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Abstract— The applicability of min cost flow and multi-
commodity flow mathematical programming problems to steady
state, multi-source divisible load scheduling is examined. Apply-
ing the linear model concept of superposition to such steady state
multi-source load distribution is suggested for linear and more
general topologies. Finally, the use of heuristic optimization for
a transient multi-source load distribution problem is discussed.

I. INTRODUCTION

Over the past 17 years [1], [2] a good deal of research
has been conducted on scheduling and load distribution with
divisible loads. A divisible load is a data parallel load that can
be arbitrarily partitioned among links and processors to gain
the advantage of parallel processing. However most of this
research has involved load distribution from a single source
[3], [4]. That is, load originates from a single node in a larger
grid or network. Multi-source load scheduling has received
less attention but is a logical next step for research in this
area. Not only can load be expected to originate from multiple
sources in a grid, but even in a supercomputer like IBM
Bluegene load is injected into the fabric of the machine from
multiple points.

A 2002 paper on multi-source load distribution combining
Markovian queueing theory and divisible load scheduling
theory is Ko and Robertazzi [5]. In 2003 Wong, Yu, Veeravalli,
and Robertazzi examined multiple source grid scheduling with
capacity constraints [6]. Moges, Yu and Robertazzi considered
multiple source scheduling for small size models via linear
programming and closed form solutions in 2004 and 2005,
respectively [7], [8]. Marchal, Yang, Casanova, and Robert
in 2004 studied the use of linear programming to maximize
throughput for large grids with multiple loads/sources [9].

This paper proposes the use of min cost flow and multi-
commodity flow formulations for steady state divisible load
scheduling with multiple sources (section 2). It then goes on in
section 3 and 4 to discuss the use of superposition techniques,
as used in electric circuit theory, for steady state divisible load
scheduling in linear and more general topologies, respectively.
Also in section 4 a heuristic approach for minimal time
solution for transient divisible load models is discussed.

This paper is significant for proposing some new optimiza-
tion approaches for the multiple source scheduling problem in
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grids. In particular, the use of superposition would simplify
the conceptualization and computation of such steady state
problems.

II. FLOWS AS MATHEMATICAL PROGRAMMING PROBLEMS

It has been known since Agrawal and Jagadish [2] that
optimal load distribution and scheduling for divisible loads
can be phrased as mathematical programming problems.

Here optimal load distribution when there are multiple
sources of steady state load are formulated two ways: as a
minimum cost flow problem and as a more general multi-
commodity flow problem.

An advantage of using a minimum cost flow problem
formulation is that costs can be assigned that are proportional
to the amount of flow on each link. Here we assume that there
is a single class of flow that is generated at sources and can
be processed at any sink.

Let a flow on a link between adjacent nodes i and j be
xij and the ”cost” of the flow be cij . Then let the objective
function for the minimum cost flow problem be

Z =
∑

(i,j)∈A

cijxij (1)

Here A is the set of links and the summation is over all
links, also Z is the total cost.

Next, at each ith node one can write a mass balance
constraint [10] that says that the difference between the flow
out of node i (over all links leaving node i) and the flow into
node j (overs all links to node j) is, thus

∑

j:(i,j)∈A

xij −
∑

j:(j,i)∈A

xji = b(i) for all i ∈ N (2)

Here N is the set of nodes. If b(i) is positive the ith node is
a source and generates load. If b(i) is negative, the ith node is
a sink and processes load. Thus by setting the b(i), the amount
of load generated and processed at differences nodes can be
include in the optimization. Note that steady state flows are
being modeled here. Note also that often

∑
i∈N b(i) = 0.

With a final set of constraint equations one also optionally
set lower (lij) and upper (uij) limits to the flow on the ijth
link, that is

lij ≤ xij ≤ uij for all (i, j) ∈ A (3)
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Solution algorithms, for the minimum cost flow problem are
simpler than for multi-commodity flow problems. However in
phrasing the optimization as a multi-commodity flow problem
on can process specific classes of load at specific processors.
Le the kth load class be one of K classes. Then the objective
function, which still retains the minimum cost flavor, is

Z = min
∑

(i,j)∈A

∑

1≤k≤K

ck
ijx

k
ij (4)

Here cij and xij are the ijth link cost and flow, respectively,
for the kth class,

A mass balance equation similar to (2) can be written for
each Kth flow. Using the notation of Ahuja [10] one has

NXk = bk, k = 1, 2, · · · ,K (5)

Thus depending on the sign of the bk entires, there can be
generation and processing of the kth class flow at each ith
node. Optionally, upper limits can be placed on the amount
of individual class flows and total flow across all classes on a
link as the following two sets of constraint equations indicate:

0 ≤ xk
ij ≤ uk

ij for all (i, j) ∈ A and all k = 1, 2, · · · ,K
(6)

∑

1≤k≤K

xk
ij ≤ uij for all (i, j) ∈ A (7)

A final note is that an inequality can be included in the
mass balance equation if the network/grid has more capacity
for processing than the supply of load.

III. LINEAR DAISY CHAINS WITH TWO SOURCES

In this and the following sections we examine a specific
multi-source problem involving multiple sources with steady
state load distribution.

It has been noted before that basic divisible load scheduling
theory is a linear theory. Other linear theories such as electric
circuit theory admit a principle of superposition. That is, the
response of a network to multiple sources of excitation is
equal to the sum of the responses to each source of excitation
individually.

To date the theory of divisible loads has been quite suc-
cessful in solving load distribution problems with a single
source of load. Thus if superposition could be applied in the
divisible load scheduling area, it would provide a useful means
of computing the flow of load in different parts of a grid when
there are multiple sources of load.

To see how this might work, consider a linear daisy chain
of N processors with load originating in a steady sate sense
(i.e. load/sec) from the two nodes at either end of the chain.

Consider the chain of Fig.(1) with flows from left most and
rightmost nodes.

The left most node generates 24 units/second of load while
the right most node generates 32 unit/second of load. Hypo-
thetical load distribution patterns for both nodes are shown in
the figure. If the two flows are superimposed algebraically the
resulting superimposed flow at the bottom of the figure results.
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Fig. 1. Superimposed Flows in Linear Daisy Chain Network.
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Fig. 2. Linear Daisy Chain Network.

Note that the superimposed flow has a minimum point at
the third node from the left. It is straightforward to show that
if the two individual flows are monotonically decreasing from
source node through the geographic extent of the grid, then
the magnitude of the superimposed flow will have a ”bath
tub” like function shape with a minimum somewhere on the
grid. As a degenerate case if the rightward (leftward) flow
is greater than the leftward (rightward) flow on all links a
monotonically decreasing (increasing) flow magnitude from
left to right results.

Let’s try now to write some algebraic expressions for the
flows in the linear daisy chain with two sources of load on the
boundaries. Consider Fig.(2).

Load in the amount of L1 units/second originates at the
leftmost node while LN units/second originate at the right
most nodes. The rightward flow in the jth link (to the right of
the jth node, j = 1, 2, · · · , N − 1) is fr

j . The leftward flow is
f l

j . The inverse available processing speed of the jth node is
wj . We say “available” because in a grid a node may donate
only part of its computational capability to process jobs.

We assume for this development that communication time is
negligible compared to computation time. Thus it is as if one
has links with very large communication speeds. In this case
for a solution time optimal distribution of load, load should be
distributed to each node in proportion to its computation speed.
Over a finite time window load distribution will be balanced
so that any other assignment will result in load being over
assigned and under assigned to certain nodes and idle times
developing. Following Wong [6], the optimal fraction of load
to assign to each node is:

αL1
i =

1
wi∑N

k=1
1

wk

(8)

αLN
i =

1
wi∑N

k=1
1

wk

(9)

The flow fr
j at link j is simply the generated load L1 minus
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the load consumed by nodes to the left of link j.

fr
j = L1 −

∑j
k=1

1
wk∑N

k=1
1

wk

L1 (10)

= L1(

∑N
k=j+1

1
wk∑N

k=1
1

wk

) (11)

Similarly, for the leftward flow,

f l
j = LN (

∑j
k=1

1
wk∑N

k=1
1

wk

) (12)

The magnitude of the superimposed flow is

|fr
j − f l

j | =
|L1

∑N
k=j+1

1
wk
− LN

∑j
k=1

1
wk
|

∑N
k=1

1
wk

(13)

To find the minimum point of the flow magnitude,
|fr

j − f l
j | = 0, so L1

∑N
k=j+1

1
wk

= LN

∑j
k=1

1
wk

.

Therefore, ∑j
k=1

1
wk∑N

k=j+1
1

wk

=
L1

LN
(14)

Thus the minimum point depends on the ratio of the two
generated loads. For instance, if L1 = 2LN , the minimum
point occurs where the amount of load consumed to the left
of the minimum point is twice that consumed to the right of
the point.

For a continuous and homogeneous version of the problem.
(a continuum of nodes on a finite line from 0 to N ) one has,

∫ x

0
1
wdy

∫ N

x
1
wdy

=
L1

LN
(15)

L1(N − x)
1
w

= LNx
1
w

(16)

x =
L1

L1 + LN
N (17)

This illustrates the same point about the minimum point
location, x, just made above.

A natural question is to what extent is the superimposed
flow solution optimal. Loads have been allocated to processors
in proportion to computation speeds, a time optimal approach.
Beyond this the superimposed flows in some sense minimize
the amount of load that must be transported between nodes.
The superposition technique illustrated here is similar to that
an electric circuit with current sources and sinks.

IV. GENERAL NETWORKS

The superposition technique of the previous section could be
applied to more general grid networks that are two dimensional
and that have multiple sources.

Consider the grid of Fig.(3(a)), the superimposed flow in
linkij would be the algebraic sum of the flows due to each
of the source individually.

In a very large grid it may make sense not to perform
computation for a source at a too distant sink. That is,
computation for a source might be done only on nodes in
a local region close to the source. In fact for transient load
distribution problems, it has been found for multilevel trees
[3], a general spanning network, that for time optimal solutions
much more load is processed close to the root (which is the
load source) and very little in the further levels of a tree. Here
communication delay is taken into account, unlike the situation
discussed here.

We close by noting that this suggests an alternate load
distribution optimization algorithm to the superposition based
approach for transient problem. In this ”heuristic” approach
the grid is initially partitioned into local regions around each
source as shown in Fig.(3(b)). The partition is evaluated by
running a solution time optimal single source load scheduling
algorithm, within each partition. A new partition could be
created by transferring a node from one partition to another
according to heuristic rules. Under a greedy strategy, the
new partition is kept if it leads to an improved solution.
More sophisticated heuristic approaches such as simulated
annealing, tabu search or genetic algorithms could also be
applied to this transient load distribution optimization problem.
A partitioned linear daisy chain is considered by Lammie and
Robertazzi in [11].

V. CONCLUSION

Several optimization techniques of the multiple source grid
scheduling problem have been outlined. The application of
superposition to such problems is particularly exciting as it
brings an established linear modeling technique to a new area.
In the process it provides conceptual simplification and the
possibility of efficient computation.
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