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ABSTRACT

Sequential detection over a bandlimited nonlinear channel
is considered and a particle filtering algorithm is developed.
The nonlinearity of the problem motivates the use of se-
quential Monte Carlo methods. Since the channel is ban-
dlimited, the resulting memory of the channel allows for
modeling the problem as a dynamic state space model. A
particular application to nonlinear satellite communication
is illustrated, where the channel is a cascade of linear filters
and the nonlinear traveling wave tube amplifier at the satel-
lite repeater. The approach results in very simple detectors
with good performance characteristics and general applica-
bility.

1. INTRODUCTION

Communication channels are often represented by linear mod-
els due to their tractability. However, nonlinearities often
persist in many channels of interest, examples of which in-
clude satellite [1] and microwave channels {2], and mag-
netic recording systems [3]. These nonlinearities are often
present due: to nonlinear devices in the systems, (such as
the traveling wave tube (TWT) amplifier [4](and references
therein)) and they need to be compensated for effective elec-
tronic communication. Approaches that address the non-
linearities include neural networks, Volterra filters, wavelet
networks and non parametric techniques using higher order
statistics. Identification of nonlinear channels using Volterra
series is considered in [11,[5] (see references therein), where
the Volterra series are used to model the overall input-output
function. In'[6] for example, neural networks are applied to
model nonlinear channels with memory, where the chan-
nel may or may not be represented by separable parts. Op-
timal sequence detectors consisting of a bank of matched
filters followed by maximum likelihood sequence detectors
are described in [7]. Recently, a Markov chain Monte Carlo
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Fig. 1. Baseband model of satellite communication system

approach has been applied for blind sequence equalization
for a satellite channel [8].

In this paper, we present a sequential detector using par-
ticle filters for bandlimited nonlinear channels, with appli-
cations to satellite systems. Particle filters {9],[10],[11],[12]
are becoming popular techniques for a large number of sig-
nal processing problems, including those in communica-
tions. In [12],[13],[14], a general description of application
of particle filters in sequential estimation and detection is
given, for linear and nonlinear channels. In this paper, we
develop detectors based on particle filters for use in nonlin-
ear satellite channels consisting of a cascade of linear filters
and the memoryless nonlinear TWT. Note that due to.the
presence of linear filters, the channel itself is not memory-
less; this allows the dynamic state space (DSS) representa-
tion of the system.

Section 2 discusses the satellite system. Particle filter-
ing is described in Section 3. The sequential detection algo-
rithm is proposed in Section 4. Simulations are presented in
Section 5 and extensions are provided in Section 6.

2. SATELLITE SYSTEM MODEL

The satellite communication system consists of two earth
stations connected by a satellite repeater through two radio
links. Data by, from a discrete complex set £ = {l1,...,l¢}
is transmitted over the baseband bandlimited satellite sys-

III - 2465

s3(t)



tem described in Figure 1. The symbol period is T" and the
signal received is sampled at rate 1/Ts where T = pT;
and p is the upsampling factor. The advantages of having
p > 2 are discussed in [8]. The emission filter is a pulse
shaping filter and limits the bandwidth of the transmitted
signal s(t) = ), bxd(t — kT'). The emission filter is a 4-
pole Chebyshev filter with 3-dB bandwidth equal to 1.66/T".
The signal s (¢) is transmitted to the satellite and is affected
by additive, zero mean, complex Gaussian noise u1(t) on
the uplink channel. The real and imaginary components are
i.i.d. each with variance 0#/2. The signal received by the
satellite has 15dB signal-to-noise ratio(SNR). The input and
output multiplexing filters F1 and F2 are also 4-pole Cheby-
shev filters with 3-dB bandwidth given by 2/T and 3.3/T
respectively. F1 and F2 limit the noise power in the signal.
The high power TWT amplifier is a memoryless nonlinear-
ity, with a complex transfer function that depends only on
the input amplitude. The amplitude-amplitude (AM/AM)
and amplitude-phase (AM/PM) distortions are represented
by [4]

B(r) = 135 (1)

where r and A(r) are the amplitudes of the input and output
signals respectively and ¢(r) is the phase change in the out-
put signal. Values of the parameters o, Soatp, Bp are esti-
mated in [4]. The downlink channel has distortion modeled
an additive, zero mean, complex Gaussian noise uo(t) with
real and imaginary components i.i.d. with variance o2 /2.
For the sequential detection algorithm presented, we assume
that all the system parameters, namely the filter coefficients,
satellite parameters and noise variances-are known.

Since the signal y(t) at the receiver is upsampled with
factor p, denote ax = by £ where [-] indicates the smallest

integer greater than or equal to (-). The various discrete
signals at each stage of the system are represented below.
We use the notation

Alr) = 85

Pk = F(c,d, q) @)
to indicate the transversal linear filtering operation

- = Cmy Ph—my +doGk + - - .+ Ay Qomm,

3

where gx and py, are the input and output of the filter respec-

tively with coefficients ¢ = (c1, ..., Cm, ), d = (di,. .

We have the following DSS model for the satellite com-
munication system,

P = —C1Pk—-1—-.

s1,x = F(cg,do, ax)

So.x = F(c1,d1, 81,k + U1,k) @)
83,k = F(Cz, ds, TWT(Sz,k))

Yk = S3,k + U2,k

where TWT(-) is the TWT amplifier transfer function de-
scribed by (1) and all the filters are 4-pole Chebysheyv.

e lms).

3. PARTICLE FILTERS

This section explains particle filters, where we employ a
change of notation. Consider the following DSS model,

(state equation)
(observation equation)

fr(zp—1,uk)
hi(zk, vi)

Tk

Y = ®

where xk, Yk, ur and vy are the hidden state, observation,
process noise and observation noise respectively, of given
dimensionality. From a Bayesian point of view, we would
like to estimate p(zk|yx), where yI = (v1, Ya,...,Yk)-
Also of interest is the expectation F,,(g(zk)|y«). For a lin-
ear model with Gaussian noise, p(z|yx) is Gaussian and
the celebrated Kalman filter can be sequentially used to ob-
tain a closed form solution. However, with nonlinearity (as
in our problem) and non-Gaussianity in the model, there
generally exist no such closed form solutions and analytical
computation is infeasible practically. Monte Carlo based fil-
ters provide a practical methodology for estimation in such
problems.

The basic idea is to represent the distribution as a collec-
tion of samples (partlcles) from that distribution. N parti-
cles, Xy = {w(l) . ,xk )} from the so called importance
sampling (IS) distribution 7 (xx|yx) are generated. Subse-
quently, the particles are weighted as w (" = ”-E’s) IIZ'Z))
Wy = {w(l) e ,wk )} then the set { Xy, Wi} represents
samples from the posterior distribution p(z|yx). An esti-
mate of Ep(g(x)) can be written as:

Ep(9(zx)) = Z wiPg(z{). ©

Let

Due to the Markovian nature of the state equation, we
can obtain a sequential procedure called sequential impor-
tance sampling (SIS), to obtain estimates of p(z|yx) se-
quentially [9],[10]. The algorithm can be written as follows:

1. Attime k = 0, we start with NV samples from 7(zo|yo)
and denote them z(’) = 1,...,N, with weights

wy) = p(w<’>|yo)/7r<m<"|yo>.

2. Attimek=1,.... K, let X, = {x;i=1,..., N}

be samples with welghts Wi = {w,(:), i=1,...,N}L
- The sets X;—1 and Wy_; represent the posterior den-
sity p(zk—1]|yk—1). We obtain particles and weights
for time k from steps 3, 4 and 5:
N, sample :z:g)

3. Fori=1,..., ~ T(Tk|Th—1,Yk)-

4. Fori=1,..., N, update the weights using:
) = g p(yelz)p(a) |2f2
— %k-1 -

m(zy) |I§:) 1 Yk)

Q)
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5. Normalize the weights using @;” = w;.’/ ZN=1 wy’.

In SIS, degeneration of particles occurs with time k. In ef-
fect, the weights of only a few particles remain significant.
This results in a poor estimate of the expectation in (6). A
procedure called resampling can be used to reduce this de-
generation. The basic idea is to duplicate the particles which
have significant weights, in proportion to the weights of the
particles. For a detailed description, see for example [10].

4. SEQUENTIAL NONLINEAR DETECTOR

From the DSS model (4), we observe that the hidden (un-
known) states are the filter outputs s1 , S2,k, S3,5 and the
transmitted data ax(= bg). Clearly due to the nonlinear
TWT amplifier, this DSS model is nonlinear in the state
equation which motivates the application of particle filters
for sequential detection. However, note that sk, S2,k, 83,k
are nuisance variables and our primary interest is in the de-
tecting by. Also, s1 x and s3 ;. are deterministic functions of
bk and 82,k-

In order to use SIS algorithm, we need to choose the IS
function 7(-). Following the above observations, we need
only generate particles for b, and s3 ;. Subsequently, parti-
cles of s1, and s3 x can be obtained from the deterministic
equations in (4). Due to the nonlinearity of state equation
and non-additive noise, a simple choice is the prior distri-
bution

7= p(br,S2,k|bk~1,52,k—1:k~4) ®)
= p(bk)p(s2,k|bk:k—1, $2,k—1:k~4)

where the last equality comes from assuming i.i.d. trans-
mitted data (this assumption can be relaxed for say encoded
bits, see for example [14]). The SIS algorithm for sequential
detection is given below.

4.1. SIS Algorithm
Forj=1,...,Kp; k=1,..., K, repeat the following.
1. Fori =1,..., N, generate bg-") ~ p(b;), where p(b;)
is known a priori.
2. Since ay, is an unsampled version of b;, we have afj) =
(@) C Tkl 5
b;” where j = f;],z =1,...,N.
3. Fori=1,...,N, obtain sﬁc = F(co,do,ag)).
(2

4. For ¢« = 1,..., N, generate samples “13; from its
Gaussian distribution.

5. Fori = 1,...,N, obtain s{} = F(cy,da,s{} +
u(ll)k) and compute 5:(;,)k = F(cz, dz,TWT(Sg;L))-

curve for detector
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Fig. 2. Plot of SNR Vs. BER characteristics of proposed
Sequential nonlinear detector

6. Update weights using

wi? = wi(i) p(yklssy), i=1,...,N. (9)

7. Normalize the weights using u‘/,(:) = w,(:) / Ef,:l w,(;).

8. Resample the particle trajectories according to a re-
sampling schedule [10].

4.2, Detection

Using the particles obtained in the above algorithm, deci-
sions on the received data are made in the following man-
ner. Since there are p observations per symbol period, we
must use all the p observations to make decisions about the
transmitted symbol. Evidently, decisions on the transmitted
bits are made at times k = p,2p,..., Kp. The posterior
probability of by can be written as:

P(or = lmlyx) = E(I(bx = lm))
~ SN aPI0P = ln) m=1,...,|Ll,

(10)
where I(by = lp,) = 1if by = Uy, and O otherwise. Then
choose by, = [; so that,

h:ggﬂ@:%) 11)

This decision process does indeed take into account all
the received data. The weights at time say k = p are smoothed
weights for the decision on a (at time k£ = 1), i.e. wy, takes
into account the observations y., for the decision at time
k = 1. This is nothing but fixed-lag smoothing as discussed
for example in [14].

5. SIMULATIONS AND COMMENTS

In the simulations, the BPSK constellation was considered,
sothat £ = {+1, —1}. Data are transmitted at rate 1 Mbaud,
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ie. T = 10~%s. The upsampling factor was p = 7. The
coefficients for the Chebyshev filters were obtained using
the cheby2.m function in MATLAB. Values for the satel-
lite parameters were chosen from (4], aq = 2.1587,8, =
1.1517,a, = 4.0033, and 8, = 9.1040. The uplink SNR
was maintained at 15dB. A number of simulations were car-
ried out and the results shown are averaged over 10 random
Monte Carlo runs for each SNR. Figure (2) shows the bit
error rate (BER) versus SNR characteristics of the proposed
detector which used N = 10 and N = 50 particles. Ob-
serve that increasing the number of particles leads to an
improvement in the performance. It is interesting to note
that even for small number of particles N = 10, the per-
formance is good. This is because the uplink SNR is main-
tained at 15dB (even in practical systems) and the filters
merely limit the noise power in the received signal while
adding a memory of 4 to the system.

6. EXTENSIONS AND CONCLUSIONS

A particle filtering detector was developed for a bandlimited
nonlinear channel and its application was illustrated for a
satellite communications system. Some extensions are also
possible. First note that the detection algorithm also ap-
plies for non-Gaussian channel noises, since the weight up-
date function depends only on the distribution of the chan-
nel noise, which is a very important property. Secondly, the
signal received at the receiver can also suffer from multipath
fading on the downlink. This too can be incorporated using
techniques from [13], where the fading channel is modeled
as an autoregressive process. Thirdly, the satellite parame-
ters can also be included in the unknown state variable. This
was treated in [8], where the parameters came from a dis-
crete set. Finally, nonlinear decoding can be treated in a
similar fashion. Since encoded bits are not i.i.d., samples of
bi can be generated from p(bk|bk—1:.k—m) Which is estab-
lished from the encoding scheme.

The proposed detector can be extended to many com-
munication channels. It has the added advantage of being
parallelizable and tractable for VLSI implementation.
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