channel response.
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T =frame size, M = number of trajectories, ¢ = 1,..., M.
C(_’)1 =C_

B .= b, vi.

Initialization:

Fort=0,1,..,T:

Importance sampling: s(i

""I[Stlst 1> Yo:t] .
(#) (9) a1\
ol = (H—' 4 o)

(1)

Channel update:
C(:)( TN ON ‘)
Weight update: @ = wgl) -—mLm———p[y‘l’ £:V0:t 1]]

qt[ﬂg I8y 1 w0t

Weight normalization: w;’ = —7+—y
Resampling if: Mess =

Table 1. SIS algorithm with resampling.

1
! Ml\|:15E (knowln channel)‘ —_—
MLE (known channel) ---x---
[ P MAP: Viterbi algorithm ---%---
onle MAP: SIS algorithm ---o---
0.1
& 001
3]
Y
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:
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SNR (dB)

Fig. 1. BER vs. SNR for several equalizers.
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