ECCTD’03 - European Conference on Circuit Theory and Design, September 1-4, 2003, Cracow, Poland

On Some Properties of One-Dimensional Resistive
Spatial Filters

Adrian Leuciuc *

Abstract — The spatial stability and frequency re-
sponse of one-dimensional resistive networks is stud-
ied. Both infinite and finite resistive grids (with var-
ious practical boundary conditions) are considered.
The analysis is restricted to first- and second-order
networks for which the spatial stability regions are
determined. Conditions for achieving maximally-flat
low-pass spatial filters are also derived.

1 INTRODUCTION

Translation-invariant resistive networks like the one de-
picted in Fig. 1 have been used in various applications:
image signal processing [1]-[3],
solving the discrete forms of Laplace and Poisson equa-
tions for different boundary conditions [4], and more
recently, offset averaging in flash and folding analog-
to-digital converters [5]-[11]. Some of the applications
using resistive networks may require 2D grids (as in
image processing or analog computing) and/or higher-
order ones (resistors spanning more than two nodes).
In this communication only 1D and first- and second-
order resistive networks are considered. For the purpose

analog computers for

of authors’ intended final use of such grids (offset aver-
aging in high-speed A/D converters) this will suffice.
High-speed A/D converters can be implemented in
various architectures: flash, two-step (or multi-step),
pipeline, folding/interpolating, and time-interleaved.
Flash A/D converters do not require front-end sample-
and-hold amplifiers and this makes them the best ap-
proach for high-speed applications.
ADCs are limited to low resolutions because of power
and silicon area constraints. The folding technique was
introduced as a means to achieve the speed of the flash
conversion at a fraction of the area and power consump-
tion. It consists of an analog signal preprocessing that
allows the reduction of the number of comparators in a
flash-type converter. In both flash and folding ADC ar-
chitectures the input signal bandwidth and sample rate
can be increased if minimum size transistors are used
in the input stages. Nevertheless, this will also increase
the mismatch of the input devices and, consequently,
the offsets of the amplifiers/comparators, therefore re-
An effective

However, flash

ducing the accuracy of the converters.
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technique for decreasing the offsets in an array of am-
plifiers is resistive averaging that was initially proposed
by Kattman and Barrow. [5]. Thus, resistors are con-
nected between the outputs of amplifiers (the current
sources in Fig. 1), acting as a filter that partially re-
moves the "spatial noise" (the random offsets).

2 THE INFINITE CASE

A detail of an infinite 1D second-order resistive spatial
filter is shown in Fig. 1. The current sources I[n],
represent the inputs, whereas the node voltages y[n]
are the outputs. The resistor indexes show how many
nodes the corresponding resistor spans. The network is
described by the following difference equation:

yln] = alyln — 1] +yln+1]) +byln — 2] +
+y[n +2]) + (1 — 2a — 2b)z[n], (1)
where
_ Gl
¢ = Go +2G1 + 2G2
b Ga

Go +2G1 + 2G2

and z[n] = Rol[n] represent the node voltages when the
lateral resistors are not present.
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Figure 1. Detail of a 1D second-order resistive network.

(i) First-order network. When resistor Rz is not
present (Rz = 00), (1) describes a first-order non-causal
IIR filter with the transfer function

1—2a

HE) =TG-

)
and with the poles given by

1++v1—4a?
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Such a system is stable for |a| < 0.5 (for non-causal
systems the instability is given by the presence of poles
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on the unit circle). The frequency response of the filter
(2) is
1—2a
H(w) = —————
) 1 —2acosw

and for 0 < a < 0.5 one obtains a low-pass filter. The
bandwidth is set by the parameter a, the expression of
the -3dB angular frequency being given by

(V2-1)(2a—1)

cos(w_3qp) =1+ 90

The closer is a to 0.5, the narrower the filter.

A first-order resistive network with nearest-neighbor
connections produce only an exponential convolution
(the poles of the transfer function are real), equivalent
to a poor selectivity in the frequency domain. Hence,
extension to higher orders may be needed in practice.

(ii) Second-order network. In this case, the cor-
responding transfer function in 7 transform is

1—2a—2b

H&) =T e —b (129

®3)

As it will be shown in the next sub-section, such a filter
can have a higher roll-off slope in the stop-band and
therefore can implement a more efficient spatial low-
pass filter.

2.1 Spatial stability of infinite second-order
resistive network

The stability of non-causal discrete-time systems is
given by the absence of poles on the unit circle. In
the following we will derive the acceptable values of pa-
rameters a and b that ensure the spatial stability of
the second-order infinite resistive network. The poles
of the transfer function for the infinite resistive grid are
the solutions of the fourth-order equation
bz' +az* —14az4+b=0 (4)
Because it is much easier to derive the conditions when
the roots of a fourth-order polynomial are purely imag-
inary numbers than if their absolute values are equal
to unity, one applies the bilinear transformation to the
above equation
s+1
s—1
This transformation maps the unit circle in the z plane
onto the imaginary axes in the s plane. Therefore, de-
termining if equation (4) has a solution on the unit
circle is equivalent to check if the biquadratic equation

(2b+2a—1)s* + (1204 2) s> + (26 —2a —1) =0

has imaginary solutions, which at its turn reduces to
check if the second-order polynomial

P(u) = (2b+2a — 1)’ + (12b 4+ 2) u + (2b — 2a — 1)

has real negative roots. Therefore, the values of the
parameters (a, b) guaranteeing the stability of the non-
causal spatial filter described by (3) have to satisfy the
following set of inequalities

8b2 +4b+a2 <0
or
(2b+2a—1<0)&(2b—2a—1<0)& (6b+1>0)

and the region of stability corresponds to the interior
of the contour depicted in Fig. 2. Because real poles
determine an exponential convolution kernel, which cor-
responds to a poor selectivity in the frequency domain,
efficient second-order filters will have parameters (a, b)
inside the dotted line ellipse in Fig. 2. In this case pa-
rameter b is always negative, corresponding to negative
Nev-
ertheless, efficient implementation solutions have been
reported in literature to overcome this drawback [1],
[11].

resistors Ry present in the network of Fig. 1.
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Figure 2. Spatial stability region.

2.2 Frequency response of the infinite

second-order resistive network
The frequency response of the filter (3) is

1—2a—2b
1 —2acosw — 2bcos 2w’

H(w) =

To obtain a maximally flat low-pass filter, the deriv-
atives of H (w) at w = 0 should be zero for as many
orders as possible, and the first non-zero one should be
negative (to ensure the frequency response is a convex
function). It can be easily seen that the first derivative
OH (w) /0w = 0 for w = 0. The second derivative is

0°H (w)

dw?

_ 2(a+4b)
Jwu=0 1—2a—2b

and it nulls if b = —a/4. With the value of parameter b
set this way, the third order derivative is zero for w =0
and the fourth order one is
0*H (w) _ 12a
Ow*  Ju=0 3a-—2
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which is negative if 0 < a < 2/3. The -3dB bandwidth
of the maximally flat second-order spatial filter is given
by

(2-v2)a(2-30)

2a

cos(w_3qp) =1+

The closer the parameter a to 2/3, the narrower the
filter is. Combining these results with the ones regard-
ing the stability of the network, in the design of the
spatial filter the values of the parameters (a,b) will be
chosen to lie on the straight line 4b + a = 0 and inside
the stable region (see Fig. 2). Figure 3 shows a com-
parative plot of the spatial frequency responses of the
first- and second-order resistive networks. Both spa-
tial filters have been designed to achieve the same -3dB
bandwidth w_34p = 7/8 and it can easily seen that the
second-order network achieves a much steeper roll-off
characteristic in the stop band.

Remark: The condition b = —a/4 has been also
found in [2] by gradient descent optimization as a design
requirement for obtaining spatial filters with Gaussian-

like convolution kernel.
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Figure 3. Spatial frequency response
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Figure 4. Finite resistive networks.

3 THE FINITE CASE

The infinite network can be also described by the matrix
equation

Ay =(1—2a—-2b)x (5)

where y and x are column vectors containing the node
voltages y[n] and respectively z[n] = Rol [n], and A is
an infinite Toeplitz matrix with 1s on the main diago-
nal, —a on the first subdiagonals, and —b on the second
subdiagonals. The node voltages y [n] can be obtained
as

y = (1—2a—2b) A7 x,

the columns of matrix A~' containing the samples of
the bilateral impulse response h[n].

In a practical case, the resistive network is finite.
There are two ways to obtain a finite resistive network
from an infinite one:

(i) resistively terminating the grid with Rg, Rz1 and
Rz (Fig. 4(a));

(ii) connecting the network in a ring (Fig. 4(b)).

Mathematically, this is equivalent to imposing some
boundary conditions to (1).

3.1 Resistively terminated network

When terminating the network with grounded resistors,
the top left corner of the matrix A (and, symmetrically,
its bottom right corner) becomes

l—a—b+az+ca
—a — Cqg

—a — Cg

1—-b+bs ©)

where az, by, and ¢, are given by

o = Gzt

” Go +2G1 + 2G2
b — Ga2

T 7 Go+2G1+2G:
cx = Ga

Go +2G1 + 2G

It is obvious that the newly obtained matrix is not
Toeplitz anymore, but in a single case: a; = a, by =,
¢z =0 (Rg1 = R1, Re2 = Rz, and Ry = 00), which cor-
responds to a particular case of terminating the network
by imposing the boundary conditions y[—1] = y[0] =
y[M + 1] = y[M + 2] = 0. Another possible solution is
to leave in open circuit the connecting resistors at the
edges of the finite network R, = Ryz1 = Raz2 = 0o and
this corresponds to ay = by = ¢z = 0. Both these ter-
minations do not preserve the shift invariant property of
the infinite network. In order to obtain a shift invariant
finite network, one needs to optimally terminate the re-
sistive grid by appropriately choosing the values of the
resistors R, Rz1, and Rz2. The procedure for com-
puting the optimal values of the terminating resistors
is described in [12].

Such finite resistive networks can also exhibit spa-
tial instability, but there is no closed analytical solu-
tion for the values of parameters (a, b) guaranteeing
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stability. Numerical simulations have shown that a re-
sistively terminated finite network (at least in the cases
of the three particular terminations mentioned above)
obtained from a stable infinite network is also spatially
stable.

3.2 Ring connected network

In the case of a ring connection (Fig. 4(b)), the matrix
A in (5) becomes circulant. In this case, the resistance
seen at all nodes is the same, therefore the network
is automatically shift invariant. The response of the
ring connected network is obtained by circular convo-
lution from the input samples and the spatial impulse
response of the infinite network. Therefore, a M-length
ring connected network is spatially unstable if the poles

of the transfer function (1) are given by e/, w = 2]@777’
k=0,1,2,..., that is
1—2bcos (4’“7")
=y Zhr ™
cos (47)

The values (a, b) satistying (7) are located on lines span-
ning the instability region for the infinite network. The
case corresponding to M = 18 is depicted in Fig. 5.
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Figure 5. Stability region for a ring-connected network.

4 CONCLUSIONS

First and second-order infinite and finite resistive net-
works that implement non-causal spatial filters have
been analyzed. It has been shown that maximally-flat
low-pass spatial filters with increased roll-off character-
istic can be implemented with active (negative resistors
required) second-order resistive networks. In the case of
infinite grids, the spatial stability is guaranteed by pa-
rameter values that are restricted to a closed convex set
in the parameter space. For finite grids, independent of
the approach of obtaining them, instability occurs for
parameter values that lie on curves spanning the insta-
bility region of the infinite grids. Although stable finite
resistive networks can be obtained from unstable infi-
nite ones, these grids can exhibit temporal instability

when parasitic capacitors are present between network
nodes [12].
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