Finite Precision Effect on Performance and Complexity of Particle
Filters for Bearing-Only Tracking”

Miodrag Boli¢, Sangjin Hong, and Petar M. Djurié
Department of Electrical and Computer Engineering
Stony Brook University

- Stony Brook, NY 11794-2350
{mbolic, snjhong, djuric}@ece.sunysb.edu

Abstract

In this paper complezity reduction of particle filters
and their performance due to finite precision effects
are investigated. A method for dynamic range scaling
of importance weights is proposed as well as ways for
its integration with computation of the weights. Func-
tions are approximated in o way to mitigate dynamic
range scaling problems. To reduce complexity, redun-
dant operations of particle filters are identified and
particle filters are correspondingly modified. We con-
sider the sample importance resampling (SIR) method
of particle filtering applied to the bearings-only track-
ing problem.

1 Introduction

In the recent past, particle filters have attracted
much attention as a methodology for tracking and/or
detection of dynamic signals [1]. Particle filters out-
perform other filters, such as the Kalman filter, in
many important practical situations, and their flex-
ibility in addressing a wide variety of problems makes
them very appealing. However, the hardware com-
plexity of the particle filtering can be significant for
practical VLSI implementation. One way to reduce
hardware complexity is by employing finite precision
processing by using fixed point arithmetics [4, 3] and
complex function approximations [5).

The size of the computation metrics such as word
length as well as the number and type of operations
are commonly used indicators of performance in sig-
nal processing applications. Intuitively, the larger the
computation, the larger the area, power and delay
one should expect. In particle filters, the compu-
tation’s size is proportional to the number of parti-
cles M. The main computational burden of particle
filters is related to the importance step, where new

*This work has been supported under Awards CCR-9903120
and CCR-0220011.

0-7803-7576-9/02517.00 © 2002 TEEE

838

weights are calculated. It requires M calculations of
complex mathematical functions (exponential, arctan,
division, square) for each input sample. The use of
finite word size for representing variables affects the
dynamic range of data representation, which is partic-
ularly apparent when exponential functions are com-
puted. In a case of large deviations of the observation,
the weights are dispersed and many of them have neg-
ligible values. In this case, tracking would be lost if
the dynamic range of the exponential function is not
extended.

In this paper, a method for scaling the dynamic
range has been proposed. The main idea is to cover
a wide dynamic range with small number of bits for
representing exponential functions (16 or less). The
method operates on the exponents of the exponential
function used for the weight calculation.

The reduction of number of operations is a very
important task. It has been shown that particle fil-
ters applied to the bearings-only tracking problem [2],
which initially perform 20 divisions per each observa-
tion, can be implemented with only one division. The
exclusion of division helps not ouly in reducing the
number of operations but in avoiding dynamic range
problems due to division.

2 Algorithmic representation of parti-
cle filter steps

In order to provide a better illustration of the or-
der of computational complexity of particle filters,-we
present a pseudo-code of the particle filter for the
bearings-only tracking problem. Particle filters se-
quentially update its random measure (X, W) based
on new observations and the random measures from
the previous time instants. The symbol X is the hid-
den state which consists of the position and velocity of
the tracked object in the Cartesian coordinate system
(X = {=, Va4, Vy}) and W represents the importance

weights associated with X. In Pseudocode 1, a par-
ticle filter code for processing one observation is pre-
sented. An input argument to the particle filter is the
observation z, a:nd the output are the estimates of the
system states X = {&, V;, ¢, V,}. The symbols in the
pseudocode, n;,n,, denote two A-dimensional arrays
of Gaussian random numbers used in the sample step.
This routine should be called from an infinite loop. It
performs seguentially the following three steps: sam-
pling, computation of the importance weights, and re-
sampling. There are two additional steps, one of which
is used for updating the states after resampling, and
the other, used for calculating the estimates. In this
algorithm, resampling is performed at each time in-
stant. The algorithm requires adding a criterion for
resampling when resampling is not performed at each
time instant.
(2, Va0, Vv):PF(z,n,,ny) . .

(x,Vz,y,Vy) = BOTs(Z, V2,8, Vy, nz, 0y)

(w, Sar) = BOT {z, vy, 0, 2)

(1) = SR(1,w)

(%, Vx,y, Vy,w) BOTy (=, Vfiyvvv)?’)

(%, VI’yFVy)_BOTO(m Veo o, Vi w)
Pseudocode 1: Processing of one observation by a particle
filter,

The generation of particles is performed by draw-
ing them from the importance density in the sam-
pling step. In Pseudocode 2, the sampling step for
the bearings-only tracking is presented. The input ar-
guments are the states of the particles obtained from
the update state step from the previous time instant
(X = {%, Va. 7, v, w}). For sake of simplicity of imple-
mentation, the prior density of the state is selected as
importance density. The output of the sampling step
is & new vector of states X = {z, V., y,V, }.

(@ Ve, y, Vy) = BOTS(E; ‘Za’ga F‘;s'nnzsny)
for m=1:M -
m(m) = m(m) + Va(m) + 0.5n:{m)

Vz(m) = Vz(m) + na(m)
y{m) = §(m) + ¥, (m) + 0.5n,(m)
;’fy (m) =V, (m) + ny(m)
en

Pseudocode 2: Sampling step.

One possible realization of the importance step
which is used for weight calculations is shown in Pseu-
docode 3. The importance step consists of two sub-
steps: weight calculation and normalization. First,
the weights are evaluated up to a proportionality con-
stant and subsequently, they are normalized. The in-
put arguments are the observation z, the arrays of
states x and y and updated weights from the previous
time instant w.

(w,5p) = BOTi(2,y,1,2)
// Celeulation of weights and their sum

839

Sy =0
form=1:M
—(2no?)”

2
1.(1—““5{%%)

w”{m) = @®(m)e
Sar = Sum +w(m)
end
// Normalization
form=1:M
wm) = =50t
end

Pseudocode 3: Importance step.

In Pseudocode 4, a systematic resampling algo-
rithm is presented. There, w is an array of scaled
weights from the importance step. When the weights
are normalized, the input sum of weights §,s is 1. The
output ¢ is an array of indexes, which shows the new
positions of the resampled particles.

(1) = SR(She,w)
Ag = M
Generate random number U ~ U[0, Ag)
S=0,k=20

form=1: M
while (8 < U)

Pseudocode 4: A systematic resampling algorithm.

The particles have to be updated (Pseudocode 5) in
order defined by the index array 7 from the resampling
step. The output of the updated states is the new ran-
dom measure (X, W), where X = {%,V;,7,V,} and
w(m) = 1/M for m = 1,...,, M. The states updating
is performed simply by indirect addressing x{i(m)) us-
ing the index array i(m).

(& V.
[

= BOTy (£, Vo, 41, Vi,)

z(i(m))

= V. (i(m)
y(i(m))

= Vy (i{m))
=1/M

,,gi

g

IEN
g

/l-_]\i
g‘é

_a”u

I3 gz@ﬁ;

!
2

end

Pseudocode 5: Updating of states.

The computation of the output estimates is shown
in Psendocode 6.

(%, Ve, @ V;) = BOTo(z, V=, ¥y, Vy,w)
&= Y M_, wim)z(m)
Vo = TN _ wim)vp(m)
#= Yo wimly(m)
v, = Zm ; w(m)Vy(m)
Pseudocode 6: Computation of estimates.

3 Computational kernel

An important property of signal processing algo-
rithms is that their execution time and energy are

dominated by regular, repetitive kernels of compu-
tation. These kernels are calculations that are per-
formed in the inner loops of a program implementing
a given DSP algorithm. The performance of parti-
cle filters for the bearings-only tracking problem are
evaluated on the popular T1 TMS320C54x DSP pro-
cessor [6]. The execution times of the particle filter
operations based on the algorithms from Section 2 are
shown in Table 1. Here, S represents sampling, I the
computation of the importance weights, R resampling,
and O the computation of the output estimates.

Table 1: Execution times of particle filter operations
for the TM3320C54x processor.

PF operation | S 1
Duration (%) | 12 | 67

O
10

R
11

The computation of the importance weights takes
most of the time (about 67%) as all the non-linear
computations take place there. The type of non-linear
functions depends on the problem at hand, but the
most common non-linear function is the exponential
function because a standard assumption used in mod-
elling is that the observation noise is Gaussian. We
must say here that the execution time for sampling is
calculated without including time for Gaussian ran-
dom number generation because the random number
generation is not in the critical path.

4 Reducing the number of operations
The number of operations is reduced by recogniz-

ing redundant operations and by replacing operations
with simpler ones whenever possible.

4.1 Integrating normalization of weights
with other steps

The normalization step {(Pseudocode 3) requires the
use of an additional loop of M iterations as well as M
divisions per observation. It has been noted that the
normalization represents an unnecessary step which
can be merged with the resampling and the compu-
tation of the importance weights. Necessary changes
in Pseudocode 3 include no normalization step and no
normalization of the weights at the output. Avoiding
normalization requires additional changes which de-
pend on whether resampling is carried out at each time
instant. For particle filters which perform resampling
at each time instant, the following arguments should
be used when the resampling routine is called from
Pseudocode 1: (i) = SR(Sa,w*). Since the weights
are not normalized, the uniform random number in the
systematic resampling routine should be drawn from

[0, Sas/M) and updated with Spr/M.

840

When particle filters do not perform resampling at
each time instant, modifications in the computation of
the importance weights are necessary. In Pseudocode
3 we can see that the calculation of new weights re-
quires multiplication with the weight from the previ-
ous time instant. When the weights are not scaled,
this multiplication could cause dynamic range prob-
lems, and therefore, the weight should he scaled at
this point. However, in order to avoid division with
the sum of the weights Sy, In{Sa) is calculated and
added to the exponent of the exponential function.

Using this approach, only one division is performed
in the resampling step (S /M), and that significantly
reduces the dynamic range problem for fixed precision
arithmetics which usvally appears with division. The
computational burden is reduced as well since the nor-
malization requires M divisions.

4.2 Reducing the number of multiplica-
tions

There are several places in the filter where multipli-
cation is unnecessary or it can be replaced with sim-
pler operations. M multiplications in the computation
of the importance weights can be replaced with addi-
tions. Instead of multiplying the expenential function
with the weight from the previous time instant, one
can use only the exponent of that weight, and thereby
convert multiplication to addition.

Multiplications can be avoided in the calculation
of the output estimates for particle filters that per-
form resampling at each time instant. The state esti-
mates can be computed from the new random measure
(X,w), for which the multiply-accumulate operation
in Pseudocode 6 is replaced with the accumulate op-
eration because all the weights are equal.

After applying all the modifications for reduc-
ing computing time, our comparisons made on
TMS320C54x showed that the execution time was re-
duced about 20%. The comparison was made on an
algorithm that performs resampling at each time in-
stant.

5 Finite Precision Processing

Processing with finite precision has been a problem
for many signal processing applications requiring min-
imal amount of hardware. Most of the design efforts
have been in reducing the hardware resources while
maintaining the performance level. In this section, we
examine two aspects of finite precision processing: the
finite word length effect and approximate processing.

One of the most important qualities of particle fil-
ters is that the error of the weight caleculation due
to finite precision effects does not accumulate during

time. It is a result of resampling after which all parti-
cles have equal weights. This means that after resam-
pling, the “computational history” of the weight is
erased. Accumulation of errors, however, exists in the
sampling step since the states from the previous time
instant are used for proposing new particles. There,
too, resampling reduces error accumulation by replac-
ing particles whose weights are low due to the statis-
tical nature of tracking and/or computational errors.
So resampling reduces the ill-effects of finite precision
processing.

Next, finite precision effects on the particle filter
operations from Section 2 are considered. The sam-
pling step consists of additions which do not give rise
to real finite precision problems. Approximation of
the Gaussian random number generators with genera-
tors suitable for parallel hardware implementation has
not been studied here. Finite word length effects have
been considered, and it has been shown that satisfy-
ing accuracy of tracking can be achieved when all the
variables in the sample step are represented with 14
bits.

The computation of the importance weights will be
considered separately in Section 5.1 since almost all

finite precision problems of particle filters originate
from this operation.

Operations that are performed in resampling are
simple additions. However, the resampling is very
sensitive to any kind of truncation or rounding dur-
ing additions because it can give rise to non-constant
number of particles at the output of the resampling
unit. So, adders used for resampling must be imple-
mented with higher number of bits in order to avoid
this error.

The update step does not contain any arithmetic
operations, and therefore it is not affected by finite
precision.

5.1 Effect of Finite Word Length in the
Computation of Importance Weights

The main computational burden of particle filters is
related to the computation of the importance weights.
In the case of SIR algorithm used for tracking, the
importance step requires calculation of the following:
" exponentiation, finding the arctan, squaring, multi-
plications, and divisions. The representation of the
outputs of all these functions in fixed point arithmetic
causes errors due to cumulative finite word length ef-
fects.

The dynamic range problems are critical for the
exponential functions. In order to understand these
problems, the process of weight propagation is studied.
In situations when the particle filter tracks well, the

841

particles are drawn from a region around the actual
state values, and consequently, the non-normalized
weights are large. On the other hand, when there
are significant deviations from the most recent esti-
mate, the values of the weights can be very small.
Then, tracking may be lost if the dynamic range is
not scaled.

A method for scaling the dypnamic range has been
proposed in Pseudocode 7. It also provides a proce-
dure for merging the scaling with the importance step.
The main idea is to cover wide dynamic ranges with
low number of bits for representing exponential func-
tions (16 or less}. The scaling method operates on the
exponents of the exponential function used for calcu-
lating the weights. It consists in finding the minimum
of the exponents of all the particles and then scaling all
the exponents with this minimum. The method uses
the property of particle filters that it is sufficient to
know the weights of the particles up to a proportion-

‘ality constant. The dynamic scaling of the range then

is not acute since the maximum value of the weights
after computation of the exponential function is one.

The scaling method requires two loops of M iter-
ations in the weight calculation step as is shown in
Pseudocode 7. One loop is used for calculating the
exponents of the exponential functions and finding the
minimum exponent, while the other serves for calcula-
tion of the weights and computation of their sum. The
disadvantage of this method is that the extra loop in-
creases the execution time.

(w, Sar) = BOT; (x, 4, W, 2)
/{ Calculation of the exponents and their minimum
Sy =0,min = MAX
form=1:Af 2
a{m) = (21'n7§)_l (z — atan %}%})

if (a{m) < min) min = a(m);

end
// Calculation of the weights and their sum
form=1: M

w*(m) = ‘I}(m)e—u(m)+min

Sar = S + w‘(m)
end
// Normalization
form=1:

M
w(m) = ¥glml

end
Pseudocode 7: The computation of importance weights
with a scaling method.

When the dynamic range is known, the computa-
tion of the exponential function could be performed
only for particles that can contribute to the generation
of new particles. In that way, the number of calcula-
tions of the exponential function is reduced which is
especially obvious when the filter does not track well.
This property allows for adding additional logic to im-
prove tracking in critical situations such as jumps in
the input signal. Simulations show that if the input

signal changes its value between two consecutive sam-
ples for more than 20%, there are more than 70% of
particles that are too small to contribute to the out-
put.

Aside from the exponential function and the divi-
sion in the atan function, the ranges of all the other
functions in the importance step are knewn in ad-
vance, so that a dynamic change of the fixed point
is not necessary. The simulation results show that
even 12 hits of resolution for the exponential function
provide good accuracy at the output.

5.2 Function approximation

The COordinate Rotation Dlgital Computer
(CORDIC) shows very good properties for calculation
of hyperbolic functions [5, 7]. The same CORDIC
core can be used for calculation of both exponential
and aetan functions, and that will reduce area require-
ments. Secondly, it approximates the atan{y/z) func-
tion without calculating division. In this way, dynamic
range problems due to division in the atan function are
resolved. In our simulations 14 bits of resolution gave
good results in approximating those functions.

5.3 Simulation results

Some simulation results are displayed in Figure 1.
Graph (a) shows the number of times when the track
is lost versus the number of particles for 14 and 16
bit precisions and for double precision arithmetic. We
consider that the track is lost if the sum of all non-
normalized and non-scaled weights is very close to
zero. Bellow 14 bits of resolution, the percentage of
lost track increases significantly, so that 14 is the min-
imum number of bits that should be used for func-
tion representation. As expected, the number of times
when the track is lost is higher when finite precision
arithmetic is applied, and it is inversely proportional
to the number of bits. Graph (b) presents the average
of the mean square error {MSE) versus time for 14
and 16 bit precisions and for double precision arith-
metic. The results suggest that when enough bits for
finite precision are used, there is no deterioration in
the accuracy of tracking. From the results, it seems
that with finite precision arithmetic more extreme re-
sults were obtained: the filter either lost the track or
tracked very well.

The finite precision effects of particle filters were
evaluated using SystemC language for hardware-
software co-design. The scaling method was used for
dynamic range problems of the exponential function.

6 Conclusions
In this paper, we investigated complexity reduction
of particle filters applied to the bearings-only tracking

842

(&)

Figure 1: {a) Percentage of cases when tracking is lost
versus the number of particles. (b) MSE versus time with
14 and 16 bits precisions and with double precision.

problem. We considered reducing the number of oper-
ations and applying finite precision processing as ways
for reducing the hardware complexity. Functions that
can cause dynamic range problems were identified. It
was shown that particle filters can be implemented
without divisions. To present exponential functions
with low number of bits, a new scaling method was
developed. Approximation of hyperbolic functions by
using CORDIC core was described.

References

[1} A. Doucet, N. de Freitas, and N. Gordon, Eds., Se-
quential Monte Carlo Methods in Practice, New York:
Springer Verlag, 2001.

[2] N.J.Gordon, D. J. Salmond, A. F. M. Smith, “A novel
approach to nonlinear and non-Gaussian Bayesian
state estimation,” IEE Proceedings F, vol. 140, pp.
107-113, 1993.

[3] R. M. Gray and D. L. Neuhoff, “Quantization,” IEEE
Transactions on Information Theory, October 1998,

[4] 8. K. Mitra, Digital Signal Processing: A Computer-
Based Approach, McGraw-Hill, 2nd edition, 2001.

i8] J. M. Muller, Elementary Functions, Algorithms and
Implementation, Birkhauser Boston, May, 1997.

[6] Texas Instruments, TMS320C54x DSP Library Pro-
grammers Reference, August 2002.

[7] J.E. Volder, “The CORDIC Trigonometric Computing
Technique,” IRE Trans. Electron. Comput., vol. EC-8,

pp. 330-334, 1959.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

