

Tracer: Enforcing Mandatory Access Control in Commodity OS
with the Support of Light-Weight Intrusion Detection and Tracing

Zhiyong Shan†
zhiyongshan@gmail.com

Xin Wang‡
xwang@ece.sunysb.edu

Tzi-cker Chiueh‡*
chiueh@cs.sunysb.edu

†Key Laboratory of Data Engineering and Knowledge Engineering (Renmin University of China), MOE
‡Stony Brook University

*Industrial Technology Research Institute

ABSTRACT
Enforcing a practical Mandatory Access Control (MAC) in a
commercial operating system to tackle malware problem is a
grand challenge but also a promising approach. The firmest
barriers to apply MAC to defeat malware programs are the
incompatible and unusable problems in existing MAC systems.
To address these issues, we start our work by analyzing the
technical details of 2,600 malware samples one by one and
performing experiments over two types of MAC enforced
operating systems. Based on the preliminary studies, we design a
novel MAC model incorporating intrusion detection and tracing
in a commercial operating system, named Tracer, in order to
disable malware on hosts while offering good compatibility to
existing software and good usability to common users who are
not system experts. The model conceptually consists of three
actions: detecting, tracing and restricting suspected intruders. One
novelty is that it leverages light-weight intrusion detection and
tracing techniques to automate security label configuration that is
widely acknowledged as a tough issue when applying a MAC
system in practice. The other is that, rather than restricting
information flow as a traditional MAC does, it traces intruders
and restricts only their critical malware behaviors, where
intruders represent processes and executables that are potential
agents of a remote attacker. Our prototyping and experiments on
Windows show that Tracer can effectively defeat all malware
samples tested via blocking malware behaviors while not causing
a significant compatibility problem.

Categories and Subject Descriptors
D.4.6 [Operating System]: Security and Protection—Invasive
software

General Terms
Security

Keywords
Access Control; Operating System; Compatibility; Usability;
Malware; Intrusion Detection;

1. INTRODUCTION
Malicious software (i.e., Malware) has resulted in one of the

most severe computer security problems today. A network of
hosts which are compromised by malware and controlled by
attackers can cause a lot of damages to information systems. As a
useful malware defense technology, Mandatory Access Control
(MAC) works without relying on malware signatures and blocks
malware behaviors before they cause security damage. Even if an
intruder manages to breach other layers of defense, MAC is able
to act as the last shelter to prevent the entire host from being
compromised. However, as widely accepted [2][3][5], existing
MAC mechanisms built in commercial operating systems (OS)
often suffer from two problems which make general users
reluctant to assume them. One problem is that a built-in MAC is
incompatible with a lot of application software and thus interferes
with their running [2][3][5], and the other problem is low
usability, which makes it difficult to configure MAC properly [2].
Thus, enforcing a practical MAC on commercial OS to defend
against malware is a promising but challenging task.

In order to devise a new form of MAC to defeat malware,
we have performed two preliminary studies. First, we analyzed
the technical details of 2,600 samples so as to get a deep and
overall view on malware programs. We extracted 30 critical
malware behaviors and found three common malware
characteristics that can guide anti-malware system design. Second,
we investigated the root cause of incompatibility and low
usability of existing MAC models through experiments on two
types of MAC enforced operating systems. Our observations are
as follows. The incompatibility problem is introduced because the
security labels of existing MACs are unable to distinguish
between malicious and benign entities, which causes a huge
number of false positives (i.e. treating benign operations as
malicious) thus preventing many benign software from
performing legal operations; the low-usability problem is
introduced, because existing MACs are unable to automatically
label the huge number of entities in OS and thus require tough
configuration work at end users.

With these investigation results, we propose a novel MAC
model, Tracer, which consists of three actions: detection, tracing
and restriction. Each process or executable has two states,
suspicious or benign. An executable in this paper represents an
executable file with a specific extension, such
as .EXE, .COM, .DLL, .SYS, .VBS, .JS, .BAT, or a special type
of data file that can contain macro codes, say a semi-executable,
such as .DOC, .PPT, .XLS, and .DOT. The actions of detection
and tracing change the state of a process or executable to
suspicious if it is suspected to be malicious, and the entity marked
as suspicious is called a suspicious intruder. The action of
restriction forbids a suspicious intruder to perform malware
behaviors in order to maintain confidentiality, integrity and
availability of the system, as well as to stop malware propagation.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ASIACCS '11, March 22–24, 2011, Hong Kong, China.
Copyright 2011 ACM 978-1-4503-0564-8/11/03…$10.00.

To be precise, once detecting a suspicious process or executable,
Tracer labels it to be suspicious and traces its descendent and
interacted processes, as well as the executables it generates.
Tracer does not restrict any operations of benign processes.
Meanwhile, it permits suspicious processes to run as long as
possible but only forbids their malware behaviors.

The novelty of Tracer is that, it incorporates light-weight
intrusion detection and tracing techniques for configuring security
labels, i.e., labeling suspicious OS entities, which is often done
manually. Moreover, rather than restricting information flow as a
traditional MAC does, it traces suspected intruders and restricts
the malware behaviors of suspected intruders, i.e., processes and
executables that are potential agents of remote attackers. These
novelties lead to two advantages. First, Tracer is able to better
identify potentially malicious OS entities and regulate their
behaviors, which in turn significantly reduces the false positive
(FP) rate which is the root cause of incompatibility in existing
MAC-enforced systems. Second, Tracer is able to label OS
entities automatically to tackle the low usability problem which is
the other major issue of existing MAC systems [2].

We have implemented Tracer on Windows and have been
using evolving prototypes of the Tracer system in our lab for a
few months. Our experiments on the function of Tracer with a set
of real-world malware samples demonstrate that it can effectively
block malware behaviors while offering good compatibility to
applications and good usability to normal users. Moreover,
another experiment shows that Tracer causes much fewer FPs
than commercial anti-malware tools and MIC (Mandatory
Integrity Control) which is a MAC mechanism on Windows Vista

[4][16]. The contributions of this paper are as follows:
1. We introduce Tracer, a novel MAC mechanism which

integrates intrusion detection and tracing techniques to
disable malware on a commercial OS in a compatible and
usable manner.

2. We have implemented Tracer model on Windows OS to
disable malware timely without need of malware signatures.
Developing a prototype on Windows is important, because
most of the over 236,000 known malware items are designed
for the attacks in the Windows environment, only about 700
malware items target for the attack of various Unix/Linux
distributions [12].

3. Based on the analysis of 2,600 malware samples, we extract
30 critical malware behaviors and summarize three useful
malware characteristics, which will benefit future
anti-malware researches.

4. We investigate the root reasons of incompatibility and low
usability problems of existing MACs. Although not all the
observations are brand new, we believe that understanding
these reasons more comprehensively and illustrating them
through the design of an actual system are useful for other
MAC researchers.
The rest of the paper is organized as follows. Section 2

introduces in details our investigation on various behaviors of
malware programs, and our analysis on existing problems in
MAC. Section 3 describes Tracer model. Section 4 provides our
prototype and tests of Tracer on Windows. Lastly, we present the
related research in Section 5 and conclude the work in Section 6.

2. PRELIMINARY STUDIES
2.1 Malware Investigation

Malware contribute to most Internet security problems.
Anti-malware companies typically receive thousands of new
malware samples every day. An analyst generally attempts to
understand the actions that each sample can perform, determines
the type and severity of the threat that the sample constitutes, and
then forms detection signatures and creates removal procedures.
Symantec Threat Explorer [6] is such a publicly available database
which stores the analysis results of thousands of malware samples
from various sources and is thus valuable to malware researchers.
To have a thorough understanding of the philosophies behind
malware design, we have spent considerable amount of time
analyzing the behaviors of malware programs. Specifically, since
2008, we have read, recorded and analyzed the technical details of
2,600 malware samples of a wide range of formats and varieties,
such as viruses, worms, backdoors, rootkits, and Trojan horses. As
taking many samples from the same malware family might make
the analysis results biased, we have intentionally not chosen
multiple samples of a polymorphic malware or similar malware.

Figure 1 depicts the top 30 critical malware behaviors
extracted from the samples and ranked in the descending order of
their appearance times. For the behavior repeatedly appearing in a
single malware, we only count it once. As the analysis is made on
a great number of malware samples, we expect the behaviors
captured to reflect the popular attacking techniques taken by the
community of malware writers. Our performance studies in
Section 4.2 have demonstrated that these behaviors are helpful to
defend against unknown malware programs. The top 10 behaviors
on the list are explained as follows:

1. Communicate with a remote host. Most malware
samples need to access the network in order to break into hosts,
download files, receive hacker commands, upload confidential
information, and spread themselves to other hosts and so on. The

Figure 1. The top 30 Critical malware behaviors

0 500 1000 1500 2000 2500 3000

30. A dd data s tream s (P)

29. B lock acces s to s ecurity w ebs ites (A)

28. Change des ktop backgrounds (A)

27. Ins tall s creen s av ers (P)

26. M odify lay ered s erv ice prov iders (IA)

25. Clos e s ecurity alert w indow s (A)

24. M ake s y s tem /hidden directories (P I)

23. R es tart com puter(A)

22. C apture s creen s hots (C)

21. Change file tim e(I)

20. Ins tall or m odify driv ers (P)

19. Create W indow s hooks (P)

18. Copy ex ecutables to rem ov able driv es (P)

17. Unins tall s oftw are(P IA)

16. Copy s y s tem ex ecutable files (P)

15. Copy s pecial configuration files (P)

14. Log key s trokes and m ous e clicks (C)

13. M odify s y s tem configuration files (P I)

12. E nd anti-m alw are proces s es or

s erv ices (A)

11. S tart hidden netw ork clients (P)

10. A dd IE or E x plorer plug-ins (P)

9. Change s ecurity s ettings (P IA)

8. Create or m odify W indow s s erv ices (P IA)

7. M odify ex ecutable files (P)

6. Inject into other proces s es (P I)

5. O btain pers onal or s y s tem inform ation(C)

4. Copy its elf(P)

3. M odify regis try for s tartup(P IA)

2. C reate ex ecutable files (P)

1. Com m unicate w ith a rem ote hos t(P C)

most commonly used network protocols are HTTP, POP3, IRC,
SMTP, FTP and ICMP. Here, we not only take into account the
network communications when a malware sample executes on a
host but also the network communications through which a
malware sample breaks into a host. 2. Create executable files.
When reaching a system, almost all malware immediately create
their executables in various formats, including both binary and
script files. A significant part of the created executables comes
from the network. 3. Modify registry for startup. 1,568 malware
samples change or create registry entries in order to launch
themselves upon restart of the system or applications. The
registry entries changed the most are “run”, “Explorer” and
“Winlogon” under the path “HKEY_LOCALMACHINE\SOFT-
WARE\Microsoft\Windows\C-urrentVersion\”. 4. Copy itself.
As a characteristic behavior of malware, more than 1000 malware
samples copy themselves to system directories. 5. Obtain
personal or system information. 785 malware samples steal
user or system information including password, email address,
encryption key, IRC accounts, system version, configuration data,
banking data, etc. Particularly, more than half of these malware
samples are only interested in system information. 6. Inject into
other processes. 775 malware samples inject malicious codes
into other process’ address space and remotely start a thread from
the code. The system processes often being injected into include
explorer.exe, winlogon.exe, svchost.exe, services.exe. 7. Modify
executable files. 769 malware samples insert codes into
executables, particularly system dynamic library files, for
propagating, hiding or starting up themselves. 8. Create or
modify Windows services. To start or hide themselves, 608
malware samples create or modify services by calling service API
functions or directly changing service related registry entries. 9.
Change security settings. To escape from the checking by
security software, 550 malware samples change registry to lower
the system security level, disable firewall, bypass firewall, disable
system restoring mechanism, alter safe mode setting, as well as
disable task manager and registry editor. 10. Add IE or Explorer
plug-ins. 541 malware samples add plug-in into IE and Explorer,
for example, Browser Helper Object on IE, Shell Service Object
on Explorer.

Moreover, from the details of 2,600 malware samples, we
discovered three common characteristics of malware that can
guide our subsequent anti-malware design:

(1) Entrance-Characteristics. All malware samples break
into hosts through two entrances, network and removable drive.
Most breaking-ins are via network, mainly through dangerous
protocols including HTTP, POP3, IRC, SMTP, FTP and ICMP,
etc. Using these protocols, malware samples can penetrate the
network and host firewalls by disguising themselves as popular
software conducting benign network traffic.

(2) Damage-Characteristics. Malware behaviors can
impose multiple forms of damages, i.e., resulting in problems in
confidentiality, integrity and availability. Besides, we consider
malware propagation as another type of damage since it can
indirectly cause the former three forms of damages and
eventually lead the entire host to be taken over. For example, the
behavior “Copy itself” does not directly hurt security but is an
essential step towards propagating itself and then executing
malicious behaviors on a host. Therefore, we evaluate the
damages of each behavior and record them in Figure 1, using C, I,
A, and P to represent the damages related to confidentiality,
integrity, availability and propagation respectively.

(3) Attack-Characteristics. Malware samples from the
network have two attack patterns. One is that, most malware

samples exploit bugs in network-facing daemon programs or
client programs to compromise them, then immediately spawn a
shell or back-door process. Next, an attacker typically tries to
download and install attacking tools and rootkits, as well as
performs some other adversary behaviors. The other attack
pattern is that, malware samples increasingly use social
engineering methods to lure users into downloading and
launching them. After started, a malware sample usually copies
itself and makes itself a resident in a host.

2.2 Problems in MAC
Incompatibility is a well-known problem when enforcing a

MAC model in a commercial operating system [2][3][5]. To
investigate its root reason, in a secure network environment, we
set up two machines to run MAC enforced operating systems
including SELinux [14] with MLS policy enabled and RSBAC [15]
with MAC module enabled. After a few days, we observed that
these MAC systems produced a huge number of log records about
denied accesses, which indicated that some applications failed and
some acted abnormally. As the operation environment is secure
without intrusion and malware, these denied accesses are thus
“false positive”. In other words, MAC systems consider benign
accesses malicious and refuse them. Many FPs together could
make the whole system finally unusable. Although part of the FPs
can be removed by experts through fine-granular policy
configuration, many of them are not removable, and thus the
impacted applications need to be modified before running on the
MAC enabled systems.

These unremovable FPs are resulted because most MAC
models aim to forbid illegal information flow rather than forbid
intrusive behaviors directly. An example of such FPs is the
self-revocation problem [3] in Low-Water-Mark model, which
forbids a process to write a file created by itself if it has read a file
with a lower integrity level before the writing. From the perspective
of stopping illegal information flow, forbidding the write operation
is reasonable. However, from the perspective of stopping intrusion,
the write operation should not be denied if the process is actually
not serving for an attacker. Another example of such FPs on a
BLP-enforced Unix/Linux stems from the access control of the
directory “/tmp” shared by the entire system [17]. To prevent illegal
information flow, a process with a lower sensitive level can not
read from /tmp or a process with a higher sensitive level can not
write to /tmp. However, from the view of intrusion prevention,
these processes do not necessarily represent intruders so that their
“read” or “write” accesses to the /tmp should not be simply denied.
Although it is possible to resolve this problem by adding “hiding
sub directories” under /tmp, it is still difficult to eliminate the FPs
resulting from many other shared entities on an OS, such as shared
files, devices, pipes and memories.

Meanwhile, the security labels of MAC models also do not
suit for fighting against malware, as they are designed to represent
information integrity level or confidentiality level but not to
distinguish between malicious and benign entities. In fact, a lower
integrity level alone can not indicate that a process is malicious, as
“malicious” also has other meanings, e.g., lower confidentiality and
the risk of damaging system availability. Similarly, a lower
confidentiality level alone cannot indicate that a process is
malicious. Moreover, MAC labels are defined before an intrusion
happens and can not be changed dynamically to reflect intrusion
propagation in an OS. Although some of the MAC models are able
to adjust label states, e.g. LOMAC [3] and DTE [9], they are still
not flexible enough to track the intrusion propagation at the whole
system level. Consequently, MAC labels can not differentiate

between malicious and benign entities. Relying on these labels, a
MAC system often fails to make correct decisions on intrusion
blocking which eventually results in many FPs.

Low-usability is another problem in a MAC-enabled system,
as it often requires complicated configurations and
unconventional ways of usage. In a modern OS, there are a wide
range of entities including processes, files, directories, devices,
pipes, signals, shared memories and sockets, etc. If just
considering the files, there are more than 100,000 files on a
typical Windows XP or Linux desktop. Moreover, MAC systems
have complex policy interfaces which are difficult to configure.
For instance, SELinux has 29 different classes of objects,
hundreds of possible operations, and thousands of policy rules for
a typical system. Hence, it is cumbersome for a common user to
correctly configure labels for all entities without leaving security
vulnerabilities. In addition, after enforcing a MAC, users must
break their usage convention and learn how to use the MAC.
Consequently, the ideal way for MAC to provide good usability is
to automatically initialize and change entity labels without
changing users’ usage convention or requiring extra knowledge.

3. TRACER MODEL
In this section, we present our Tracer model that aims to

disable malware in a commodity OS by disallowing malware
behaviors. The adversaries of Tracer are malware programs that
break into a host through the network and removable drives. As
Windows is the most popularly used OS and attractive to hackers,
the description of Tracer is based on our design for Windows. We
believe the model can also be applied to other operating systems
(e.g. Linux) with some changes. Investigating the suitability of
Tracer for non-Windows operating systems is beyond the scope
of this paper.

3.1 Model overview
The design of an access control model needs to answer three

questions. The first is how to define the security label. Based on the
analysis in Section 2.2, we introduce a new form of security label
called suspicious label for our Tracer model. It has two values:
suspicious and benign. A suspicious label indicates that the
associated process is potentially serving for an intrusion purpose
and thus possible to initiate some malicious behaviors. Meanwhile,
Tracer only assigns a suspicious label to a process or an executable,

because a process is possibly the agent of an intruder and an
executable determines the execution flow of a process which
represents an intruder. All other entities in OS, e.g.
non-executables, inter-process communication objects,
registry entries, etc, do not need suspicious labels. When a
process requests to access these entities, Tracer mainly utilizes
their DAC information to make access control decisions, thus
a huge amount of configuration work can be reduced while
keeping traditional usage conventions unchanged. The second
design question is how to configure security labels. As
discussed in Section 2.2, in order to achieve good usability, a
MAC model must have the capability of automatically
deploying security labels. Accordingly, we introduce two
types of actions named “detection” and “tracing” to automate
the security label deployment progress. The two actions
employ intrusion detection and tracing techniques respectively
to recognize and mark suspicious processes and executables.
The third design question is about access control rules. Being
of mandatory access control, the rules of Tracer forcibly
refuse the requests from suspicious processes if and only if the
requests could lead to a malware behavior.
Figure 2 gives an overview of Tracer which consists of three

types of actions, detection, tracing and restriction. Each process
or executable has two states, suspicious and benign. The actions
of detection and tracing change the state of a process or
executable to suspicious if it is identified as a potential intruder.
The restriction action forbids a suspected intruder to perform
malware behaviors in order to protect CIAP. That is to protect
confidentiality, integrity and availability, as well as to stop
malware propagation. The three actions work as follows. Once
detecting a suspected process or executable, Tracer labels it as
suspicious and traces its descendent and interacted processes, as
well as its generated executables. Tracer does not restrict benign
processes at all, and permits suspicious processes to run as long
as possible but stops their malware behaviors that would cause
security damages. In addition, Tracer also provides a special
system call to allow a user to change the state of a suspicious
process or executable back to benign if the user trusts it. In the
rest of this section, we describe Tracer model in details, including
detecting, tracing and restricting intruders.

3.2 Detecting Intruders
The detecting action is responsible for identifying all

potential intruders. We do not intend to design a complex
intrusion detection algorithm to achieve a low FP rate at the cost
of heavy overhead. Instead, we design a light-weight intrusion
detection algorithm that can identify all potential intruders but
may have a relatively higher FP rate at the initial step. However,
even if the detecting action wrongly denotes a benign process as
suspicious, the subsequent actions of Tracer, i.e., tracing and
restricting actions, will still allow it to run rather than stop it
immediately, but only prevent it from executing featured malware
behaviors. In other words, Tracer is built to have a good tolerance
to the FPs caused by the detecting action.

As depicted in Figure 2, the detection works at two levels:
entrance and interior. The detection at entrance attempts to check
all possible venues through which a malware program may break
into the system. Network communications is the main type of
entrances and most malware programs exploit several common
dangerous protocols to compromise hosts as these protocols are
usually permitted by firewalls according to the
Entrance-Characteristics presented in Section 2.1. Hence, we
denote a process as suspicious if it receives network traffic

CIAP

Detection

Tracing

Restriction

Benign

Suspicious

At Entrance

At Interior

Network Communications

Removable Drives

Dangerous Protocols

Non-dangerous Protocols

Exclusive Malware
Behaviors

Injecting into Other Processes

Modifying Executable Files

Copying Itself

Ending Anti-malware Processes
or Services

Starting Hidden Network Clients

Process to Process

Executable to Process

Process to Executable

When Generating Child Processes

When Performing Inter-Process Communications

When loading An Executable

When Reading Semi-Executables or Script Files

When Creating or Modifying Executables

Compromising Integrity

Compromising Confidentiality

Affecting Availability

Propagating Malware Programs

Critical Malware Behaviors

 Generic Malware Behaviors

Bypassing Tracer Behaviors

Damaging System Integrity

Stealing Confidential information

Figure 2. Tracer model

through dangerous protocols. A frequently used application (e.g.,
web browser) thus might be denoted as suspicious but its normal
running will not be affected, because Tracer doesn't restrict the
suspected processes instantly and permits them to perform as long
as possible except stopping their critical malware behaviors. The
rest of the network protocols, say non-dangerous protocols, are
difficult to be exploited by malware programs, because they are
not permitted by firewalls since benign software rarely use them.
Nevertheless, in order to completely monitor all the network
traffic, we denote a process as suspicious if it receives network
traffic through a non-dangerous protocol and then exhibits any of
the malware behaviors. Instead of only checking non-dangerous
network protocols, further checking malware behaviors can
reduce the extra high FP rate. The Attack-Characteristics
summarized in Section 2.1 supports this point. That is, a process
exploited by a malware program from the network necessarily
executes at least one critical malware behavior, e.g., launching a
shell process or downloading an executable, to propagate the
malware program within the system. Although a carefully crafted
malware program that subverts a process through a
non-dangerous protocol can perform some behaviors before
performing a malware behavior, it is difficult for the process to
make significant damages on the system. The reason is that the
malware behaviors monitored by Tracer include all of the
behaviors that can cause significant damages, let alone that
malware programs are difficult to attack a host through
non-dangerous protocols which are usually blocked by firewalls.
The other type of entrances through which malware programs get
into the system is removable drives according to the
Entrance-Characteristics, hence we denote a process as suspicious
when it opens or loads an executable from a removable drive.

With these detecting approaches enforced, however, two
types of system maintenance tasks, i.e., updating software
through the network and installing software from a removable
drive, can not be performed because the processes that perform
these tasks are treated as suspicious. As presented in the literature
work [2] [3], a MAC policy should have ways to specify
exceptions since no simple policy model can capture all accesses
that need to be allowed and at the same time forbid all illegal
accesses. Hence, we provide two means to facilitate these system
maintenance tasks. One is trusted communications through which
processes can update software remotely without being marked as
suspicious. A communication is considered to be trustful if the
three factors associated with it, i.e., “image file of the local
process”, “communication protocol” and “remote host” are all
trusted. Meanwhile, a trusted communication is time limited, i.e.,
effective only within a predefined time period. Although a trusted
protocol, e.g. SSL, is not absolutely secure, a further check of the
process’ image file, the remote host and the time stamp
simultaneously will greatly reduce the attack surface. Moreover,
as a computer usually only needs to access a few well-known
sites to update its necessary software, the administrator can easily
set up the trusted communications required. The other means is a
new system call to facilitate a user to manually remove suspicious
labels on specific processes or files if the user trusts them. For
example, when installing benign software from a CD disk, a user
can remove the suspicious labels from the processes which read
the executables on the CD disk then Tracer will not affect the
installation progress any more. Note that, only a process without
a suspicious label has the privilege to use the system call so as to
prevent a malware program from bypassing Tracer.

Although bypassing the detection at entrances is difficult, in
case that a sophisticated malware program unexpectedly breaks into

the system, we prepare a type of detection at the interior of the
system to ambush it. This type of detection monitors the exclusive
malware behaviors that a benign program will not exhibit. The
current version of Tracer conservatively uses five such behaviors to
detect malware programs inside a system as shown in Figure 2.
More behaviors can be monitored for malware detection in the
interior at the cost of additional FPs. Actually, these behaviors
together provide a strong detection capability as they are
indispensable to most malware programs, e.g., “Copy itself”. In
addition, this type of detection will not bring extra performance
overhead since the restricting action of Tracer also needs to monitor
such behaviors, which will be presented in Section 3.3.

In short, the detection action identifies a process as suspicious
if it meets one of the following conditions: receiving network traffic
through dangerous protocols; receiving network traffic through
non-dangerous protocols then exhibiting any of the malware
behaviors; reading or loading an executable from a removable
drive; and exhibiting any of the five exclusive malware behaviors.

3.3 Tracing Intruders
To track intruders within an operating system, one can use

OS-level information flow as done in [18] [26]. However, a major
challenge for leveraging OS level information flow to trace
suspicious entities is that, file and process tagging usually leads
the entire system to be floated with "suspicious" labels and thus
incurs too many FPs. To address this issue, we propose the
following two methods to limit the number of tagged files and
processes in a single OS while preventing malware programs
from evading the tracing as much as possible.

For tagging files, unlike the approaches in [18] [26] and the
schemes of many malware detection and MAC systems
[1][2][5][21] that trace information flow on OS level, Tracer only
focuses on the tagging of executables while ignoring
non-executables and directories. This is because an executable
represents the possible execution flow of the process loading it,
thus it should be deemed as an inactive intruder while a process is
considered as an active intruder. On the other hand, since there are
a huge number of non-executable files and directories within a
single OS, not tracing them can prevent the entire file system from
being floated with the suspicious labels that mostly are due to FP.

For tagging processes, we observed that the excessive
number of tags mainly come from tracing IPC (Inter-Process
Communication), i.e. marking a process as suspicious if it receives
IPC data from a suspicious process, just as the approaches
assumed in [2] [18]. To address this issue, Tracer only tags a
process receiving data from dangerous IPCs that can be exploited
by a malware program to take control of the process to perform
arbitrary malicious behaviors. Note that, dangerous IPCs do not
include the other types of vulnerable IPCs that can be used to
launch denial-of-service attack, or disclose sensitive information,
or escalate the privileges of the processes which send IPC data.
Moreover, a dangerous IPC only involves the local IPCs instead of
the IPCs over the network, since the detection at entrance can
mark a process that receives IPC data from the network as
suspicious. In order to identify the dangerous IPCs, we
investigated Microsoft Security Bulletins [19], a database storing
information about security vulnerabilities on Windows family OS
and other Microsoft software. As malware programs usually
exploit these vulnerabilities to compromise Windows hosts,
Microsoft Security Bulletins become primary sources for
analyzing attack vectors of Windows OS as done in [11].
Concretely, we analyzed all vulnerabilities recorded in security
bulletins related to named-pipes, local procedure calls, shared

memories, mailslots and Windows messages from 1998 to 2009,
as these IPCs send free-formed data that can be crafted to exploit
bugs in the receiving process. However, among all of the security
bulletins, we only found one dangerous IPC, i.e. MS03-025 [19].
The result reveals that in reality it is quite difficult to propagate
malware through local IPCs within a Windows OS since people
could only find one dangerous IPC over the period of eleven years.
Consequently, Tracer employs a Dangerous-IPC-List to record and
trace each type of dangerous IPC since there should be a very
limited number of dangerous IPCs in a Windows OS.

Therefore, we mark the following entities as suspicious: a
process spawned by a suspicious process, an executable created
or modified by a suspicious process, a process loading an
executable with a suspicious label, a process receiving data from
a suspicious process through a dangerous IPC, and a process
reading a semi-executable or script file with a suspicious label.

A script file is written in interpreting language, e.g.
JavaScript or VBScript, and thus needs execution engine, e.g.
wscript.exe or cscript.exe, to load and run it. Accordingly, to
defend against a script virus, Tracer should restrict the engine
processes that are reading and interpreting a suspicious script file.
On the other hand, a semi-executable represents certain types of
data files that might contain macro codes, which mainly involves
various types of Microsoft Office documents, e.g. Word, Excel,
PowerPoint, and template files. Although the macro virus
protection in Office software can reduce the chances of macro
virus infection, relying on it is very dangerous because crafted
macro codes are able to subvert it and cause destructive damages,
for example, viruses Melissa and W97M.Dranus. Consequently,
Tracer considers a process that reads a suspicious
semi-executable as suspicious in order to defeat macro virus.

3.4 Restricting Intruders
In order to disable malware programs on a host, the

restricting action monitors and blocks intruders’ requests for
executing critical malware behaviors listed in Figure 1.
Additionally, to reduce FPs, a few malware behaviors that are
indispensable to benign programs and do not directly hurt
security are not blocked but traced, for instance, “Create
executable files” which is often utilized by Internet browsers to
download and run ActiveX programs from web pages.

To follow the principle of complete mediation [13] for
building a security protection system, Tracer further restricts two
special behaviors, called generic malware behaviors, to protect
security more widely. The first one is “Steal confidential
information”, which represents all illegal reading of confidential
information from files and registry entries. The other is “Damage
system integrity”, which represents all illegal modifications of the
files and registry entries that require preserving integrity. In
addition, other behaviors that can be used to bypass Tracer
mechanism also need to be monitored and restricted, including
“Change file attributes”, “Change registry entry attributes”,
“Execute non-executable files” and “Execute Tracer special
system calls”. The behavior “Change file attributes” represents
changing file extension names to executable or changing file DAC
information.

By mediating all these behaviors, Tracer is able to preserve
system security and prevent a malware program from propagating
itself in the system. To be specific, confidentiality is mainly
achieved by blocking the generic behavior “Steal confidential
information”; integrity is mainly protected by blocking the generic
behavior “Damage system integrity”; availability is defended by
blocking the behaviors listed in Figure 1 with the capital letter A

attached; propagation is prevented by blocking the behaviors in
Figure 1 with the capital letter P attached.

Meanwhile, blocking these behaviors can also help to defend
against unknown malware programs because of two reasons. First,
these behaviors are extracted from thousands of malware samples
and thus represent popular hacking techniques that are often used in
unknown malware programs by malware authors. For example, the
behavior “Add IE or Explorer plug-in” is also a popular technique
that is frequently used by enormous amount of malware programs
both known and unknown to hide and automatically launch
themselves, as well as monitor user data. Second, these behaviors
are high-level behaviors so that they widely cover various low-level
behaviors of various types of malware programs known or
unknown. For example, “Communicate with a remote host”
involves downloading hacker tools, sending emails to spread
malware programs, connecting with a remote host to accept hacker
commands, etc. Particularly, the two generic malware behaviors
presented previously actually cover all illegal accesses of
files/directories and registry entries in the system.

To efficiently restrict these malware behaviors, an issue needs
to be addressed. That is how to determine the generic malware
behaviors. We identify behaviors “Steal confidential information”
and “Damage system integrity” by monitoring illegal reading on
read-protected objects and illegal writing on write-protected objects,
respectively. However, it is difficult to identify the objects that need
protection among a large number of candidates in a Windows OS in
order to recognize the generic malware behaviors. A traditional
MAC requires users to give every file a security label to identify
whether the file needs protection, which in turn becomes a heavy
burden on general users. In Tracer, we utilize the existing operating
system information “file extension name” and “DAC information”
to denote the protected files and registry entries. To be specific, we
use file extension names to recognize the executables and
configuration files that usually are write-protected. For
example, .exe, .com, .dll, .sys, .js, and .vbs represent
executables; .ini and .inf represent configuration files. Meanwhile,
we use the DAC information of a file to determine whether it is
protected. If the user group “Everyone” does not have a read
permission on a file, the file is treated as read-protected; if the user
group “Everyone” does not have write permission on a file, the file
is treated as write-protected. Similarly, we use the permission of
user groups “Users”, “Everyone” and “Restricted” to recognize
protected registry entries. In addition, we do not allow an intruder
to change file extension and DAC information. As a result, an
attacker is not able to alter a file or registry entry from a protected
state to an unprotected state to escape the access control mechanism.
With above methods, the configuration work required to identify
files and registry entries to be protected is significantly reduced
without changing the user’s usage convention.

3.5 Limitation
Although Tracer has advantages on compatibility, usability

and defense against unknown malware programs, it also has a
limitation that requires further research. As based on static
malware characteristics and behaviors, detection in Tracer cannot
be dynamic over time in the sense of evolving with the
emergence of new malware characteristics and behaviors. In
future, we will try to improve Tracer to address this limitation.

4. IMPLEMENTATION
To evaluate the effectiveness of Tracer model, we have

developed a prototype implementation for Windows XP, and
carried out a series of experiments. Although XP is not as new as

Table 1. Decision logic of Tracer. The Benign Process and
Suspicious Process columns represent that the processes requesting
the behaviors below are benign or suspicious respectively. Ip and Ie
indicate setting the related process or executable as suspicious
respectively. D indicates denying the behavior request.

Vista, it is enough for verifying the Tracer model since both
versions of OS have very similar system calls and Win32 API
functions based on which Tracer works. Moreover, if developing
the prototype on Vista, the MIC might interfere with Tracer as
both schemes attempt to complete MAC tasks.

4.1 Implementation
Tracer implementation consists of two parts: Interception

and Decision. Most of the implementations are located in the
kernel so that they are difficult to be bypassed. The Interception
part monitors Native Windows API functions (i.e. system call) at
the kernel level and Win32 API functions (i.e. system library
functions) at the application level, then issues behavior requests
to the Decision part, and allows or disallows a behavior according
to the result returned from the Decision part. The intercepted

behaviors are listed in Table 1.
Most behaviors can be intercepted by monitoring only one

essential system call function or a Win32 API function, for
example, monitoring NtDeviceIoControlFile() for “Communicate
with a remote host”, monitoring NtCreateFile() for “Create
executable”, monitoring NtOpenFile() for “Steal confidential
information”. Some behaviors consist of more than one system
call or Win32 function, for instance, the behavior “Inject into other
processes” consists of OpenProcess(), VirtualAllocEx(),
WriteProcessMemory(), CreateRemoteThread(), etc. Considering
the performance impact, we only intercept the first essential
function, i.e. OpenProcess(), and block it if a suspicious process
tries to perform an execution, such that the subsequent calls,
i.e.WriteProcessMemory() and CreateRemoteThread(), which
would cause damages are not executed any more. Moreover, to
prevent intended bypassing, Tracer always intercepts a function at
the kernel level rather than the application level if possible. Thus,
for the behavior “Inject into other processes”, Tracer actually
intercepts NtOpenProcess() at the kernel level rather than
OpenProcess() at the application level. However, the file-copying
like behaviors in Figure 1 can not be identified by intercepting a
single system call as they consist of two essential system calls for
reading and writing files respectively. Thus, we devised an
algorithm to correlate the two system calls by exploiting related
file names and buffers.

The Decision part residing in the kernel handles behavior
requests from the Interception part. When making a decision, it first
reads the Tracer attributes of processes and files, e.g., suspicious
flags and DAC information, and then decides whether to permit the
behaviors and whether to modify the Tracer attributes according to
the Tracer actions presented in Section 3. Table 1 shows the
decision logic implemented in the Decision part.

To be permanent, the suspicious flag of an executable is
stored in a specially created file stream of the executable file. The
suspicious flag of a process, however, is stored in a data structure
associated with the process in the memory. The whole
implementation is encapsulated in a kernel driver and a DLL. The
kernel driver is responsible for intercepting system calls via
modifying the system call entry point in the System Service
Dispatch Table (SSDT), and implementing the Decision part
within the kernel. The DLL is responsible for intercepting Win32
API functions via modifying the library function entry point in
the Import Address Table (IAT) of application processes. Note
that, our Tracer implementation does not need to impose any
modifications on the Windows or application codes, thus it is
highly compatible with existing software.

4.2 Evaluation
We evaluate Tracer performance from three important

perspectives: its effectiveness in ensuing security, its compatibility
with application software, and the overhead added after enabling
Tracer on OS.

Security. To verify the capability of Tracer on restricting
malware behaviors, we collected 93 real-world malware samples,
most of which are obtained from a publicly available website [20].
32 of the samples are unknown to Tracer, because they can not be
found with the same or different names in Symantec Threat
Explorer from which the critical malware behaviors are extracted.
We also prepared 54 benign samples mostly from two reputable
websites, i.e. technet.microsoft.com and www.download.com. To
further facilitate the experiments, we prepare a set of monitoring
tools to help check experimental results, which include
ApiMonitor to record system call and Win32 API,

Benign Process Suspicious Process
Behaviors

Detect Trace Restrict Detect Trace Restrict

Normal Communication IP 1. Communicate
with a remote host Trusted Communication
2. Create executable files Ie
3. Modify registry for startup D
4. Copy itself IP D
5. Obtain personal or system information D
6. Inject into other processes IP D
7. Modify executable files IP D
8. Create or modify Windows services D
9. Change security settings D
10. Add IE or Explorer plug-ins D
11. Start hidden network clients IP D
12. End anti-malware processes or services IP D
13. Modify system configuration files D
14. Log keystrokes and mouse clicks D
15. Copy special configuration files D
16. Copy system executable files Ie
17. Uninstall software D
18. Copy executables to removable drives D
19. Create Windows hooks D
20. Install or modify drivers D
21. Change file time D
22. Capture screen shots D
23. Restart computer D
24. Make system/hidden directories D
25. Close security alert windows D
26. Modify layered service providers D
27. Install screen savers D
28. Change desktop backgrounds D
30. Add data streams D
Damage system integrity D
Steal confidential information D
Mount removable drives Ie Ie
Change file attributes D
Change registry entry attributes D
Create processes IP
Load suspicious executables IP
Read certain suspicious executables IP
Communicate with local processes IP
Execute non-executable files D

Execute Tracer special system calls D

Table 2. Security test results. FP Rate is 5.6% and FN Rate is 0%.ProcessExplorer to analyze processes, Regmon to trace registry
activities, and Filemon to monitor file operations. Meanwhile, we
set up a local network which consists of two servers and two
hosts as a testing environment [25]. One server machine, on
which the samples to be tested are intentionally placed, runs an
IIS web server, a ftp server and an EZ-IRC server. The other
server machine, on which only benign samples are placed, runs
an IIS web server to act as a trusted site for testing trusted
communications. Note that, in reality the trusted sites can be
easily recognized by general users because a host only has to
connect to several well-known websites to upgrade its important
software. The host machines installed with Windows XP run the
client programs that are often the attacking vectors for malware
samples, including mIRC, MSN Messenger, MS Outlook, eMule,
KaZaA, IE and ftp client, etc. To emulate the real-world usage
scenarios, we login the hosts and perform various types of tasks,
such as browsing the malicious website and ftp server in the local
network and downloading samples, sending and receiving
malicious instant messages and emails, accessing P2P shared
folders or removable drives that contain samples. Thus, the
samples are introduced into a host through various channels. With
this testing environment, the capability of Tracer to detect, trace
and restrict malware behaviors can be thoroughly evaluated.

For every sample, we perform a two-step experiment. First
we run a sample on a host without turning on Tracer and record
what happens using the monitoring tools above. Then, we enable
Tracer protection, run the same sample, and record what happens
again. We can determine whether a sample is indeed disabled
from two perspectives. First, we deduce whether malware
behaviors are successfully executed by comparing the two
versions of logs produced by ApiMonitor, Regmon and Filemon
without or with protection. Second, we manually check whether
the files, registry entries and processes that are created by the
sample and recorded in the former logs are exactly present or not
in the logs after turning on the Tracer. Moreover, we restart the
computer to see if the sample can be enabled automatically.

The testing results are reported in Table 2. For each type of
samples, after turning on Tracer, we record the number of false
negatives, i.e., FNs, and the number of FPs. We can see that
Tracer was able to correctly disable all malware samples
including known and unknown ones, as well as block or cancel
all their malware behaviors. However, it falsely stopped 3 benign
samples by blocking their behaviors. The FPs were a personal
firewall program, a file system tool and a process tool,
downloaded from the IRC and web server with which we did not
set up a trusted communication. By analyzing the logs, we
observed that some behaviors of these benign programs closely
resemble those of malware, for example, “Create or modify
Windows services”, “Modify system configuration files”, “Install
or modify drivers”, “Modify registry for startup”, etc. As Tracer
relies on the source and behaviors of a program to identify a
malware program, the benign programs that come from a remote
host through an untrusted communication are tracked and
restricted as suspicious ones. However, one still can make the
programs work by manually removing the suspicious flags from
the program files before running them.

To compare with other anti-malware techniques on Windows,
we performed an experiment to test three popular commercial
tools: Kaspersky [27], VIPRE [28] and MIC. The former two
running on XP are well known anti-malware tools and have
modules blocking suspicious behaviors to defend against unknown
malware. The anti-malware tools relying only on signatures can
not detect unknown malware [1] and thus are inappropriate to

compare with Tracer especially on FP rate. MIC is a partial
enforcement of BIBA model in Vista kernel [16], which is the
only MAC mechanism in Windows OS family. For every
anti-malware technique, we tested all of the samples in Table 2.
We count a program as a FP if the anti-malware technique
abnormally refuses or alarms at least one of its access requests,
since this will affect the running of the testing program or annoy
the user. We do not count a program as a FP if it fails on Vista but
the failure is not caused by MIC. Figure 3 shows the FP rates (FPR)
obtained. MIC and the anti-malware tools have FP rates above
34%, whereas, Tracer has FP rate of merely 5.6%. The high FP
rate of MIC comes from the no-write-up rule of BIBA model. The
modules that block suspicious behaviors contribute to most of FPs
of the anti-malware tools. The fundamental reason is that the
anti-malware tools identify a suspicious behavior only based on
the behavior itself while Tracer further considers the suspicious
label of the process requesting the behavior. On the other hand, the
FN rates of Kaspersky, VIPRE and Tracer are almost all zero.
However, MIC is observed to have a high FN rate of 42%. One
possible reason is that MIC does not implement the no-read-down
rule of BIBA model [16] in order to avoid a significant impact on
the usability and compatibility of Windows which is a commodity
OS. As a result, some sophisticated malware programs can
manage to bypass it. Nevertheless, with MIC, Vista can still
achieve a significant security improvement compared with XP that
can not defeat any malware samples by itself.

Compatibility. The requirement for compatibility is that
existing Commercial Off-The-Shelf (COTS) software can run on
the MAC prototype without causing significant incompatibility
problems. On the two hosts with Windows XP installed, we run
many commonly used network-dependent applications and local
applications e.g. Internet Explorer, MS Outlook Express, MS word,
MS excel, MS Power Point, MS Messenger, mIRC and Visual
C++. We set the protocols HTTP, POP3, IRC, SMTP, FTP,
FastTrack, eDonkey and ICMP as dangerous. We define trusted
communications for downloading useful applications and
Windows update as follows: {“C:\Windows\system32\wuauclt.ex-
e”, “SSL”, “update.microsoft.com”}, {“C:\Windows\system32\sv-
chost.exe”, “SSL”, “update.microsoft.com”}, {“C:\Windows\syst-
em32\wbem\wmiprvse.exe”, “SSL”, “update.microsoft.com”}. On
the system tested, we send emails, browse websites through
Internet, edit word documents, develop VC++ programs, share
files remotely, update Windows and move files through USB disks,
etc. The system works well for the past a few months, without
need of modifications of existing software or running into failures.

Programs Behaviors Samples
Total FNs FPs Total FNs FPs

Worm 20 0 - 274 0 -
Trojan 19 0 - 155 0 -

Backdoor 17 0 - 152 0 -

Script Virus 2 0 - 65 0 -

Known
malware

Macro Virus 3 0 - 49 0

Unknown malware 32 0 - 491 0 -

Security utilities 11 - 1 103 - 8

System utilities 10 - 2 83 - 15

Games 7 - 0 82 - 0

Multi-media 10 - 0 36 - 0

Benign

program

Web Pages 16 - 0 99 - 0

Sum 147 0 3 1589 0 23

Table 3. Overhead of Tracer (CPU Cycles), The columns Tracer-m, Tracer-bf and Tracer-b show the CPU cycles taken by the malware
programs, the benign programs with and without suspicious flags running on Tracer, respectively.

Performance overhead. The performance overhead of
Tracer comes from the overhead of executing additional
instructions associated with every intercepted system call and
Win32 API function. In the following experiment, we evaluate the
additional overhead imposed by Tracer enforcement. The test-bed
is a Pentium-4 2.8GHz machine with 1GB memory running
Windows XP SP2. We first disable Tracer, run a group of benign
and malware programs, and count the average CPU cycles spent in
each system call and API function through rtdsc instruction.
Second, we enable Tracer, run the malware programs, the benign
programs with suspicious flags and without suspicious flags to
perform the test again. In all tests, the average CPU cycles of
every system call or API function is calculated from 100 invokes.
Results are shown in Table 3. With Tracer enabled, the malware
programs have 1.7%~32.4% more performance penalty than
native, while the benign programs have only 0~13.5%. The
highest performance penalty comes from the interception of
NtWriteFile() as a result of capturing file-copying behaviors. The
overhead incurred on benign programs is lower than 2%.
Therefore, the general performance impact from the system call
and Win32 API function interception is acceptable.

5. RELATED WORK
The concepts of Tracer model are partially inspired by the

MAC models such as DTE [9], LOMAC [3], UMIP [2] and
PRECIP [5]. DTE proposed by Lee Badger et al. [9] is a classical
MAC model to confine process execution, which groups
processes and files into domains and types respectively, and
controls accesses between domains and types. Tracer can be
regarded as a simplified DTE that has two domains (i.e., benign
and suspicious) and four types (i.e., benign, read-protected,
write-protected and suspicious). Moreover, Tracer can
automatically configure the DTE attributes (i.e., domain and type)
of processes and files under the support of intrusion detection and
tracing so as to improve usability.

Both LOMAC and UMIP evolve from BIBA model, which
aims to add usable and compatible mandatory integrity protections
into mainstream operating systems. The LOMAC model deals with
the pathological cases in the Low-Water Mark model’s behaviors to
decrease its partial compatibility cost. The UMIP model is designed
to preserve system integrity in the face of network-based attacks in
a highly usable manner. The PRECIP model addresses several
practical issues that are critical to contain spyware that intends to
leak sensitive information. Tracer, however, differs from these

MAC models in that, it traces suspected intruders and restricts their
behaviors rather than restricts information flow. With this novel
concept, it is able to considerably reduce FPs and automatically
deploy security labels, which result in good compatibility and
usability. Meanwhile, the philosophy of Tracer is roughly similar to
the risk-adaptive access control [10] that targets to make access
control more dynamic and flexible so as to achieve a better tradeoff
between risk and benefit. Tracer dynamically changes the security
labels of the processes that derive from dangerous sources to reduce
the risk of executing malware behaviors, while not restricting other
behaviors and processes at all to preserve the benefits of
compatibility and usability.

Most existing anti-malware technologies are based on
detection [22][23][24]. Tracer tries to combine detection and
access control so that it not only can detect but also can block
malware behaviors before their harming security. Tracer can be
used as a complementary technique to malware detection, to act
as an automatic intrusion response mechanism of a malware
detection system, since it is able to further trace intruders and
restrict their behaviors after malware detection. Another
anti-malware technology that resembles Tracer is behavior
blocking [29], which can confine the behaviors of certain adverse
programs that are profiled in advance. However, Tracer does not
need to profile program behaviors beforehand, and can confine
the adverse programs that execute malware behaviors.

Many commercial anti-malware tools [27][28] also have a
behavior-based module to defend against unknown malware
programs. The major difference between Tracer and the
commercial tools is that Tracer determines a malicious behavior
based not only on the behavior itself but also the source of the
process requesting the behavior. In other words, Tracer further
checks the suspicious label of the process requesting the behavior
rather than merely the behavior as anti-malware tools do. As a
consequence, Tracer produces much less false positives than that
of the commercial-tools as shown in Section 4.2.

6. CONCLUSIONS
In this paper, we propose a novel MAC model that integrates

intrusion detection and tracing to defend against malware in a
commercial OS. We have extracted 30 critical malware behaviors
and three common malware characteristics from the study of
2,600 real-world malware samples and analyzed the root reasons
for the incompatibility and low usability problems in MAC,
which will benefit other researchers in this area. Based on these

Functions Native Tracer-m Tracer-bf Tracer-b Functions Native Tracer-m Tracer-bf Tracer-b

NtCreateFile 334492 348471(4.2%) 348197(4.1%) 338506(1.2%) CreateService 6568120 6679778(1.7%) 6679625(1.7%) 6568323(<0.1%)

NtOpenFile 167620 175263(4.6%) 173235(3.3%) 169713(1.2%) OpenService 5490443 5609379(2.2%) 5609352(2.2%) 5490560(<0.1%)

NtWriteFile 245179 324623(32.4%) 278214(13.5%) 249832(1.9%) NtSetValueKey 210491 225120(6.9%) 225093(6.9%) 210493(<0.1%)

NtCreateNamedPipeFile 204711 214743(4.9%) 214751(4.9%) 204789(<0.1%) NtCreateKey 281722 296371(5.2%) 296008(5.1%) 281784(<0.1%)

NtCreatePort 37241 40221(8%) 40180(7.9%) 37275(<0.1%) NtCreateProcessEx 206458 215435(4.3%) 215426(4.3%) 208849(1.2%)

MIC (FPR=34%)

27

14

VIPRE (FPR=37%)

34

20

Tracer (FPR=5.6%)

51

3
without FP

having FP

Kaspersky (FPR=39%)

33

21

Figure 3. Comparing false positives with commercial anti-malware techniques on Windows

studies, we propose a novel MAC model, called Tracer, to disable
malware timely without need of malware signatures or other
knowledge in advance. It detects and traces suspected intruders so
as to restrict malware behaviors. The novelty of Tracer design is
two-fold. One is to use intrusion detection and tracing to
automatically configure security labels. The other is to trace and
restrict suspected intruders instead of information flows as done
by traditional MAC schemes. Tracer doesn't restrict the suspected
intruders right away but allows them to run as long as possible
except blocking their critical malware behaviors. This design
produces a MAC system with good compatibility and usability.
We have implemented Tracer in Windows OS and the evaluation
results show that it can successfully defend against a set of
real-world malware programs, including unknown malware
programs, with much lower FP rate than that of commercial
anti-malware techniques.

7. ACKNOLEDGMENT
We would like to thank all the anonymous reviewers for their

insightful comments and feedback. This work is supported by Natural
Science Foundation of China under grants No. 60703103, No.
60833005 and No. 60873213, US National Science Foundation under
grants CNS-0751121, CNS-0751121 and CNS-0628093.

8. REFERENCES
[1]. Heng Yin, Dawn Song, Manuel Egele, Christopher Kruegel,
and Engin Kirda. 2007. Panorama: capturing system-wide
information flow for malware detection and analysis. In
Proceedings of the 14th ACM conference on Computer and
communications security. ACM, New York, NY, USA, 116-127.
[2]. Ninghui Li, Ziqing Mao, and Hong Chen. Usable Mandatory
Integrity Protection for Operating Systems. In Proceedings of the
2007 IEEE Symposium on Security and Privacy. IEEE Computer
Society, Washington, DC, USA, 164-178.
[3]. Timothy Fraser. 2000. LOMAC: Low Water-Mark Integrity
Protection for COTS Environments. In Proceedings of the 2000
IEEE Symposium on Security and Privacy (SP '00). IEEE
Computer Society, Washington, DC, USA, 230-245.
[4]. Microsoft, Mandatory Integrity Control, http://msdn.micro-
soft.com/en-us/library/bb648648(VS.85).aspx.
[5]. XiaoFeng Wang, Zhuowei Li, Jong Youl Choi, Ninghui Li.
PRECIP: Towards Practical and Retrofittable Confidential
Information Protection. In Proceedings of 15th Network and
Distributed System Security Symposium, 2008.
[6]. Symantec, Inc, http://www.symantec.com/business/securit-
y_response/threatexplorer/threats.jsp.
[7]. D.E. Bell and L. J. LaPadula. Secure computer system:
Unified exposition and Multics interpretation. Technical Report
ESD-TR-75-306, MITRE Corp. MTR-2997, Bedford, MA, 1975.
Available as NTIS AD-A023 588.
[8]. K. J. Biba. Integrity considerations for secure computer
systems. Technical Report MTR-3153, MITRE, April 1977.
[9]. L. Badger, D. F. Sterne, D. L. Sherman, K. M. Walker, and
S. A. Haghighat. 1995. Practical Domain and Type Enforcement
for UNIX. In Proceedings of the 1995 IEEE Symposium on
Security and Privacy (SP '95). IEEE Computer Society,
Washington, DC, USA, 66-77.
[10]. Pau-Chen Cheng, Pankaj Rohatgi, Claudia Keser, Paul A.
Karger, Grant M. Wagner, and Angela Schuett Reninger. 2007.
Fuzzy Multi-Level Security: An Experiment on Quantified
Risk-Adaptive Access Control. In Proceedings of the 2007 IEEE

Symposium on Security and Privacy (SP '07). IEEE Computer
Society, Washington, DC, USA, 222-230.
[11]. Michael Howard, Fending Off Future Attacks by Reducing Attack
Surface, http://msdn.microsoft.com/en-us/library/ms972812.aspx, 2003.
[12]. Marius van Oers, OSX Malware not taking off yet, http://w-
ww.avertlabs.com/research/blog/ index.php/2007/03/20/osx-
malware-not-taking-off-yet/, March, 2007.
[13]. Jerome Saltzer and Michael Schroeder. The protection of information
in computer systems. Communications of the ACM, 17(7), 1974.
[14]. Peter Loscocco and Stephen Smalley. 2001. Integrating
Flexible Support for Security Policies into the Linux Operating
System. In Proceedings of the FREENIX Track: 2001 USENIX
Annual Technical Conference, Clem Cole (Ed.). USENIX
Association, Berkeley, CA, USA, 29-42.
[15]. Marek Jawurek, RWTH Aachen. RSBAC - a framework for enhanced
Linux system security, http://www.rsbac.org/documentation, 2006.
[16]. Microsoft, Windows Vista Integrity Mechanism,
http://msdn.microsoft.com/en-us/library/bb625964(v=MSDN.10).aspx.
[17]. Virgil D. Gligor, C. S. Chandersekaran, Robert S. Chapman, Leslie
J. Dotterer, Matthew S. Hecht, Wen-Der Jiang, Abhai Johri, Gary L.
Luckenbaugh, and N. Vasudevan. 1987. Design and Implementation of
Secure Xenix. IEEE Trans. Softw. Eng. 13, 2, 208-221.
[18]. Samuel T. King and Peter M. Chen. 2003. Backtracking
intrusions. In Proceedings of the nineteenth ACM symposium on
Operating systems principles. ACM, New York, NY, USA, 223-236.
[19]. Microsoft Security Bulletins,
http://www.microsoft.com/technet/security/current.aspx.
[20]. Offensive Computing, http://www.offensivecomputing.net/.
[21]. Francis Hsu, Hao Chen, Thomas Ristenpart, Jason Li, and
Zhendong Su. 2006. Back to the Future: A Framework for
Automatic Malware Removal and System Repair. In Proceedings
of the 22nd Annual Computer Security Applications Conference.
IEEE Computer Society, Washington, DC, USA, 257-268.
[22]. Engin Kirda, Christopher Kruegel, Greg Banks, Giovanni
Vigna, and Richard A. Kemmerer. 2006. Behavior-based spyware
detection. In Proceedings of the 15th conference on USENIX
Security Symposium - Volume 15 (USENIX-SS'06), Vol. 15.
USENIX Association, Berkeley, CA, USA.
[23]. Lorenzo Martignoni, Elizabeth Stinson, Matt Fredrikson,
Somesh Jha, and John C. Mitchell. A Layered Architecture for
Detecting Malicious Behaviors. In Proceedings of the 11th
international symposium on Recent Advances in Intrusion
Detection, Springer-Verlag, Berlin, Heidelberg, 78-97.
[24]. Andrea Lanzi, Monirul Sharif, and Wenke Lee. K-Tracer: A
System for Extracting Kernel Malware Behavior. In Proceedings of
Network and Distributed System Security Symposium, February 2009.
[25]. Zhihong Zhang, Jianfeng Zhan, Yong Li, Lei Wang, Dan
Meng, Bo Sang. "Precise request tracing and performance
debugging for multi-tier services of black boxes". IEEE/IFIP
International Conference on Dependable Systems & Networks,
pp.337-346, June 2009.
[26]. Ashvin Goel, Kenneth Po, Kamran Farhadi, Zheng Li, and
Eyal de Lara. The taser intrusion recovery system. In Proceedings
of the twentieth ACM symposium on Operating systems principles
(SOSP '05). ACM, New York, NY, USA, 163-176.
[27]. Kaspersky Lab. http://www.kaspersky.com/.
[28]. Vipre, Inc, http://www.vipre.com/vipre/.
[29]. Carey Nachenberg. Behavior Blocking: The Next Step in Anti-Virus
Protection. http://www.securityfocus.com/infocus/1557, March 2002.

