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ABSTRACT 
Enforcing a practical Mandatory Access Control (MAC) in a 
commercial operating system to tackle malware problem is a 
grand challenge but also a promising approach. The firmest 
barriers to apply MAC to defeat malware programs are the 
incompatible and unusable problems in existing MAC systems. 
To address these issues, we start our work by analyzing the 
technical details of 2,600 malware samples one by one and 
performing experiments over two types of MAC enforced 
operating systems. Based on the preliminary studies, we design a 
novel MAC model incorporating intrusion detection and tracing 
in a commercial operating system, named Tracer, in order to 
disable malware on hosts while offering good compatibility to 
existing software and good usability to common users who are 
not system experts. The model conceptually consists of three 
actions: detecting, tracing and restricting suspected intruders. One 
novelty is that it leverages light-weight intrusion detection and 
tracing techniques to automate security label configuration that is 
widely acknowledged as a tough issue when applying a MAC 
system in practice. The other is that, rather than restricting 
information flow as a traditional MAC does, it traces intruders 
and restricts only their critical malware behaviors, where 
intruders represent processes and executables that are potential 
agents of a remote attacker. Our prototyping and experiments on 
Windows show that Tracer can effectively defeat all malware 
samples tested via blocking malware behaviors while not causing 
a significant compatibility problem. 

Categories and Subject Descriptors 
D.4.6 [Operating System]: Security and Protection—Invasive 
software 

General Terms 
Security 
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Access Control; Operating System; Compatibility; Usability; 
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1. INTRODUCTION 
Malicious software (i.e., Malware) has resulted in one of the 

most severe computer security problems today. A network of 
hosts which are compromised by malware and controlled by 
attackers can cause a lot of damages to information systems. As a 
useful malware defense technology, Mandatory Access Control 
(MAC) works without relying on malware signatures and blocks 
malware behaviors before they cause security damage. Even if an 
intruder manages to breach other layers of defense, MAC is able 
to act as the last shelter to prevent the entire host from being 
compromised. However, as widely accepted [2][3][5], existing 
MAC mechanisms built in commercial operating systems (OS) 
often suffer from two problems which make general users 
reluctant to assume them. One problem is that a built-in MAC is 
incompatible with a lot of application software and thus interferes 
with their running [2][3][5], and the other problem is low 
usability, which makes it difficult to configure MAC properly [2]. 
Thus, enforcing a practical MAC on commercial OS to defend 
against malware is a promising but challenging task. 

In order to devise a new form of MAC to defeat malware, 
we have performed two preliminary studies. First, we analyzed 
the technical details of 2,600 samples so as to get a deep and 
overall view on malware programs. We extracted 30 critical 
malware behaviors and found three common malware 
characteristics that can guide anti-malware system design. Second, 
we investigated the root cause of incompatibility and low 
usability of existing MAC models through experiments on two 
types of MAC enforced operating systems. Our observations are 
as follows. The incompatibility problem is introduced because the 
security labels of existing MACs are unable to distinguish 
between malicious and benign entities, which causes a huge 
number of false positives (i.e. treating benign operations as 
malicious) thus preventing many benign software from 
performing legal operations; the low-usability problem is 
introduced, because existing MACs are unable to automatically 
label the huge number of entities in OS and thus require tough 
configuration work at end users. 

With these investigation results, we propose a novel MAC 
model, Tracer, which consists of three actions: detection, tracing 
and restriction. Each process or executable has two states, 
suspicious or benign. An executable in this paper represents an 
executable file with a specific extension, such 
as .EXE, .COM, .DLL, .SYS, .VBS, .JS, .BAT, or a special type 
of data file that can contain macro codes, say a semi-executable, 
such as .DOC, .PPT, .XLS, and .DOT. The actions of detection 
and tracing change the state of a process or executable to 
suspicious if it is suspected to be malicious, and the entity marked 
as suspicious is called a suspicious intruder. The action of 
restriction forbids a suspicious intruder to perform malware 
behaviors in order to maintain confidentiality, integrity and 
availability of the system, as well as to stop malware propagation. 
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To be precise, once detecting a suspicious process or executable, 
Tracer labels it to be suspicious and traces its descendent and 
interacted processes, as well as the executables it generates. 
Tracer does not restrict any operations of benign processes. 
Meanwhile, it permits suspicious processes to run as long as 
possible but only forbids their malware behaviors. 

The novelty of Tracer is that, it incorporates light-weight 
intrusion detection and tracing techniques for configuring security 
labels, i.e., labeling suspicious OS entities, which is often done 
manually. Moreover, rather than restricting information flow as a 
traditional MAC does, it traces suspected intruders and restricts 
the malware behaviors of suspected intruders, i.e., processes and 
executables that are potential agents of remote attackers. These 
novelties lead to two advantages. First, Tracer is able to better 
identify potentially malicious OS entities and regulate their 
behaviors, which in turn significantly reduces the false positive 
(FP) rate which is the root cause of incompatibility in existing 
MAC-enforced systems. Second, Tracer is able to label OS 
entities automatically to tackle the low usability problem which is 
the other major issue of existing MAC systems [2]. 

We have implemented Tracer on Windows and have been 
using evolving prototypes of the Tracer system in our lab for a 
few months. Our experiments on the function of Tracer with a set 
of real-world malware samples demonstrate that it can effectively 
block malware behaviors while offering good compatibility to 
applications and good usability to normal users. Moreover, 
another experiment shows that Tracer causes much fewer FPs 
than commercial anti-malware tools and MIC (Mandatory 
Integrity Control) which is a MAC mechanism on Windows Vista 

[4][16]. The contributions of this paper are as follows: 
1. We introduce Tracer, a novel MAC mechanism which 

integrates intrusion detection and tracing techniques to 
disable malware on a commercial OS in a compatible and 
usable manner. 

2. We have implemented Tracer model on Windows OS to 
disable malware timely without need of malware signatures. 
Developing a prototype on Windows is important, because 
most of the over 236,000 known malware items are designed 
for the attacks in the Windows environment, only about 700 
malware items target for the attack of various Unix/Linux 
distributions [12].  

3. Based on the analysis of 2,600 malware samples, we extract 
30 critical malware behaviors and summarize three useful 
malware characteristics, which will benefit future 
anti-malware researches.  

4. We investigate the root reasons of incompatibility and low 
usability problems of existing MACs. Although not all the 
observations are brand new, we believe that understanding 
these reasons more comprehensively and illustrating them 
through the design of an actual system are useful for other 
MAC researchers. 
The rest of the paper is organized as follows. Section 2 

introduces in details our investigation on various behaviors of 
malware programs, and our analysis on existing problems in 
MAC. Section 3 describes Tracer model. Section 4 provides our 
prototype and tests of Tracer on Windows. Lastly, we present the 
related research in Section 5 and conclude the work in Section 6. 

2. PRELIMINARY STUDIES 
2.1 Malware Investigation 

Malware contribute to most Internet security problems. 
Anti-malware companies typically receive thousands of new 
malware samples every day. An analyst generally attempts to 
understand the actions that each sample can perform, determines 
the type and severity of the threat that the sample constitutes, and 
then forms detection signatures and creates removal procedures. 
Symantec Threat Explorer [6] is such a publicly available database 
which stores the analysis results of thousands of malware samples 
from various sources and is thus valuable to malware researchers. 
To have a thorough understanding of the philosophies behind 
malware design, we have spent considerable amount of time 
analyzing the behaviors of malware programs. Specifically, since 
2008, we have read, recorded and analyzed the technical details of 
2,600 malware samples of a wide range of formats and varieties, 
such as viruses, worms, backdoors, rootkits, and Trojan horses. As 
taking many samples from the same malware family might make 
the analysis results biased, we have intentionally not chosen 
multiple samples of a polymorphic malware or similar malware. 

Figure 1 depicts the top 30 critical malware behaviors 
extracted from the samples and ranked in the descending order of 
their appearance times. For the behavior repeatedly appearing in a 
single malware, we only count it once. As the analysis is made on 
a great number of malware samples, we expect the behaviors 
captured to reflect the popular attacking techniques taken by the 
community of malware writers. Our performance studies in 
Section 4.2 have demonstrated that these behaviors are helpful to 
defend against unknown malware programs. The top 10 behaviors 
on the list are explained as follows: 

1. Communicate with a remote host. Most malware 
samples need to access the network in order to break into hosts, 
download files, receive hacker commands, upload confidential 
information, and spread themselves to other hosts and so on. The 

Figure 1. The top 30 Critical malware behaviors
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most commonly used network protocols are HTTP, POP3, IRC, 
SMTP, FTP and ICMP. Here, we not only take into account the 
network communications when a malware sample executes on a 
host but also the network communications through which a 
malware sample breaks into a host. 2. Create executable files. 
When reaching a system, almost all malware immediately create 
their executables in various formats, including both binary and 
script files. A significant part of the created executables comes 
from the network. 3. Modify registry for startup. 1,568 malware 
samples change or create registry entries in order to launch 
themselves upon restart of the system or applications. The 
registry entries changed the most are “run”, “Explorer” and 
“Winlogon” under the path “HKEY_LOCALMACHINE\SOFT- 
WARE\Microsoft\Windows\C-urrentVersion\”. 4. Copy itself. 
As a characteristic behavior of malware, more than 1000 malware 
samples copy themselves to system directories. 5. Obtain 
personal or system information. 785 malware samples steal 
user or system information including password, email address, 
encryption key, IRC accounts, system version, configuration data, 
banking data, etc. Particularly, more than half of these malware 
samples are only interested in system information. 6. Inject into 
other processes. 775 malware samples inject malicious codes 
into other process’ address space and remotely start a thread from 
the code. The system processes often being injected into include 
explorer.exe, winlogon.exe, svchost.exe, services.exe. 7. Modify 
executable files. 769 malware samples insert codes into 
executables, particularly system dynamic library files, for 
propagating, hiding or starting up themselves. 8. Create or 
modify Windows services. To start or hide themselves, 608 
malware samples create or modify services by calling service API 
functions or directly changing service related registry entries. 9. 
Change security settings. To escape from the checking by 
security software, 550 malware samples change registry to lower 
the system security level, disable firewall, bypass firewall, disable 
system restoring mechanism, alter safe mode setting, as well as 
disable task manager and registry editor. 10. Add IE or Explorer 
plug-ins. 541 malware samples add plug-in into IE and Explorer, 
for example, Browser Helper Object on IE, Shell Service Object 
on Explorer. 

Moreover, from the details of 2,600 malware samples, we 
discovered three common characteristics of malware that can 
guide our subsequent anti-malware design:  

(1) Entrance-Characteristics. All malware samples break 
into hosts through two entrances, network and removable drive. 
Most breaking-ins are via network, mainly through dangerous 
protocols including HTTP, POP3, IRC, SMTP, FTP and ICMP, 
etc. Using these protocols, malware samples can penetrate the 
network and host firewalls by disguising themselves as popular 
software conducting benign network traffic. 

(2) Damage-Characteristics. Malware behaviors can 
impose multiple forms of damages, i.e., resulting in problems in 
confidentiality, integrity and availability. Besides, we consider 
malware propagation as another type of damage since it can 
indirectly cause the former three forms of damages and 
eventually lead the entire host to be taken over. For example, the 
behavior “Copy itself” does not directly hurt security but is an 
essential step towards propagating itself and then executing 
malicious behaviors on a host. Therefore, we evaluate the 
damages of each behavior and record them in Figure 1, using C, I, 
A, and P to represent the damages related to confidentiality, 
integrity, availability and propagation respectively. 

(3) Attack-Characteristics. Malware samples from the 
network have two attack patterns. One is that, most malware 

samples exploit bugs in network-facing daemon programs or 
client programs to compromise them, then immediately spawn a 
shell or back-door process. Next, an attacker typically tries to 
download and install attacking tools and rootkits, as well as 
performs some other adversary behaviors. The other attack 
pattern is that, malware samples increasingly use social 
engineering methods to lure users into downloading and 
launching them. After started, a malware sample usually copies 
itself and makes itself a resident in a host. 

2.2 Problems in MAC 
Incompatibility is a well-known problem when enforcing a 

MAC model in a commercial operating system [2][3][5]. To 
investigate its root reason, in a secure network environment, we 
set up two machines to run MAC enforced operating systems 
including SELinux [14] with MLS policy enabled and RSBAC [15] 
with MAC module enabled. After a few days, we observed that 
these MAC systems produced a huge number of log records about 
denied accesses, which indicated that some applications failed and 
some acted abnormally. As the operation environment is secure 
without intrusion and malware, these denied accesses are thus 
“false positive”. In other words, MAC systems consider benign 
accesses malicious and refuse them. Many FPs together could 
make the whole system finally unusable. Although part of the FPs 
can be removed by experts through fine-granular policy 
configuration, many of them are not removable, and thus the 
impacted applications need to be modified before running on the 
MAC enabled systems. 

These unremovable FPs are resulted because most MAC 
models aim to forbid illegal information flow rather than forbid 
intrusive behaviors directly. An example of such FPs is the 
self-revocation problem [3] in Low-Water-Mark model, which 
forbids a process to write a file created by itself if it has read a file 
with a lower integrity level before the writing. From the perspective 
of stopping illegal information flow, forbidding the write operation 
is reasonable. However, from the perspective of stopping intrusion, 
the write operation should not be denied if the process is actually 
not serving for an attacker. Another example of such FPs on a 
BLP-enforced Unix/Linux stems from the access control of the 
directory “/tmp” shared by the entire system [17]. To prevent illegal 
information flow, a process with a lower sensitive level can not 
read from /tmp or a process with a higher sensitive level can not 
write to /tmp. However, from the view of intrusion prevention, 
these processes do not necessarily represent intruders so that their 
“read” or “write” accesses to the /tmp should not be simply denied. 
Although it is possible to resolve this problem by adding “hiding 
sub directories” under /tmp, it is still difficult to eliminate the FPs 
resulting from many other shared entities on an OS, such as shared 
files, devices, pipes and memories. 

Meanwhile, the security labels of MAC models also do not 
suit for fighting against malware, as they are designed to represent 
information integrity level or confidentiality level but not to 
distinguish between malicious and benign entities. In fact, a lower 
integrity level alone can not indicate that a process is malicious, as 
“malicious” also has other meanings, e.g., lower confidentiality and 
the risk of damaging system availability. Similarly, a lower 
confidentiality level alone cannot indicate that a process is 
malicious. Moreover, MAC labels are defined before an intrusion 
happens and can not be changed dynamically to reflect intrusion 
propagation in an OS. Although some of the MAC models are able 
to adjust label states, e.g. LOMAC [3] and DTE [9], they are still 
not flexible enough to track the intrusion propagation at the whole 
system level. Consequently, MAC labels can not differentiate 



 

between malicious and benign entities. Relying on these labels, a 
MAC system often fails to make correct decisions on intrusion 
blocking which eventually results in many FPs. 

Low-usability is another problem in a MAC-enabled system, 
as it often requires complicated configurations and 
unconventional ways of usage. In a modern OS, there are a wide 
range of entities including processes, files, directories, devices, 
pipes, signals, shared memories and sockets, etc. If just 
considering the files, there are more than 100,000 files on a 
typical Windows XP or Linux desktop. Moreover, MAC systems 
have complex policy interfaces which are difficult to configure. 
For instance, SELinux has 29 different classes of objects, 
hundreds of possible operations, and thousands of policy rules for 
a typical system. Hence, it is cumbersome for a common user to 
correctly configure labels for all entities without leaving security 
vulnerabilities. In addition, after enforcing a MAC, users must 
break their usage convention and learn how to use the MAC. 
Consequently, the ideal way for MAC to provide good usability is 
to automatically initialize and change entity labels without 
changing users’ usage convention or requiring extra knowledge. 

3. TRACER MODEL 
In this section, we present our Tracer model that aims to 

disable malware in a commodity OS by disallowing malware 
behaviors. The adversaries of Tracer are malware programs that 
break into a host through the network and removable drives. As 
Windows is the most popularly used OS and attractive to hackers, 
the description of Tracer is based on our design for Windows. We 
believe the model can also be applied to other operating systems 
(e.g. Linux) with some changes. Investigating the suitability of 
Tracer for non-Windows operating systems is beyond the scope 
of this paper. 

3.1 Model overview 
The design of an access control model needs to answer three 

questions. The first is how to define the security label. Based on the 
analysis in Section 2.2, we introduce a new form of security label 
called suspicious label for our Tracer model. It has two values: 
suspicious and benign. A suspicious label indicates that the 
associated process is potentially serving for an intrusion purpose 
and thus possible to initiate some malicious behaviors. Meanwhile, 
Tracer only assigns a suspicious label to a process or an executable, 

because a process is possibly the agent of an intruder and an 
executable determines the execution flow of a process which 
represents an intruder. All other entities in OS, e.g. 
non-executables, inter-process communication objects, 
registry entries, etc, do not need suspicious labels. When a 
process requests to access these entities, Tracer mainly utilizes 
their DAC information to make access control decisions, thus 
a huge amount of configuration work can be reduced while 
keeping traditional usage conventions unchanged. The second 
design question is how to configure security labels. As 
discussed in Section 2.2, in order to achieve good usability, a 
MAC model must have the capability of automatically 
deploying security labels. Accordingly, we introduce two 
types of actions named “detection” and “tracing” to automate 
the security label deployment progress. The two actions 
employ intrusion detection and tracing techniques respectively 
to recognize and mark suspicious processes and executables. 
The third design question is about access control rules. Being 
of mandatory access control, the rules of Tracer forcibly 
refuse the requests from suspicious processes if and only if the 
requests could lead to a malware behavior. 
Figure 2 gives an overview of Tracer which consists of three 

types of actions, detection, tracing and restriction. Each process 
or executable has two states, suspicious and benign. The actions 
of detection and tracing change the state of a process or 
executable to suspicious if it is identified as a potential intruder. 
The restriction action forbids a suspected intruder to perform 
malware behaviors in order to protect CIAP. That is to protect 
confidentiality, integrity and availability, as well as to stop 
malware propagation. The three actions work as follows. Once 
detecting a suspected process or executable, Tracer labels it as 
suspicious and traces its descendent and interacted processes, as 
well as its generated executables. Tracer does not restrict benign 
processes at all, and permits suspicious processes to run as long 
as possible but stops their malware behaviors that would cause 
security damages. In addition, Tracer also provides a special 
system call to allow a user to change the state of a suspicious 
process or executable back to benign if the user trusts it. In the 
rest of this section, we describe Tracer model in details, including 
detecting, tracing and restricting intruders. 

3.2 Detecting Intruders 
The detecting action is responsible for identifying all 

potential intruders. We do not intend to design a complex 
intrusion detection algorithm to achieve a low FP rate at the cost 
of heavy overhead. Instead, we design a light-weight intrusion 
detection algorithm that can identify all potential intruders but 
may have a relatively higher FP rate at the initial step. However, 
even if the detecting action wrongly denotes a benign process as 
suspicious, the subsequent actions of Tracer, i.e., tracing and 
restricting actions, will still allow it to run rather than stop it 
immediately, but only prevent it from executing featured malware 
behaviors. In other words, Tracer is built to have a good tolerance 
to the FPs caused by the detecting action. 

As depicted in Figure 2, the detection works at two levels: 
entrance and interior. The detection at entrance attempts to check 
all possible venues through which a malware program may break 
into the system. Network communications is the main type of 
entrances and most malware programs exploit several common 
dangerous protocols to compromise hosts as these protocols are 
usually permitted by firewalls according to the 
Entrance-Characteristics presented in Section 2.1. Hence, we 
denote a process as suspicious if it receives network traffic 
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through dangerous protocols. A frequently used application (e.g., 
web browser) thus might be denoted as suspicious but its normal 
running will not be affected, because Tracer doesn't restrict the 
suspected processes instantly and permits them to perform as long 
as possible except stopping their critical malware behaviors. The 
rest of the network protocols, say non-dangerous protocols, are 
difficult to be exploited by malware programs, because they are 
not permitted by firewalls since benign software rarely use them. 
Nevertheless, in order to completely monitor all the network 
traffic, we denote a process as suspicious if it receives network 
traffic through a non-dangerous protocol and then exhibits any of 
the malware behaviors. Instead of only checking non-dangerous 
network protocols, further checking malware behaviors can 
reduce the extra high FP rate. The Attack-Characteristics 
summarized in Section 2.1 supports this point. That is, a process 
exploited by a malware program from the network necessarily 
executes at least one critical malware behavior, e.g., launching a 
shell process or downloading an executable, to propagate the 
malware program within the system. Although a carefully crafted 
malware program that subverts a process through a 
non-dangerous protocol can perform some behaviors before 
performing a malware behavior, it is difficult for the process to 
make significant damages on the system. The reason is that the 
malware behaviors monitored by Tracer include all of the 
behaviors that can cause significant damages, let alone that 
malware programs are difficult to attack a host through 
non-dangerous protocols which are usually blocked by firewalls. 
The other type of entrances through which malware programs get 
into the system is removable drives according to the 
Entrance-Characteristics, hence we denote a process as suspicious 
when it opens or loads an executable from a removable drive. 

With these detecting approaches enforced, however, two 
types of system maintenance tasks, i.e., updating software 
through the network and installing software from a removable 
drive, can not be performed because the processes that perform 
these tasks are treated as suspicious. As presented in the literature 
work [2] [3], a MAC policy should have ways to specify 
exceptions since no simple policy model can capture all accesses 
that need to be allowed and at the same time forbid all illegal 
accesses. Hence, we provide two means to facilitate these system 
maintenance tasks. One is trusted communications through which 
processes can update software remotely without being marked as 
suspicious. A communication is considered to be trustful if the 
three factors associated with it, i.e., “image file of the local 
process”, “communication protocol” and “remote host” are all 
trusted. Meanwhile, a trusted communication is time limited, i.e., 
effective only within a predefined time period. Although a trusted 
protocol, e.g. SSL, is not absolutely secure, a further check of the 
process’ image file, the remote host and the time stamp 
simultaneously will greatly reduce the attack surface. Moreover, 
as a computer usually only needs to access a few well-known 
sites to update its necessary software, the administrator can easily 
set up the trusted communications required. The other means is a 
new system call to facilitate a user to manually remove suspicious 
labels on specific processes or files if the user trusts them. For 
example, when installing benign software from a CD disk, a user 
can remove the suspicious labels from the processes which read 
the executables on the CD disk then Tracer will not affect the 
installation progress any more. Note that, only a process without 
a suspicious label has the privilege to use the system call so as to 
prevent a malware program from bypassing Tracer. 

Although bypassing the detection at entrances is difficult, in 
case that a sophisticated malware program unexpectedly breaks into 

the system, we prepare a type of detection at the interior of the 
system to ambush it. This type of detection monitors the exclusive 
malware behaviors that a benign program will not exhibit. The 
current version of Tracer conservatively uses five such behaviors to 
detect malware programs inside a system as shown in Figure 2. 
More behaviors can be monitored for malware detection in the 
interior at the cost of additional FPs. Actually, these behaviors 
together provide a strong detection capability as they are 
indispensable to most malware programs, e.g., “Copy itself”. In 
addition, this type of detection will not bring extra performance 
overhead since the restricting action of Tracer also needs to monitor 
such behaviors, which will be presented in Section 3.3. 

In short, the detection action identifies a process as suspicious 
if it meets one of the following conditions: receiving network traffic 
through dangerous protocols; receiving network traffic through 
non-dangerous protocols then exhibiting any of the malware 
behaviors; reading or loading an executable from a removable 
drive; and exhibiting any of the five exclusive malware behaviors. 

3.3 Tracing Intruders 
To track intruders within an operating system, one can use 

OS-level information flow as done in [18] [26]. However, a major 
challenge for leveraging OS level information flow to trace 
suspicious entities is that, file and process tagging usually leads 
the entire system to be floated with "suspicious" labels and thus 
incurs too many FPs. To address this issue, we propose the 
following two methods to limit the number of tagged files and 
processes in a single OS while preventing malware programs 
from evading the tracing as much as possible. 

For tagging files, unlike the approaches in [18] [26] and the 
schemes of many malware detection and MAC systems 
[1][2][5][21] that trace information flow on OS level, Tracer only 
focuses on the tagging of executables while ignoring 
non-executables and directories. This is because an executable 
represents the possible execution flow of the process loading it, 
thus it should be deemed as an inactive intruder while a process is 
considered as an active intruder. On the other hand, since there are 
a huge number of non-executable files and directories within a 
single OS, not tracing them can prevent the entire file system from 
being floated with the suspicious labels that mostly are due to FP. 

For tagging processes, we observed that the excessive 
number of tags mainly come from tracing IPC (Inter-Process 
Communication), i.e. marking a process as suspicious if it receives 
IPC data from a suspicious process, just as the approaches 
assumed in [2] [18]. To address this issue, Tracer only tags a 
process receiving data from dangerous IPCs that can be exploited 
by a malware program to take control of the process to perform 
arbitrary malicious behaviors. Note that, dangerous IPCs do not 
include the other types of vulnerable IPCs that can be used to 
launch denial-of-service attack, or disclose sensitive information, 
or escalate the privileges of the processes which send IPC data. 
Moreover, a dangerous IPC only involves the local IPCs instead of 
the IPCs over the network, since the detection at entrance can 
mark a process that receives IPC data from the network as 
suspicious. In order to identify the dangerous IPCs, we 
investigated Microsoft Security Bulletins [19], a database storing 
information about security vulnerabilities on Windows family OS 
and other Microsoft software. As malware programs usually 
exploit these vulnerabilities to compromise Windows hosts, 
Microsoft Security Bulletins become primary sources for 
analyzing attack vectors of Windows OS as done in [11]. 
Concretely, we analyzed all vulnerabilities recorded in security 
bulletins related to named-pipes, local procedure calls, shared 



 

memories, mailslots and Windows messages from 1998 to 2009, 
as these IPCs send free-formed data that can be crafted to exploit 
bugs in the receiving process. However, among all of the security 
bulletins, we only found one dangerous IPC, i.e. MS03-025 [19]. 
The result reveals that in reality it is quite difficult to propagate 
malware through local IPCs within a Windows OS since people 
could only find one dangerous IPC over the period of eleven years. 
Consequently, Tracer employs a Dangerous-IPC-List to record and 
trace each type of dangerous IPC since there should be a very 
limited number of dangerous IPCs in a Windows OS. 

Therefore, we mark the following entities as suspicious: a 
process spawned by a suspicious process, an executable created 
or modified by a suspicious process, a process loading an 
executable with a suspicious label, a process receiving data from 
a suspicious process through a dangerous IPC, and a process 
reading a semi-executable or script file with a suspicious label.  

A script file is written in interpreting language, e.g. 
JavaScript or VBScript, and thus needs execution engine, e.g. 
wscript.exe or cscript.exe, to load and run it. Accordingly, to 
defend against a script virus, Tracer should restrict the engine 
processes that are reading and interpreting a suspicious script file. 
On the other hand, a semi-executable represents certain types of 
data files that might contain macro codes, which mainly involves 
various types of Microsoft Office documents, e.g. Word, Excel, 
PowerPoint, and template files. Although the macro virus 
protection in Office software can reduce the chances of macro 
virus infection, relying on it is very dangerous because crafted 
macro codes are able to subvert it and cause destructive damages, 
for example, viruses Melissa and W97M.Dranus. Consequently, 
Tracer considers a process that reads a suspicious 
semi-executable as suspicious in order to defeat macro virus. 

3.4 Restricting Intruders 
In order to disable malware programs on a host, the 

restricting action monitors and blocks intruders’ requests for 
executing critical malware behaviors listed in Figure 1. 
Additionally, to reduce FPs, a few malware behaviors that are 
indispensable to benign programs and do not directly hurt 
security are not blocked but traced, for instance, “Create 
executable files” which is often utilized by Internet browsers to 
download and run ActiveX programs from web pages. 

To follow the principle of complete mediation [13] for 
building a security protection system, Tracer further restricts two 
special behaviors, called generic malware behaviors, to protect 
security more widely. The first one is “Steal confidential 
information”, which represents all illegal reading of confidential 
information from files and registry entries. The other is “Damage 
system integrity”, which represents all illegal modifications of the 
files and registry entries that require preserving integrity. In 
addition, other behaviors that can be used to bypass Tracer 
mechanism also need to be monitored and restricted, including 
“Change file attributes”, “Change registry entry attributes”, 
“Execute non-executable files” and “Execute Tracer special 
system calls”. The behavior “Change file attributes” represents 
changing file extension names to executable or changing file DAC 
information. 

By mediating all these behaviors, Tracer is able to preserve 
system security and prevent a malware program from propagating 
itself in the system. To be specific, confidentiality is mainly 
achieved by blocking the generic behavior “Steal confidential 
information”; integrity is mainly protected by blocking the generic 
behavior “Damage system integrity”; availability is defended by 
blocking the behaviors listed in Figure 1 with the capital letter A 

attached; propagation is prevented by blocking the behaviors in 
Figure 1 with the capital letter P attached. 

Meanwhile, blocking these behaviors can also help to defend 
against unknown malware programs because of two reasons. First, 
these behaviors are extracted from thousands of malware samples 
and thus represent popular hacking techniques that are often used in 
unknown malware programs by malware authors. For example, the 
behavior “Add IE or Explorer plug-in” is also a popular technique 
that is frequently used by enormous amount of malware programs 
both known and unknown to hide and automatically launch 
themselves, as well as monitor user data. Second, these behaviors 
are high-level behaviors so that they widely cover various low-level 
behaviors of various types of malware programs known or 
unknown. For example, “Communicate with a remote host” 
involves downloading hacker tools, sending emails to spread 
malware programs, connecting with a remote host to accept hacker 
commands, etc. Particularly, the two generic malware behaviors 
presented previously actually cover all illegal accesses of 
files/directories and registry entries in the system. 

To efficiently restrict these malware behaviors, an issue needs 
to be addressed. That is how to determine the generic malware 
behaviors. We identify behaviors “Steal confidential information” 
and “Damage system integrity” by monitoring illegal reading on 
read-protected objects and illegal writing on write-protected objects, 
respectively. However, it is difficult to identify the objects that need 
protection among a large number of candidates in a Windows OS in 
order to recognize the generic malware behaviors. A traditional 
MAC requires users to give every file a security label to identify 
whether the file needs protection, which in turn becomes a heavy 
burden on general users. In Tracer, we utilize the existing operating 
system information “file extension name” and “DAC information” 
to denote the protected files and registry entries. To be specific, we 
use file extension names to recognize the executables and 
configuration files that usually are write-protected. For 
example, .exe, .com, .dll, .sys, .js, and .vbs represent 
executables; .ini and .inf represent configuration files. Meanwhile, 
we use the DAC information of a file to determine whether it is 
protected. If the user group “Everyone” does not have a read 
permission on a file, the file is treated as read-protected; if the user 
group “Everyone” does not have write permission on a file, the file 
is treated as write-protected. Similarly, we use the permission of 
user groups “Users”, “Everyone” and “Restricted” to recognize 
protected registry entries. In addition, we do not allow an intruder 
to change file extension and DAC information. As a result, an 
attacker is not able to alter a file or registry entry from a protected 
state to an unprotected state to escape the access control mechanism. 
With above methods, the configuration work required to identify 
files and registry entries to be protected is significantly reduced 
without changing the user’s usage convention. 

3.5 Limitation 
Although Tracer has advantages on compatibility, usability 

and defense against unknown malware programs, it also has a 
limitation that requires further research. As based on static 
malware characteristics and behaviors, detection in Tracer cannot 
be dynamic over time in the sense of evolving with the 
emergence of new malware characteristics and behaviors. In 
future, we will try to improve Tracer to address this limitation. 

4. IMPLEMENTATION 
To evaluate the effectiveness of Tracer model, we have 

developed a prototype implementation for Windows XP, and 
carried out a series of experiments. Although XP is not as new as 



 

Table 1. Decision logic of Tracer. The Benign Process and 
Suspicious Process columns represent that the processes requesting 
the behaviors below are benign or suspicious respectively. Ip and Ie 
indicate setting the related process or executable as suspicious 
respectively. D indicates denying the behavior request. 

Vista, it is enough for verifying the Tracer model since both 
versions of OS have very similar system calls and Win32 API 
functions based on which Tracer works. Moreover, if developing 
the prototype on Vista, the MIC might interfere with Tracer as 
both schemes attempt to complete MAC tasks. 

4.1 Implementation 
Tracer implementation consists of two parts: Interception 

and Decision. Most of the implementations are located in the 
kernel so that they are difficult to be bypassed. The Interception 
part monitors Native Windows API functions (i.e. system call) at 
the kernel level and Win32 API functions (i.e. system library 
functions) at the application level, then issues behavior requests 
to the Decision part, and allows or disallows a behavior according 
to the result returned from the Decision part. The intercepted 

behaviors are listed in Table 1. 
Most behaviors can be intercepted by monitoring only one 

essential system call function or a Win32 API function, for 
example, monitoring NtDeviceIoControlFile() for “Communicate 
with a remote host”, monitoring NtCreateFile() for “Create 
executable”, monitoring NtOpenFile() for “Steal confidential 
information”. Some behaviors consist of more than one system 
call or Win32 function, for instance, the behavior “Inject into other 
processes” consists of OpenProcess(), VirtualAllocEx(), 
WriteProcessMemory(), CreateRemoteThread(), etc. Considering 
the performance impact, we only intercept the first essential 
function, i.e. OpenProcess(), and block it if a suspicious process 
tries to perform an execution, such that the subsequent calls, 
i.e.WriteProcessMemory() and CreateRemoteThread(), which 
would cause damages are not executed any more. Moreover, to 
prevent intended bypassing, Tracer always intercepts a function at 
the kernel level rather than the application level if possible. Thus, 
for the behavior “Inject into other processes”, Tracer actually 
intercepts NtOpenProcess() at the kernel level rather than 
OpenProcess() at the application level. However, the file-copying 
like behaviors in Figure 1 can not be identified by intercepting a 
single system call as they consist of two essential system calls for 
reading and writing files respectively. Thus, we devised an 
algorithm to correlate the two system calls by exploiting related 
file names and buffers. 

The Decision part residing in the kernel handles behavior 
requests from the Interception part. When making a decision, it first 
reads the Tracer attributes of processes and files, e.g., suspicious 
flags and DAC information, and then decides whether to permit the 
behaviors and whether to modify the Tracer attributes according to 
the Tracer actions presented in Section 3. Table 1 shows the 
decision logic implemented in the Decision part. 

To be permanent, the suspicious flag of an executable is 
stored in a specially created file stream of the executable file. The 
suspicious flag of a process, however, is stored in a data structure 
associated with the process in the memory. The whole 
implementation is encapsulated in a kernel driver and a DLL. The 
kernel driver is responsible for intercepting system calls via 
modifying the system call entry point in the System Service 
Dispatch Table (SSDT), and implementing the Decision part 
within the kernel. The DLL is responsible for intercepting Win32 
API functions via modifying the library function entry point in 
the Import Address Table (IAT) of application processes. Note 
that, our Tracer implementation does not need to impose any 
modifications on the Windows or application codes, thus it is 
highly compatible with existing software. 

4.2 Evaluation 
We evaluate Tracer performance from three important 

perspectives: its effectiveness in ensuing security, its compatibility 
with application software, and the overhead added after enabling 
Tracer on OS. 

Security. To verify the capability of Tracer on restricting 
malware behaviors, we collected 93 real-world malware samples, 
most of which are obtained from a publicly available website [20]. 
32 of the samples are unknown to Tracer, because they can not be 
found with the same or different names in Symantec Threat 
Explorer from which the critical malware behaviors are extracted. 
We also prepared 54 benign samples mostly from two reputable 
websites, i.e. technet.microsoft.com and www.download.com. To 
further facilitate the experiments, we prepare a set of monitoring 
tools to help check experimental results, which include 
ApiMonitor to record system call and Win32 API, 

Benign Process Suspicious Process
Behaviors 

Detect Trace Restrict Detect Trace Restrict

Normal Communication IP      1. Communicate 
with a remote host Trusted Communication       
2. Create executable files     Ie  
3. Modify registry for startup      D
4. Copy itself IP     D
5. Obtain personal or system information      D
6. Inject into other processes IP     D
7. Modify executable files IP     D
8. Create or modify Windows services      D
9. Change security settings      D
10. Add IE or Explorer plug-ins      D
11. Start hidden network clients IP     D
12. End anti-malware processes or services IP     D
13. Modify system configuration files      D
14. Log keystrokes and mouse clicks      D
15. Copy special configuration files      D
16. Copy system executable files     Ie  
17. Uninstall software      D
18. Copy executables to removable drives      D
19. Create Windows hooks      D
20. Install or modify drivers      D
21. Change file time      D
22. Capture screen shots      D
23. Restart computer      D
24. Make system/hidden directories      D
25. Close security alert windows      D
26. Modify layered service providers      D
27. Install screen savers      D
28. Change desktop backgrounds      D
30. Add data streams      D
Damage system integrity      D
Steal confidential information      D
Mount removable drives Ie   Ie   
Change file attributes      D
Change registry entry attributes      D
Create processes     IP  
Load suspicious executables     IP  
Read certain suspicious executables     IP  
Communicate with local processes     IP  
Execute non-executable files      D

Execute Tracer special system calls      D



 

Table 2. Security test results. FP Rate is 5.6% and FN Rate is 0%.ProcessExplorer to analyze processes, Regmon to trace registry 
activities, and Filemon to monitor file operations. Meanwhile, we 
set up a local network which consists of two servers and two 
hosts as a testing environment [25]. One server machine, on 
which the samples to be tested are intentionally placed, runs an 
IIS web server, a ftp server and an EZ-IRC server. The other 
server machine, on which only benign samples are placed, runs 
an IIS web server to act as a trusted site for testing trusted 
communications. Note that, in reality the trusted sites can be 
easily recognized by general users because a host only has to 
connect to several well-known websites to upgrade its important 
software. The host machines installed with Windows XP run the 
client programs that are often the attacking vectors for malware 
samples, including mIRC, MSN Messenger, MS Outlook, eMule, 
KaZaA, IE and ftp client, etc. To emulate the real-world usage 
scenarios, we login the hosts and perform various types of tasks, 
such as browsing the malicious website and ftp server in the local 
network and downloading samples, sending and receiving 
malicious instant messages and emails, accessing P2P shared 
folders or removable drives that contain samples. Thus, the 
samples are introduced into a host through various channels. With 
this testing environment, the capability of Tracer to detect, trace 
and restrict malware behaviors can be thoroughly evaluated. 

For every sample, we perform a two-step experiment. First 
we run a sample on a host without turning on Tracer and record 
what happens using the monitoring tools above. Then, we enable 
Tracer protection, run the same sample, and record what happens 
again. We can determine whether a sample is indeed disabled 
from two perspectives. First, we deduce whether malware 
behaviors are successfully executed by comparing the two 
versions of logs produced by ApiMonitor, Regmon and Filemon 
without or with protection. Second, we manually check whether 
the files, registry entries and processes that are created by the 
sample and recorded in the former logs are exactly present or not 
in the logs after turning on the Tracer. Moreover, we restart the 
computer to see if the sample can be enabled automatically. 

The testing results are reported in Table 2. For each type of 
samples, after turning on Tracer, we record the number of false 
negatives, i.e., FNs, and the number of FPs. We can see that 
Tracer was able to correctly disable all malware samples 
including known and unknown ones, as well as block or cancel 
all their malware behaviors. However, it falsely stopped 3 benign 
samples by blocking their behaviors. The FPs were a personal 
firewall program, a file system tool and a process tool, 
downloaded from the IRC and web server with which we did not 
set up a trusted communication. By analyzing the logs, we 
observed that some behaviors of these benign programs closely 
resemble those of malware, for example, “Create or modify 
Windows services”, “Modify system configuration files”, “Install 
or modify drivers”, “Modify registry for startup”, etc. As Tracer 
relies on the source and behaviors of a program to identify a 
malware program, the benign programs that come from a remote 
host through an untrusted communication are tracked and 
restricted as suspicious ones. However, one still can make the 
programs work by manually removing the suspicious flags from 
the program files before running them. 

To compare with other anti-malware techniques on Windows, 
we performed an experiment to test three popular commercial 
tools: Kaspersky [27], VIPRE [28] and MIC. The former two 
running on XP are well known anti-malware tools and have 
modules blocking suspicious behaviors to defend against unknown 
malware. The anti-malware tools relying only on signatures can 
not detect unknown malware [1] and thus are inappropriate to 

compare with Tracer especially on FP rate. MIC is a partial 
enforcement of BIBA model in Vista kernel [16], which is the 
only MAC mechanism in Windows OS family. For every 
anti-malware technique, we tested all of the samples in Table 2. 
We count a program as a FP if the anti-malware technique 
abnormally refuses or alarms at least one of its access requests, 
since this will affect the running of the testing program or annoy 
the user. We do not count a program as a FP if it fails on Vista but 
the failure is not caused by MIC. Figure 3 shows the FP rates (FPR) 
obtained. MIC and the anti-malware tools have FP rates above 
34%, whereas, Tracer has FP rate of merely 5.6%. The high FP 
rate of MIC comes from the no-write-up rule of BIBA model. The 
modules that block suspicious behaviors contribute to most of FPs 
of the anti-malware tools. The fundamental reason is that the 
anti-malware tools identify a suspicious behavior only based on 
the behavior itself while Tracer further considers the suspicious 
label of the process requesting the behavior. On the other hand, the 
FN rates of Kaspersky, VIPRE and Tracer are almost all zero. 
However, MIC is observed to have a high FN rate of 42%. One 
possible reason is that MIC does not implement the no-read-down 
rule of BIBA model [16] in order to avoid a significant impact on 
the usability and compatibility of Windows which is a commodity 
OS. As a result, some sophisticated malware programs can 
manage to bypass it. Nevertheless, with MIC, Vista can still 
achieve a significant security improvement compared with XP that 
can not defeat any malware samples by itself. 

Compatibility. The requirement for compatibility is that 
existing Commercial Off-The-Shelf (COTS) software can run on 
the MAC prototype without causing significant incompatibility 
problems. On the two hosts with Windows XP installed, we run 
many commonly used network-dependent applications and local 
applications e.g. Internet Explorer, MS Outlook Express, MS word, 
MS excel, MS Power Point, MS Messenger, mIRC and Visual 
C++. We set the protocols HTTP, POP3, IRC, SMTP, FTP, 
FastTrack, eDonkey and ICMP as dangerous. We define trusted 
communications for downloading useful applications and 
Windows update as follows: {“C:\Windows\system32\wuauclt.ex- 
e”, “SSL”, “update.microsoft.com”}, {“C:\Windows\system32\sv- 
chost.exe”, “SSL”, “update.microsoft.com”}, {“C:\Windows\syst- 
em32\wbem\wmiprvse.exe”, “SSL”, “update.microsoft.com”}. On 
the system tested, we send emails, browse websites through 
Internet, edit word documents, develop VC++ programs, share 
files remotely, update Windows and move files through USB disks, 
etc. The system works well for the past a few months, without 
need of modifications of existing software or running into failures. 

Programs Behaviors Samples 
Total FNs FPs Total FNs FPs 

Worm 20 0 - 274 0 -
Trojan 19 0 - 155 0 - 

Backdoor 17 0 - 152 0 - 

Script Virus 2 0 - 65 0 - 

Known 
malware

Macro Virus 3 0 - 49 0  

Unknown malware 32 0 - 491 0 - 

Security utilities 11 - 1 103 - 8 

System utilities 10 - 2 83 - 15 

Games 7 - 0 82 - 0 

Multi-media 10 - 0 36 - 0 

Benign 

program

Web Pages 16 - 0 99 - 0 

Sum 147 0 3 1589 0 23 



 

Table 3. Overhead of Tracer (CPU Cycles), The columns Tracer-m, Tracer-bf and Tracer-b show the CPU cycles taken by the malware 
programs, the benign programs with and without suspicious flags running on Tracer, respectively. 

Performance overhead. The performance overhead of 
Tracer comes from the overhead of executing additional 
instructions associated with every intercepted system call and 
Win32 API function. In the following experiment, we evaluate the 
additional overhead imposed by Tracer enforcement. The test-bed 
is a Pentium-4 2.8GHz machine with 1GB memory running 
Windows XP SP2. We first disable Tracer, run a group of benign 
and malware programs, and count the average CPU cycles spent in 
each system call and API function through rtdsc instruction. 
Second, we enable Tracer, run the malware programs, the benign 
programs with suspicious flags and without suspicious flags to 
perform the test again. In all tests, the average CPU cycles of 
every system call or API function is calculated from 100 invokes. 
Results are shown in Table 3. With Tracer enabled, the malware 
programs have 1.7%~32.4% more performance penalty than 
native, while the benign programs have only 0~13.5%. The 
highest performance penalty comes from the interception of 
NtWriteFile() as a result of capturing file-copying behaviors. The 
overhead incurred on benign programs is lower than 2%. 
Therefore, the general performance impact from the system call 
and Win32 API function interception is acceptable. 

5. RELATED WORK 
The concepts of Tracer model are partially inspired by the 

MAC models such as DTE [9], LOMAC [3], UMIP [2] and 
PRECIP [5]. DTE proposed by Lee Badger et al. [9] is a classical 
MAC model to confine process execution, which groups 
processes and files into domains and types respectively, and 
controls accesses between domains and types. Tracer can be 
regarded as a simplified DTE that has two domains (i.e., benign 
and suspicious) and four types (i.e., benign, read-protected, 
write-protected and suspicious). Moreover, Tracer can 
automatically configure the DTE attributes (i.e., domain and type) 
of processes and files under the support of intrusion detection and 
tracing so as to improve usability. 

Both LOMAC and UMIP evolve from BIBA model, which 
aims to add usable and compatible mandatory integrity protections 
into mainstream operating systems. The LOMAC model deals with 
the pathological cases in the Low-Water Mark model’s behaviors to 
decrease its partial compatibility cost. The UMIP model is designed 
to preserve system integrity in the face of network-based attacks in 
a highly usable manner. The PRECIP model addresses several 
practical issues that are critical to contain spyware that intends to 
leak sensitive information. Tracer, however, differs from these 

MAC models in that, it traces suspected intruders and restricts their 
behaviors rather than restricts information flow. With this novel 
concept, it is able to considerably reduce FPs and automatically 
deploy security labels, which result in good compatibility and 
usability. Meanwhile, the philosophy of Tracer is roughly similar to 
the risk-adaptive access control [10] that targets to make access 
control more dynamic and flexible so as to achieve a better tradeoff 
between risk and benefit. Tracer dynamically changes the security 
labels of the processes that derive from dangerous sources to reduce 
the risk of executing malware behaviors, while not restricting other 
behaviors and processes at all to preserve the benefits of 
compatibility and usability. 

Most existing anti-malware technologies are based on 
detection [22][23][24]. Tracer tries to combine detection and 
access control so that it not only can detect but also can block 
malware behaviors before their harming security. Tracer can be 
used as a complementary technique to malware detection, to act 
as an automatic intrusion response mechanism of a malware 
detection system, since it is able to further trace intruders and 
restrict their behaviors after malware detection. Another 
anti-malware technology that resembles Tracer is behavior 
blocking [29], which can confine the behaviors of certain adverse 
programs that are profiled in advance. However, Tracer does not 
need to profile program behaviors beforehand, and can confine 
the adverse programs that execute malware behaviors. 

Many commercial anti-malware tools [27][28] also have a 
behavior-based module to defend against unknown malware 
programs. The major difference between Tracer and the 
commercial tools is that Tracer determines a malicious behavior 
based not only on the behavior itself but also the source of the 
process requesting the behavior. In other words, Tracer further 
checks the suspicious label of the process requesting the behavior 
rather than merely the behavior as anti-malware tools do. As a 
consequence, Tracer produces much less false positives than that 
of the commercial-tools as shown in Section 4.2. 

6. CONCLUSIONS 
In this paper, we propose a novel MAC model that integrates 

intrusion detection and tracing to defend against malware in a 
commercial OS. We have extracted 30 critical malware behaviors 
and three common malware characteristics from the study of 
2,600 real-world malware samples and analyzed the root reasons 
for the incompatibility and low usability problems in MAC, 
which will benefit other researchers in this area. Based on these 

Functions Native Tracer-m Tracer-bf Tracer-b Functions Native Tracer-m Tracer-bf Tracer-b

NtCreateFile 334492 348471(4.2%) 348197(4.1%) 338506(1.2%) CreateService 6568120 6679778(1.7%) 6679625(1.7%) 6568323(<0.1%)

NtOpenFile 167620 175263(4.6%) 173235(3.3%) 169713(1.2%) OpenService 5490443 5609379(2.2%) 5609352(2.2%) 5490560(<0.1%)

NtWriteFile 245179 324623(32.4%) 278214(13.5%) 249832(1.9%) NtSetValueKey 210491 225120(6.9%) 225093(6.9%) 210493(<0.1%)

NtCreateNamedPipeFile 204711 214743(4.9%) 214751(4.9%) 204789(<0.1%) NtCreateKey 281722 296371(5.2%) 296008(5.1%) 281784(<0.1%)

NtCreatePort 37241 40221(8%) 40180(7.9%) 37275(<0.1%) NtCreateProcessEx 206458 215435(4.3%) 215426(4.3%) 208849(1.2%) 

MIC (FPR=34%)

27

14

VIPRE (FPR=37%)

34

20

Tracer (FPR=5.6%)

51

3
without FP

having FP

Kaspersky (FPR=39%)

33

21

Figure 3. Comparing false positives with commercial anti-malware techniques on Windows 



 

studies, we propose a novel MAC model, called Tracer, to disable 
malware timely without need of malware signatures or other 
knowledge in advance. It detects and traces suspected intruders so 
as to restrict malware behaviors. The novelty of Tracer design is 
two-fold. One is to use intrusion detection and tracing to 
automatically configure security labels. The other is to trace and 
restrict suspected intruders instead of information flows as done 
by traditional MAC schemes. Tracer doesn't restrict the suspected 
intruders right away but allows them to run as long as possible 
except blocking their critical malware behaviors. This design 
produces a MAC system with good compatibility and usability. 
We have implemented Tracer in Windows OS and the evaluation 
results show that it can successfully defend against a set of 
real-world malware programs, including unknown malware 
programs, with much lower FP rate than that of commercial 
anti-malware techniques. 
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