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ABSTRACT

In sequential signal processing, the main objective is to es-
timate evolving states. Often, however, the models under
consideration contain additional unknowns, which are time
invariant. When the state estimation is carried out by se-
quential importance sampling methods, the presence of fixed
unknowns can present a nontrivial problem. In this paper,
we provide a solution to this problem when the fixed un-
knowns are the covariance matrices of the additive Gaussian
noise vectors in the state and observation equations. These
matrices are first marginalized, and then the sequential pro-
cessing carried out as usual. In the implementation of this
approach, besides the assignment of a weight to every par-
ticle, two additional evolving quantities are required. Simu-
lation results are provided that show the performance of the
method.

1. INTRODUCTION

Sequential importance sampling is a methodology for se-
quential signal processing that has drawn significant interest
lately {4]. It is an attractive approach for filtering, predic-
tion and smoothing in scenarios where the signal evolution
is nonlinear and the noise is non-additive and non-Gaussian.
It has been shown that in many important situations it shows
considerable performance advantages over the standard ex-
tended Kalman filter method.

The sequential importance sampling methods are based
on representing the densities of interest by a set of samples
and their associated weights. When such sets provide good
approximations of their densities, various types of estima-
tors can be used to estimate the desired unknowns. Typi-
cally, the main object of interest in sequential signal pro-
cessing problems are the time varying states. The time vari-
ation of the states is usually modeled as a Markov process
and is represented by a state equation. The states are not ob-
served directly, and instead, before measurements are made,
they may undergo nonlinear transformations. The measure-
ments can be distorted and therefore they are modeled as
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random variables. The state and measurement observations,
thus, contain noise, which follows some postulated para-
metric distribution.

In many practical settings, the noise parameters are not
known, and one approach that has been adopted in such
situations is to expand the state vector with these param-
eters and carry out the sequential importance sampling in
the usual way. It should be noted that there is an impor-
tant difference between the original state variables and the
noise parameters in that the latter do not change with time.
This creates a major problem in implementing the method
because there is no natural mechanism to regenerate the par-
ticles of the unknown fixed parameters. As a result, the
weights that correspond to the compound state degenerate
very quickly. One solution to this problem is to enforce ar-
tificial evolution of the fixed parameters [8].

Often, the noise parameters are not of interest and in
such cases, if at all possible, they should be integrated out.
In the important problem of state estimation where the noise
in the state and observation equations is additive and Gaus-
sian, this can be done. In this paper we provide the steps of
the marginalization and derive the final update weight equa-
tion. Here, the marginalization is especially useful because
it significantly decreases the dimension of the state space.
This has a very positive impact on the implementation of
the sequential importance sampler. The number of particles
that have to be used in the approximations of the relevant
densities can be drastically smaller. In addition, the vari-
ance of the estimated states is reduced considerably.

The paper is organized as follows. First we state the
problem, and then we provide a brief overview of the se-
quential importance sampling method. The main section
of the paper is Section 4, where the case of unknown co-
variance matrices is treated and the main result is provided.
Simulation results that present the performance of the pro-
posed sequential importance sampling method are given in
Section 5. Comparisons are made with the the sequential
importance sampling method that uses the correct values
of the covariance matrices. Finally, we conclude the paper
with brief remarks.
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2. PROBLEM FORMULATION
The models of interest in this paper have the form
X¢ = fe(xe-1) + e 1)

yi = g¢(x¢) + Vi @

where ¢t € N is a time index, x; is a state vector at time
t, u; is a state noise vector, y; is an observation at time ¢,
and v, is an observation noise vector. For the vectors we
assume that x;,u; € R*, and y;,v; € R™. The symbols
ft(-) and g;(-) represent known functions, which in general
are nonlinear in x;_; and x;, respectively. In addition, the
noise vectors are modeled as Gaussian, i.e.,

g ~ N(O, Cu)
Vi ~ N(O, Cu)

where C, € R**" and C, € R™*™ are positive definite
matrices with n(n + 1)/2 and m(m + 1)/2 different ele-
ments, respectively. These matrices are unknown. Also, the
noise vectors u; and v; are assumed independent. The ob-
jective is to estimate the unobserved states x; recursively
from the observations y;.

3. SEQUENTIAL IMPORTANCE SAMPLING

A widely accepted method for estimation of x; is the ex-
tended Kalman filter (EKF). It is based on the linearization
of (1) and (2) around the current values of x; and x;_; and
application of the standard Kalman filter [1]. It has been
shown, however, that in many applications the EKF is un-
reliable and produces poor results. In the literature, as al-
ternatives, several other methods have been proposed, in-
cluding Gaussian sum approximations [10] and grid-based
filters [3]. At about the same time, a method based on se-
quential Monte Carlo integration was also proposed [6], but
due to lack of computing power, it had a similar destiny as
other numerically based approaches; it was almost forgot-
ten. Later in the late eighties and early nineties, the interest
in computationally intensive methods for sequential signal
processing was rekindled [5], [7], and ever since, this inter-
est has steadily increased.

In this paper, we address the sequential importance sam-
pling method [4). Here we briefly summarize it and out-
line its implementation. Let x;.; and y;.; denote the sets
{x1,%2,-++ ,x;}and {y1,¥2, - ,¥:}, respectively. When
the data y;.; have been observed, all the information about
the states x;.; is summarized by the posterior density p(x1.¢|
¥1:t). If the only unknowns were the states, the recursive
equation that describes the transition from p(x1.4—1| y1:¢—1)
to p(x1:¢]y1:t) is given by

P(Yt|X1;t, Y1:t—1)p(xt|X1;t—1 ,Yit—1)
P(yely1:e—1)

P(Xml)h:z) =

XP(X1:t—1]|¥1:0-1)- 3)

The computation of the “new” given the “old” posterior in
(3) is often intractable for analytical evaluation. In such
cases, one usually resorts to a computational approach. Sup-
pose that at time t—1, the posterior density p(x1:¢—1y1:¢—1)
is given by the set of particles and weights {xg':)t_l, wgﬂl N
One straightforward approach to obtaining the particles and
weights {x{), w{?}¥ | from {x{)_,,w?, }¥, would be
to apply the sequential importance sampling algorithm [4].
The algorithm runs as follows:

e Draw xgi) from w(xtlng)t_l,yl;t), where 7 (-) is an
importance function.
O]

e Compute the importance weights w; ‘" according to

w® = wggll’()’tlng)uyl:t—ll)p(‘xgi)lxgl-n Yue-1)
W(XE‘)|"§3_11Y1¢)
@
o Normalize the weights by
w? = ;‘[’:(i)—( 5
Zj:l wy’

4. THE CASE OF UNKNOWN COVARIANCE
MATRICES

In our problem, the unknowns also include the covariance
matrices C,, and C,,.. They are fixed, and do not evolve with
time. Since they are not of interest, they are not estimated
and are instead integrated out. We show how one can obtain
the expressions for the factors in (4), which are needed for
the computation of the new weights.

First, 7r(x£') |x§f)t_1 ,¥1:¢) is selected so that, besides pro-
viding good sample candidates, it is also easily computable.
Second, for the factor p(ytlx(l’:)t, ¥Y1:t—1) We can write

p(ytlngiyyl:t—l) = /p(Ytlnglyylzt—I’Cu)

x p(ColxY), y1:6-1)dCy 6]
where .
@y
p(yelxis, ¥1:6-1,Co) x ]Cvl%

x e~ (re—ge(xe)) CT M (ye—g:(x))

Another way of writing this density is

(2) 1
Xi.p, ¥Y1:t—1,Co) X
P(Ytlxip Yiie-1 ) |cu|%
e 3tr(CT (Y=g (x))(ye—g(xe )T ©)
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For the density p(Cv]xg’;)t, Yi:t—1), we have

p(Cy IX% Yi:t-1) X p(y1:t-—1 |x§2_], C.)p(Cy)

where p(C,) is the prior of C,. We choose the noninfor-
mative prior for C,, [2}, i.e.,

1
p(C,) x —-
(C.) |C, |7
Then
P(Cleﬁ)n)’ht—l) x 1 e—%tr(C;‘Rﬁ‘_)l) 1

IC,|F |C, "

where
& t_l o o
R, =3y — g <5 — g PNT
j=1

or

i 1 1 1 (i)
p(cleﬁi’YI:t—l) X |C,,|ﬂaﬂe (GRS, (O]

Next, we substitute (6) and (7) in (5) and obtain

) 1 1
p(ytlxlztayl:t—l) x / (Cvl% lelt_-(;;n_

x e~ 3t (CT ve—g(x))(ve—s(x)" g~ $4(CT RV g

or
(%) / 1 —%tr(C'IRg’)dC
Xigr Y1) & | ——pmgre v .
P(yelxie Yi:e-1) ICU' 1 v
Using the integral [2] '

/ |Z|%k_1e_%trZBdZ = |BI-—§(k+m-1)2%m(k+m—l)
Z>0

xT,, (k—l-'r;z—-l)

where Z, B are positive definite symmetric m x m matrices,
and I',(-) is the generalized gamma function [9]

Tnl®) = (T (;))"1""(""” gr (b+57)

where b > 21, we can show that

. N
Pelxi), yre-1) o< RV 73,

The derivation of the expression for p(xff) |x§fl_1 y Yi:t—1)

is similar. The obtained result is

PO X)) y1e-1) o |QEY | H

where

: t : : : .
Q7 =306 ~ fiG2)6” - H6g)"

j=1
So, the computation of the weights simplifies to

w® = w5 '
m(%; X111, Y1:t)

®

Thus, in the implementation of the sequential impor-
tance sampling method, when keeping track of the particles
and their weights, one also needs to monitor the quantities
R{” and Q{Y). Modifications of (8) can be implemented to
avoid the imminent problem of the monotonically increas-
ing R, Q{, and .

5. SIMULATION RESULTS

We conducted several experiments in which we evaluated
the performance of the sequential importance sampling method
proposed here. We compared it with the performance of
the sequential importance sampling approach when the co-
variance matrices are known. Some of the results of these
experiments are shown here.

The model that was used in the simulations is given by

Xy = X1 t+w
yi = g(xt)+vy
et vi1
e%t2 v
= +
e%tm Vtn

We used n = m = 2, and the covariance matrices C,, and
C, were

C. = 0.020 -0.014 C. = 0.05 0.01
*7 | -0.014 0.020 v—1o0.01 0.05|"

The realizations had T = 100 samples, and in the sim-
ulations we used M = 300 particles. In Figure 1 we dis-
played the two state trajectories ,1:¢ and z2 1.¢ of a specific
realization and their estimates obtained by the two meth-
ods. The figure also contains the graphs of the observations
used for the estimation. In Figure 2, we provided statisti-
cal results of the performance of the methods. The subplots
show the mean square error (MSE) as a function of time of
the first and second state trajectories obtained by the two
sequential importance sampling methods. The results were
computed from 50 estimated trajectories of the state and ob-
servation realizations shown in Figure 1.
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— G, € known
10+ .- € C, unknown

Mean Square Error, x,(t)

x,(1)
se

Mean Square Error,

Fig. 1. Top plot: Trajectories of the first state and their es-
timates. Middle plot: Trajectories of the second state and
their estimates. Bottom plot: Trajectories of the observa-
tions. One set of the estimates were obtained with the as-
sumption that the covariance matrices were known, and the
other, when they were unknown quantities.

6. CONCLUSIONS

In most of the published papers on nonlinear state estima-
tion problems, where the noise is additive and Gaussian, a
typical assumption is that the noise parameters are known.
Here we address the problem when this assumption is not
valid. The noise parameters are not estimated but are in-
tegrated out, which decreases the complexity of the method
substantially and reduces the variance of the estimates. Sim-
ulation results are provided that indicate the performance of
the method.
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