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Abstract

The use of divisible load scheduling theory is proposed to model and design grid systems such as
those arising in large physics experiments. Current divisible load theory is summarized. A typical
application, the STAR experiment at RHIC is discussed. This includes a sample calculation based on
existing infrastructure numbers.
Keywords: divisible load scheduling theory(DLT), grid computing.

1 Introduction

Scheduling, performance prediction and resource management are important but challenging tasks for grid

computing efforts. In particular, there has been existing and ongoing work on network batch queueing and

wide area scheduling. Ian Foster and others have written [16, 17] on the nature of the grid scheduling

environment with its multiple possible performance measures and constraints, its large number of jobs and

job sources and its large number of processing, transmission and storage resources.

Efforts in grid technology would benefit from a robust mathematical, but tractable performance predic-

tion and scheduling tool. A natural first choice, queueing theory, is tractable for simpler models but has

tractability limitations as queueing statistics become more complex (i.e. realistic). This is particularly true

of large systems. Moreover the statistical assumptions often made may only be approximate, or worse, in

reality.

In this paper we propose the use of divisible load (data) scheduling theory for grid scheduling and

performance prediction. Based on divisible (partitionable) loads, the resulting continuous variable theory is

a linear one with all of the attendant tractability that implies. The theory is also fundamentally deterministic,

lacking the weakness of statistical assumptions. One can also, as a number of researchers have done, model

a large number of small tasks as a divisible load [15].

The next section presents an overview of divisible load scheduling research. This is followed by a

discussion of a representative example, the STAR experiment in the RHIC project. A simple divisible
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calculation using typical grid infrastructure numbers is presented to illustrate the suitability of divisible load

theory for grid problems, followed by the paper’s conclusion.

2 Divisible Load Scheduling Theory

Over the past fifteen years or so, a new mathematical tool has been created to allow tractable performance

analysis of systems incorporating communication and computation issues, as in parallel and distributed

processing. A key feature of this divisible load distribution scheduling theory (known as DLT) is that

it uses a linear mathematical model. Thus as in other linear models such a Markovian queuing theory

or electric circuit theory, divisible load scheduling theory is rich in such features as easy computation, a

schematic language, equivalent network element modeling, results for infinite sized networks and numerous

applications. This linear theory formulation opens up striking modeling possibilities, including for grid

computing.

Since the original work on this subject in 1988, by one of the co-authors and James Cheng [2], then a

graduate student, an expanding body of work on this subject has been published on a worldwide basis [1, 12].

The original motivation on the part of the P.I. for this 1988 work was intelligent sensor networks with

elements which could measure, communicate and compute. The divisible load concept has subsequently

been applied to parallel and distributed computing.

In divisible load distribution theory it is assumed that computation and communication loads can be

partitioned arbitrarily among a number of processors and links, respectively. A continuous mathematical

formulation is used. In addition, there are no strong precedence relations among the data. Therefore load

can be arbitrarily assigned to links and processors in a network. This class of problems is well suited for

modeling a large class of data parallel computational problems. As a secondary benefit, it sheds light on

architectural issues related to parallel and distributed computing. Moreover, the theory of divisible load

scheduling is fundamentally deterministic. While stochastic features can be incorporated, the basic model

has no statistical assumptions that can be the Achilles’ heel of a performance evaluation model.

A typical divisible load model allows one to account for model parameters such as heterogeneous pro-

cessor and link speed and computation and communication intensity. For instance, the time to process the

load at the
�
th processor is typically ���������
	�� where �� is the fraction of the total load assigned to the

�
th

processor, ��� is the inverse speed of the
�
th processor and ��	�� is the computation intensity of the load. Sim-

ilarly, the time to transmit a load fraction ��� on the
�
th link is ���������
	�� where ��� is the inverse speed of the

�
th link and �
	�� is the communication intensity of the load.

Divisible load models can typically be solved algebraically for optimal allocation and timing of load to

processors and links. Here optimality is defined in the context of the specific interconnection topology and

scheduling policy used. A solution is usually obtained by forcing all processors to finish computing at the

same time (otherwise, intuitively, load could be transferred from busy to idle processors see [5] for a formal
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proof).

In the case of a single level tree (star) network this constraint leads to a series of chained equations that

can be solved recursively for the optimal allocation of load to each processor in the context of a given load

distribution schedule. The recursions are similar in form, though not parameters, to the recursive solutions

of equilibrium state probability for a single Markovian queues [5, 6]. In the worst case, for a more general

network such as a multilevel tree network, by forcing all processors to stop computing at the same time one

can set up a set of N linear equations for N processors [3]. These equations can be solved for the optimal

allocation of load to processors through standard linear equation solution techniques.

A useful concept in divisible load theory is that of an equivalent processor [4]. One can replace a sub-

network of a larger network with a single equivalent processor that has exactly the same overall computing

power (i.e. speed) as the original sub-network. This equivalent processor concept is analogous to the

equivalent element of electric circuit theory and the equivalent queue of queueing theory. Moreover for

homogeneous networks, by setting up an implicit equation, it is possible to solve for the performance of

infinite size networks.

Also important is the actual load scheduling policy used. Linear divisible load theory can model a

wide variety of approaches. For instance, one can distribute load either sequentially or concurrently. Under

sequential (bus like) load distribution, the policy used in most of the literature to date, a node will distribute

load to one of its children at a time. This results in a saturating speedup as network size is increased.

One could improve performance by distributing load from a node to children in periodic installments but

performance still saturates as the number of installments is increased [1]. A superior performance results

if load is distributed concurrently. That is a node distributes load simultaneously to all of its children. In

2002 it was shown that such concurrent load distribution is scalable for a single level tree in the number of

children nodes (i.e. linear growth in speedup as the number of children nodes increases) [13]. Here speedup

is the ratio of solution time on one processor to solution time on an N processor network. Speedup is a

measure of parallel processing advantage.

Other scheduling policy features that can be modeled are store and forward and virtual cut through

switching and the presence or absence of front end processors. Front end processors allow a processor to

both communicate and compute simultaneously by assuming communication duties. Also, the time to report

solutions from processors back to a load originating processor can be modeled.

A number of model features studied for divisible scheduling include finite memory [9], fixed start up

charge models [7], processor release times and load granularity. Divisible load scheduling theory has been

applied to a variety of applied problems including monetary cost optimization, matrix calculations [8],

multimedia scheduling and image processing [11]. There has also been experimental work [10, 11] and a

proposal for dynamic real time scheduling [14].
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3 Suitability of Divisible Load Theory For Grid Problems

High energy and nuclear physics experiments requires effective analysis of large amounts of data by widely

distributed researchers who must work closely together. Expanding collaborations (envisioned by the Parti-

cle Physics Data Grid [21]) and demanding data analysis requirements coupled to increasing computational

and networking capabilities are giving rise to a new class of network-based computing platforms: globus

[16], condor [19], LSF [20], and so on. All of these recently emerging platforms require a scheduling

strategy to efficiently make use of distributed computers, high-speed networks and storage resources.

3.1 STAR Computing Needs

The Solenoidal Tracker At RHIC (STAR) collaboration is a large international collaboration of about 400

high energy and nuclear physicists located at 40 institutions in the United States, France, Russia, Germany,

Israel, Poland, and so on. After the Relativistic Heavy-Ion Collider at Brookhaven National Laboratory

came on-line in 1999, STAR began data taking and concurrent data analysis that will last about ten years.

STAR needs to perform data acquisition and analyzes over approximately 250 tera-bytes of raw data, 1

peta-bytes of derived and reconstructed data per year. The sequence of data flow is:

� Raw Data Generation: The STAR detector writes raw data to tapes stored in tape silos.

� Reconstruction: The RAW data will be processed individually for event reconstruction. The recon-

structed events are written to the storage system.

� DST generation: The reconstructed events will be processed, the identified particles suitable for

physics analysis will be generated from the reconstructed events by calibrating the tracking of events.

The results of this process is called DST (Data Summary Tape).

� Micro-DST generation: For different physics analysis, a subset of events from the DST is selected

with the corresponding filters on the type of events. The subset is called Micro-DST.

Physicists submit jobs to the data grid. Each job generally consists of many subjobs. Some large jobs

might include thousands of subjobs. Each subjob has a run time of seconds up to days. STAR subjobs

do not communicate with each other directly. A subjob has one or more file sets as its input, creates new

output files or updates existing files. All of these processes are applied to individual datasets. There is no

co-relation between the processes on two different datasets.

3.2 Hardware Description

Two main computing resources of similar size, RCF (BNL) and PDSF/NERSC (LBNL) STAR have 1000

CPUs, 30 TB disk, and HPSS at both sites. Production-level processing is done at both sites independently:

DST production at BNL, embedding at LBNL There is a simple model for user-level computing: Almost

everything is available at both sites on disk. The STAR experiments use regular UNIX files databases to
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store experimental results. Typical database file sizes are approximately 1 gigabytes. The size of the total

dataset is 50TB at this moment. When a user submits job requests, this job will typically be broken down to

several hundred small jobs; each job will work on a 1 gigabyte file. Some (not all) STAR/RHIC computing

resources are shown in Table 1. The STAR storage is distributed among five NFS servers, each of them has

a one gigabit network connection.

Number CPU Number of Memory Network
of Hosts Vendor Speed (MHz) CPUs Per Host (MB) Bandwidth (mbps) Host ID

135 VA Linux 450 2 512 100 1
161 VA Linux 800 2 512 100 2
301 IBM 1000 2 1024 100 3
155 IBM 1400 2 1024 100 4

Table 1: STAR computing resource chart.

3.3 Distributed Job Scheduling

Optimizing job execution time by efficiently scheduling subjobs to different sites and individual computers

is crucial to successful physics research in the grid computing environment, due to the great computing

need for physics processes and the limited computing resources. Many approaches have been proposed to

move the physics programs to the data repository; to schedule the jobs/subjobs to the least loaded computing

nodes or the fastest computing node first; or to pre-schedule data strategically for max reuse and schedule

jobs thereafter. But most of these approaches do not reflect the physics reality: large amounts of jobs which

are divisible with no interprocess communication between jobs and subjobs. Many algorithms can not

schedule jobs efficiently in either of two ways: the computing sites without data are idle while the computing

sites with the needed data are overwhelmed because of unbalanced load sharing; or the time is spent on

transferring data while the most computing resource are waiting for data transfer. We propose balanced load

sharing through the use of divisible load distribution scheduling theory and algorithms which are targeted

towards the characteristics of physics processes, and provide the best effort scheduling on computing and

data resource to avoid “hot spots” in the grid.

3.3.1 STAR Simulation

Large numbers of simulated events are necessary for calculating the efficiency of the STAR detector, opti-

mizing the STAR detector and planning the future data analysis. Simulation processes mimic the particle

production from nucleus + nucleus collisions, thereafter the propagation, scattering of the particles through-

out the detector and the response of each sub-detector to the passage of particles [18]. Simulation generates

simulated events. Here we consider a STAR physics process which simulates gold + gold collision. The

input to this physics process is a set of parameters for each event generator; and the output is 35160 gener-

ated events. The event are stored in 100 files, which each files is about 1.352 GB. It takes about 24 hours to

generate 1000 events on a host with dual 1GHz CPUs.

5



3.3.2 Event Reconstruction

The STAR event reconstruction software converts the raw input data from either simulations or from the

real experiment into a reconstruction of the particle production from gold + gold collisions. The output

of the event reconstruction software is a list of particles corresponding to the input event and includes the

momentum, energy charge and other physics characteristics [18]. The average size of an input raw event is

3.84 MB; and the size of an output reconstructed event is 1.527MB. It takes an average of 652.39 seconds

to reconstruct a single event. Table 2 lists the symbols and their definitions in this example.

Symbols Definitions and Values

�� fraction of load assigned to the
�
th host

�� inverse host
�

speed
� � inverse network link

�
speed to the

�
th host

�
	�� computing intensity constant of processing a unit load on the standard host
�
	�� communication intensity constant of transferring a unit input/output load on a standard link
�
	�� ��� ����� communication intensity constant of transferring a unit input load on a standard link
�
	�� ����� ����� communication intensity constant of transferring a unit output load on a standard link
��������
	�� time to process the

�
th fraction on the

�
th host

�� �����
	�� the time to transmit the fraction ��� of the entire load over the
�
th link

	 the ratio between communication and processing intensities, 	�
�����
�����

Table 2: Symbol Definitions and Parameter Values for the experiments

       z T α           z T α    
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       z T α           z T α    

α ω T

α ω T
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Communication

Communication

Communication
Child 1
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Child 4
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Communication

 

Computation

Computation

Computation

Computation
time

time

time

time

4  4  cm_input

3  3  cm_input

2  2  cm_input

4  4  cm_out

3  3  cm_out

2  2  cm_out

1  1  cm_out1  1  cm_input

       z T α    

1   1 cp

2   2 cp

3   3 cp

4   4 cp

α ω T

Figure 1: Timing diagram of star tree with simultaneous distribution; each child pulls/push data from/to
storage system.
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We assume that the hosts are exclusively used for event reconstruction. A STAR job normally generates

500 events during each run. This job is scheduled to run on four hosts with different CPU speed in this

example. The specification of the four hosts are shown in Table 1. We choose a computer with 1 Hz CPUs

as the standard host. From Table 1, we obtain ��� 
��������	�
������ , ��� 
����������
���� ��� , ��� 
��������� ��� ,
and ��� 
! ����#"��%$&�'���� ��� . In this example, we choose 500 events as a unit load. Here ��	�� is the computing

intensity of generating these 500 events on the standard host. To calculate the value of � 	�� , we use the

reference figures in the paragraph above and Table 1, and � � is the inverse speed of a dual 1Ghz host.

We already know �(� � 	�� 
)�����*�+�������� �, 
) ����-�.,�� seconds, therefore �	�� 
/�������� �,��0�!��� �1� . The

subjobs will not start until the required events are available. The bandwidth of the network backbone is

much bigger than host network bandwidth. Thus the communication speed is only determined by the host

network bandwidth. All of these hosts in Table 1 use fast Ethernet. Thus �2� 
 �3� 
 �3� 
 �.� 
4�����5 .
Naturally if a network is used as a shared resource by a large number of hosts, the following equations still

hold if we approximate transmission speed by its effective value. More comprehensive discussion regarding

the communication cost can be found in [15]. The timing diagram in Figure 1 shows the input/output

communication delay above the time axis and computing time below the time axis. Since the network

speed is constant, we combine � 	�� ��� ����� and � 	�� ����� ����� as � 	 � , while � 	�� 
 � 	 � ��� �����76 � 	�� ����� ����� .
In this example, �8� � 	 � is the communication intensity of transferring a unit load over network link � ,
��� �
	�� 
9�����:�<; �>= 5 �@?��A= BA�DCAEGF	H���A� �JI �LK 
M�����N� �D�>= � �AO �JI���A� �JI �LK 
P�-�%$Q����R seconds. Therefore � 	�� 
P�����%$8��R:�
��� ��� .
The finish times for all hosts should be equal for optimal load distribution [5]. The following equations [13]

hold:

�7� �S� � 	�� 6 �T� ��� �
	�� 
 �U� ��� �
	�� 6 ��� �3� �
	��
�U� ��� � 	�� 6 ��� �3� �
	�� 
 �U� ��� �
	�� 6 ��� �3� �
	��
�U� ��� � 	�� 6 ��� �3� �
	�� 
 �V� ��� �
	�� 6 �U� �.� �
	��
�7� 6 ��� 6 ��� 6 �V� 
 ��W

��� 
 �T� �
	�� 6 �#� � 	��
��� �
	�� 6 �L� � 	�� �7� 
!X � �T� 
!X � �7�

� � 
 ��� �
	�� 6 �L� � 	��
��� �
	�� 6 �L� � 	�� � � 
!X � � � 
!X � X � � �

�U� 
 ��� �
	�� 6 �L� � 	��
�U� �
	�� 6 �3� � 	�� �U� 
!X � ��� 
!X � X � X � �T�

�T� 

�

� 6 X ��6 X � X ��6 X � X � X �
�

Based on these equations, �J� 
Y�.���� Z$\[ , ��� 
]�-����,��#[ , �U� 
^�#"\�� �,#[ , �U� 
^ �R��� Z$\[ , and the job

processing time is 89419.4 seconds. Note that solution time is � K �`_ ��� ����� 
 � �Aa � ���
	�� 6cb ���
	��#d Wfe � 
g��W@��W@ �WA$ .
A processor with inverse processing speed equivalent to the entire network is: �ihfj 
 k@lnm ?po l�q?sr l ?sr`tAr l ?srfu`r`tAr l . For

a homogeneous network, � is the inverse host speed, vAwyxLx.z8{#w 
 o � ���o#|~} ����� 
 a okDl1m ?po d%a � 6 X � 6 X � X � 6 X � X � X �@d .
Naturally for a homogeneous network, the X � ’s are identical.
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It can be seen that the STAR example is much more computation intensive than communication in-

tensive. The type of modeling is easily modified to account for any number of processors and different

scheduling policies and interconnection topologies.

4 Conclusion And Future Works

Grid technology will benefit from a tractable and flexible analytic design tool. Divisible load scheduling

theory is a promising candidate for this role. Open challenges include the further development of the theory

to model very large grid systems and their associated problems. We will implement the divisible load

scheduling algorithm, install it on a grid type computing facility, compare its performance with other local

batch systems, such as LSF, condor, and PBS.
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We especially thank Jérôme Lauret for explaining to us the complex STAR physics concepts and provid-

ing real life STAR job parameters for our examples. We also thank Lidia Didenko and Maxim Potekhin

for explaining the STAR simulation processes and for valuable discussions. Thomas Robertazzi’s work is

supported by NSF grant CCR-99-12331. Dantong Yu’s work is supported by DOE PPDG/ATLAS/RHIC

grants.

References

[1] Bharadwaj, V., Ghose, D., Mani, V. and Robertazzi, T.G., Scheduling Divisible Loads in Parallel and
Distributed Systems, IEEE Computer Society Press, Los Alamitos CA, Sept. 1996, 292 pages.

[2] Cheng, Y.C. and Robertazzi, T.G., “Distributed Computation with Communication Delays”, IEEE
Transactions on Aerospace and Electronic Systems, Vol. 24, No. 6, Nov. 1988, pp. 700-712.

[3] Cheng, Y.C. and Robertazzi, T.G.,“Distributed Computation for a Tree Network with Communication
Delays”, IEEE Transactions on Aerospace and Electronic Systems, Vol. 26, No. 3, May 1990, pp.
511-516.

[4] Robertazzi, T.G., “Processor Equivalence for a Linear Daisy Chain of Load Sharing Processors”, IEEE
Transactions on Aerospace and Electronic Systems, Vol. 29, No. 4, Oct. 1993, pp. 1216-1221.

[5] Sohn, J. and Robertazzi, T.G., “Optimal Load Sharing for a Divisible Job on a Bus Network”, IEEE
Transactions on Aerospace and Electronic Systems, Vol. 32, No. 1, Jan. 1996, pp. 34-40.

[6] Bataineh, S., Hsiung, T., and Robertazzi, T.G., “Closed Form Solutions for Bus and Tree Networks
of Processors Load Sharing a Divisible Job”, IEEE Transactions on Computers, Vol. 43, No. 10, Oct.
1994, pp. 1184-1196.

[7] Blazewicz, J. and Drozdowski, M., “Distributed Processing of Divisible Jobs with Communication
Startup Costs”, Discrete Applied Mathematics, Vol. 76, Issue 1-3, June 13, 1997, pp. 21-41.

8



[8] Ghose, D. and Kim, H.J., “Load Partitioning and Trade-Off Study for Large Matrix Vector Compu-
tations in Multicast Bus Networks with Communication Delays”, Journal of Parallel and Distributed
Computing, vol. 54, 1998.

[9] Li, X., Bharadwaj, V. and Ko, C.C., “Divisible Load Scheduling on Single Level Tree Networks with
Buffer Constraints”, IEEE Transactions on Aerospace and Electronic Systems, vol. 36, no. 4, Oct.
2000, pp. 1298-1308.

[10] Drozdowski, M. and Wolniewicz, “Experiments with Scheduling Divisible Tasks in Clusters of Work-
stations”, in in Bode, A., Ludwig, T., Karl, W. and Wismueler, R., editors, EURO-Par-2000, Lecture
Notes in Computer Science no. 1900, Springer-Verlag, 2000, pp. 311-319.

[11] Bharadwaj V. and Ranganath, S., “Theoretical and Experimental Study of Large Size Image Process-
ing Applications using Divisible Load on Distributed Bus Networks”, Image and Vision Computing,
Elsevier Publishers, Sept. 2002.

[12] Bharadwaj, V., Ghose, D., Robertazzi, T.G., “Divisible Load Theory: A New Paradigm for Load
Scheduling in Distributed Systems”, in Ghose, D. and Robertazzi, editors, special issue of Cluster
Computing on Divisible Load Scheduling, Jan. 2003, Vol. 6, No. 1, pp. 7-18.

[13] Hung, J.T. and Robertazzi, T.G., “Scalable Scheduling in Parallel Processors”, Proceedings of the 2002
Conference on Information Sciences and Systems, Princeton University, Princeton NJ, March 2002 (six
pages).

[14] Ghose, D., “A Feedback Strategy for Load Allocation in Workstation Clusters with Unknown Network
Resource Capabilities using the DLT Paradigm”, Proceedings of the International Conference on Par-
allel and Distributed Processing Techniques and Applications (PDPTA’02), Las Vegas, Nevada, USA
June 2002, Vol. 1, pp. 425-428.

[15] Beaumont, O., Carter, L., Ferrante, J., Legrand A. and Robert, Y., “Bandwidth-Centric Allocation
of Independent Tasks on Heterogeneous Platforms”, Proceedings of the International Parallel and
Distributed Processing Symposium (IPDPS’02), June 2002.

[16] Foster, I. and Kesselman, C., eds., The Grid: Blueprint for a New Computing Infrastructure, Morgan
Kaufman, 1999.

[17] Ranganathan, K. and Foster, I., “Decoupling Computation and Data Scheduling in Distributed Data-
Intensive Applications”, Proceedings of the 11th IEEE Symposium on High Performance Distributed
Computing (HPDC-11), Edinburgh, Scotland, July 2002.

[18] Bossingham, R., Christie, W., LeCompte, T., Lisa, M., Llope, W.J., Margetis, S., Pruneau, C., Ray,
L., Sakrejda, I., Wilson, W.K., and Yepes, P., “STAR Offline Simulations and Analysis Software De-
sign”, STAR Note 0281, http://www.star.bnl.gov/STAR/html/sas ldesignsas design version1 0.ps, Jan-
uary 1997.

[19] Litzkow, M., Livny, M., and Mutka, M. W., “Condor - A Hunter of Idle Workstations”, Proceedings of
the 8th International Conference of Distributed Computing Systems, San Jose, California, June, 1988,
pp. 104-111.

[20] Zhou, S. “LSF: Load sharing in large-scale heterogeneous distributed systems”, Proceedings of Work-
shop on Cluster Computing, 1992.

[21] Newman, H. and Mount, R. “Particle Physics Data Grid”, Proposal to DOE HENP, 2000.

9


